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Abstract

Escherichia coli a-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging

to the family of RTX toxins. A hydrophobic region between the amino acid residues

238 and 410 in the N-terminal half of HlyA has previously been suggested to form

hydrophobic and/or amphipathic a-helices and has been shown to be important for

hemolytic activity and pore formation in biological and artificial membranes. The

structure of the HlyA transmembrane channel is, however, largely unknown. For

further investigation of the channel structure, we deleted in HlyA different stretches

of amino acids that could form amphipathic b-strands according to secondary

structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These

deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid

bilayer measurements demonstrated that HlyAD71–110 and HlyAD264–286 formed

channels with much smaller single-channel conductance than wildtype HlyA,

whereas their channel-forming activity was virtually as high as that of the wildtype

toxin. HlyAD158–167 and HlyAD180–203 were unable to form defined channels in lipid

bilayers. Calculations based on the single-channel data indicated that the channels

generated by HlyAD71–110 and HlyAD264–286 had a smaller size (diameter about 1.4

to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting

that in these mutants part of the channel-forming domain was removed. Osmotic

protection experiments with erythrocytes confirmed that HlyA, HlyAD71–110, and

HlyAD264–286 form defined transmembrane pores and suggested channel diameters

that largely agreed with those estimated from the single-channel data. Taken

OPEN ACCESS

Citation: Benz R, Maier E, Bauer S, Ludwig
A (2014) The Deletion of Several Amino Acid
Stretches of Escherichia coli Alpha-Hemolysin
(HlyA) Suggests That the Channel-Forming
Domain Contains Beta-Strands. PLoS ONE 9(12):
e112248. doi:10.1371/journal.pone.0112248

Editor: Joel H. Weiner, University of Alberta,
Canada

Received: July 9, 2014

Accepted: October 8, 2014

Published: December 2, 2014

Copyright: � 2014 Benz et al. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. All relevant data are within the paper.

Funding: The authors have no support or funding
to report.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0112248 December 2, 2014 1 / 26

http://creativecommons.org/licenses/by/4.0/


together, these results suggest that the channel-forming domain of HlyA might

contain b-strands, possibly in addition to a-helical structures.

Introduction

Alpha-hemolysin (HlyA) of Escherichia coli is a member of a large family of

cytolytic pore-forming toxins (PFTs) produced by a variety of Gram-negative

bacteria. These toxins share common structural properties and contain in

particular a series of glycine-rich nonapeptide repeats with the consensus

sequence G–G-X-G-(N/D)-D-X-(L/I/F)-X (where X is any amino acid) in the C-

terminal half of the toxin protein; they are therefore called RTX (Repeats in

ToXin) toxins [1, 2]. The primary structure of the HlyA protein (1,024 amino acid

residues) has several different domains. The C-terminus (about 50–60 residues) is

essential for the secretion of HlyA out of the E. coli cell by a type I export system

comprising the inner membrane components HlyB (a transport ATPase) and

HlyD (adaptor protein) and the minor outer membrane channel-tunnel protein

TolC [3–7]. The post-translational activation of HlyA involves the covalent fatty

acylation of two lysine residues at position 564 and 690 by the cytoplasmic acyl-

transferase HlyC [8–11]. The repeat domain (amino acid residues 724 to 852,

comprising 13 nonameric repeats) binds Ca2+ and is essential for recognition of

the mammalian target cell but it is not essential for channel formation in lipid

bilayer membranes [12, 13]. A pronounced hydrophobic region in the N-terminal

half of HlyA (residues 238 to 410), which may form hydrophobic and/or

amphipathic a-helices, has rather been shown to be crucial for pore formation

[14–19].

E. coli HlyA efficiently lyses erythrocytes and shows strong cytotoxic and

cytolytic activity against a variety of nucleated cells [1, 2, 20]. The binding of HlyA

to target cells has recently been suggested to be not receptor-dependent [21], but

the issue of the presence or absence of HlyA receptors on different cells is still

controversial [22–25]. Interestingly, HlyA does not only kill and lyse cells but it

also affects target cells at sublytic concentrations. It has been shown, for example,

that HlyA induces Ca2+ oscillations in renal epithelial cells leading to the

production of pro-inflammatory cytokines [26]. In addition, it has been reported

that these calcium oscillations depend on the influx of extracellular Ca2+ through

L-type calcium channels in the plasma membrane and on the release of Ca2+ from

stores within the endoplasmatic reticulum [26]. However, a more recent study

suggested that they are caused by pulses of Ca2+ influx through short-lived HlyA

pores that are rapidly closed or removed from the plasma membrane [27].

Secondary structure predictions suggested that the hydrophobic domain

(residues 238–410) of the otherwise largely hydrophilic E. coli HlyA protein might

contain hydrophobic and amphipathic a-helical structures that could be part of

the transmembrane channel [15, 16]. The importance of this region for membrane
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insertion and pore formation has also been shown experimentally [14–19]. The

channel structure itself is, however, still a matter of debate. Our own lipid bilayer

studies suggest that several non-conductive HlyA monomers are needed to form a

conductive oligomer, which has at low transmembrane potentials two well-

defined conductance states: a small prestate and a transient open state following

the prestate [28]. Oligomer formation was also suggested for other RTX toxins,

such as the adenylate cyclase toxin (CyaA) of Bordetella pertussis or HlyA of the

Proteus group [29–32]. In addition, complementation studies using different HlyA

mutants suggested that oligomerization of E. coli HlyA is also a prerequisite for

hemolysis [33]. However, vesicle studies also suggested that HlyA may act by a

single hit mechanism [34]. Studies with erythrocytes and artificial membranes

have demonstrated that a pore with a diameter of 1–3 nm is formed by HlyA

[20, 28, 35]. Nevertheless, investigations of channel formation by HlyA in red

blood cells also have suggested that the hemolytic activity of HlyA may not be due

to the generation of defined channels in the erythrocyte membrane but rather to a

detergent-like action of the toxin [36]. This has been concluded from the

experimental observation that in osmotic protection experiments larger solutes

are needed for protection at higher hemolysin concentrations and at longer assay

times. Similarly, a detergent-like effect of HlyA on lipid vesicles formed from

lecithin has been suggested from spectroscopic studies [37]. Again, no indication

for a defined or any transmembrane arrangement of the toxin has been found in

these studies, which suggested that HlyA occupies only one of the two

phospholipid monolayers of the membrane. A transmembrane organization of

HlyA has also not been recognized in electron microscopic analyses [37].

In this study, we describe lipid bilayer measurements and osmotic protection

experiments using HlyA mutants in which four stretches of amino acids within

the first 300 residues (residues 71–110, 158–167, 180–203, and 264–286) were

deleted. These stretches contain one or two putative amphipathic b-strands of at

least about 9 amino acid residues according to secondary structure predictions

([38], programs PRED-TMBB (http://biophysics.biol.uoa.gr/PRED-TMBB/) and

TMBETA-NET (http://psfs.cbrc.jp/tmbeta-net/)), and many of the residues within

these stretches are highly conserved among different RTX toxins. All four

deletions strongly impaired or almost abolished the hemolytic activity of HlyA,

but two of the HlyA mutants (HlyAD71–110 and HlyAD264–286) were still able to

form defined ion-permeable channels in lipid bilayers. Furthermore, the lipid

bilayer data as well as the results of osmotic protection experiments with

erythrocytes indicated that these channels are considerably smaller as compared to

those formed by the wildtype toxin, suggesting that amphipathic b-strands may be

involved in channel formation by HlyA. Control experiments with aerolysin from

Aeromonas sobria, a cytolysin known to form defined channels [39], suggested that

the osmotic protection depends on the concentration of the channel-forming

components, even if they form a discrete-sized channel.
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Materials and Methods

Bacterial strains, plasmids, and culture conditions

The hlyCABD operon required for synthesis and secretion of E. coli a-hemolysin

was originally cloned from plasmid pHly152 [40]. pANN202–812 and pANN202–

312* are recombinant derivatives of pBR322 and pACYC184, respectively, carrying

this operon on a 16.7-kb SalI insert [11, 41]. Plasmid pANN202–312 [40] is a

pACYC184 derivative carrying the four hly genes on a 13.4-kb HindIII-SalI insert

that lacks part of the regulatory sequences present upstream from hlyC. All

plasmids were propagated in E. coli 5K (Smr lacY1 tonA21 thr-1 supE44 thi rk
–

mk
+). The E. coli strains JM109, BMH71–18mutS and MK30–3 [12] were used as

host strains for vectors of the M13mp series (New England Biolabs) that were

employed for site-directed mutagenesis. All bacterial strains used in this study

were grown aerobically at 37 C̊ in double-concentrated yeast extract-tryptone

(26YT) medium (yeast extract [Difco], 10 g/liter; tryptone [Difco], 16 g/liter;

NaCl, 10 g/liter) or on YT medium solidified with 1.5% (wt/vol) agar. Blood agar

plates were prepared from YT medium supplemented with 4% defibrinated sheep

blood (Oxoid). Antibiotics were used at the following final concentrations:

ampicillin, 100 mg/ml; chloramphenicol (Cm), 30 mg/ml.

Construction of HlyAD71–110, HlyAD158–167, HlyAD180–203, and

HlyAD264–286

Deletion of the codons 71 to 110, 158 to 167, 180 to 203, and 264 to 286 of hlyA,

coding for the amino acid stretches ADELGIEVQYDEKNGTAITKQVFGTAEK-

LIGLTERGVTIF, SSMKIDELIK, LAKASIELINQLVDTVASLNNNVN, and

DTRTKAAAGVELTTKVLGNVGKG, respectively [42, 43], was performed by site-

directed mutagenesis using the gapped duplex DNA approach [44]. (The putative

amphipathic b-strands derived according to the programs PRED-TMBB [http://

biophysics.biol.uoa.gr/PRED-TMBB/] and TMBETA-NET [http://psfs.cbrc.jp/

tmbeta-net/] are given in bold and are underlined in the above sequences). A

recombinant M13mp9 derivative with a 2.65-kb BamHI-BglII insert spanning the

39-terminal region of hlyC and the 830 59-terminal codons of hlyA was used as

DNA template for the generation of the deletions, and the mutagenesis was

directed by the oligonucleotides shown in Table 1. Successful introduction of the

deletions was verified by DNA sequencing (dideoxynucleotide chain termination

method), using the T7 sequencing kit from Pharmacia. To transfer the deletions

into the hlyCABD operon, a BamHI-SphI subfragment of the BamHI-BglII insert

containing the respective deletion was isolated and substituted for the

corresponding 1.9-kb wildtype BamHI-SphI fragment in pANN202–312. To

complete the hlyCABD operon, a 5.2-kb BamHI fragment from pANN202-812,

carrying the entire regulatory region of this operon and the 59-terminal region of

hlyC, was inserted into the unique BamHI site present in hlyC of the mutant

pANN202–312 derivatives, resulting in the plasmids pANN202–312*Mut37

(encoding HlyAD71–110), pANN202-312*Mut70 (HlyAD158–167),
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pANN202–312*Mut71 (HlyAD180–203), and pANN202-312*Mut72 (HlyAD264–286).

The presence of the respective deletion in the hlyA gene of these plasmids was

confirmed by DNA sequencing. DNA cloning procedures were generally carried

out using standard protocols [45].

Isolation and purification of wildtype and mutant HlyA

Identical aliquots of fresh growth medium (20 ml) were inoculated 1:100 with

overnight cultures of E. coli 5K harboring either the wildtype plasmid pANN202–

312* or the mutant plasmids pANN202–312*Mut37, -Mut70, -Mut71, and -

Mut72. The cultures were grown at 37 C̊ with agitation until an OD550 of 1.4 was

reached. The cells were harvested by centrifugation for 15 min at 8,000 rpm in a

pre-cooled Beckman JA-17 rotor. The cell-free supernatants containing either

HlyA or the HlyA mutants were kept on ice and were used for hemolysis liquid

assays or lipid bilayer experiments without further purification (Fig. 1A).

Alternatively, proteins were precipitated with 18% polyethylen glycol (PEG) 4000

and redissolved in 10 mM Tris-HCl, pH 7.0. The final purification of wildtype

and mutant HlyA was achieved by preparative sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) [13]. The eluted proteins were

kept in 8 M Urea, 50 mM Tris-HCl pH 8.0, 2 mM EGTA and stored at 220 C̊. It

is noteworthy that HlyA and its mutants were stable under these conditions for at

least three months. Purified HlyA and its mutants were essentially free of

contaminant proteins as illustrated in Fig. 2.

Purification of aerolysin

Aerolysin was isolated from supernatants of Aeromonas sobria AB3 cultures as has

been described previously [39].

Gel electrophoresis of proteins and immunoblot analysis

The concentration of HlyA and its mutants was measured as OD280. SDS-PAGE of

proteins was performed as described by Laemmli [46]. For immunoblot analysis,

proteins separated by SDS-PAGE were transferred to Hybond N membrane

(Amersham) according to Towbin et al. [47]. The proteins were probed with a

Table 1. Primers used for site-directed mutagenesis to study the effect of deletions of different stretches of amino acids of HlyA on hemolytic activity and
properties of the HlyA channels.

HlyA mutant Mutagenic oligonucleotide a

HlyAD71–110 5’-CTTGTCAGGACG|GCACCACAATTAG-3’

HlyAD158–167 5’-GGTACTGCACTT|AAACAAAAATCTG-3’

HlyAD180–203 5’-GTTCTTCTGAA|TCATTTTCTCAAC-3’

HlyAD264–286 5’-CAATGCAGATGCA|ATTTCTCAATAT-3’

aThe 59- and 39-terminal halves of the primers represent the nucleotide sequences of hlyA flanking the desired deletions on both sides. The deletion site is
indicated by a vertical bar (|).

doi:10.1371/journal.pone.0112248.t001
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polyclonal rabbit anti-HlyA antiserum [48] that was used in a dilution of 1:1,000.

Proteins reacting with this antiserum were detected by addition of horseradish

peroxidase-conjugated anti-rabbit immunoglobulins (Dianova, dilution 1:1,000)

followed by colorimetric development with chloronaphthol/H2O2.

Hemolysis assay and osmotic protection experiments

The extracellular hemolytic activities of E. coli strains and the relative hemolytic

activities of wildtype and mutant HlyA were determined as described previously

[11]. For osmotic protection experiments, sheep erythrocyte suspensions (2%)

were prepared in saline solution (150 mM NaCl, 5 mM Tris-HCl buffer (pH 7.2))

containing one of the following carbohydrates in a final concentration of 30 mM:

arabinose (molecular mass 150.4 Da, diameter 0.62 nm; Sigma, St. Louis, MO),

cellobiose (molecular mass 342.3 Da, diameter 0.92 nm; Sigma), melezitose

(molecular mass 504.4 Da, diameter 1.14 nm; Sigma), as has been described

Figure 1. Extracellular secretion and hemolytic activity of E. coli HlyA and of HlyA mutants. (A) SDS-
PAGE of extracellular proteins from E. coli 5K containing different plasmids. Lane 1, molecular mass markers
given in kDa; lane 2, E. coli 5K/pACYC184 (vector control); lane 3, E. coli 5K/pANN202–312* overproducing
HlyA; lane 4, isogenic strain overproducing HlyAD71–110; lane 5, isogenic strain overproducing HlyAD158–167;
lane 6, isogenic strain overproducing HlyAD180–203; lane 7, isogenic strain overproducing HlyAD264–286. The
proteins in cell-free culture supernatants (harvested in the late log phase) were precipitated by addition of ice-
cold trichloroacetic acid (final concentration, 10%), pelleted by centrifugation at 12,0006g, washed with
acetone, dried under vacuum, and dissolved in sample buffer [11]. Proteins from 100 ml culture supernatant
were separated on the gel and visualized by silver staining. (B) Hemolytic phenotype of E. coli 5K/pANN202–
312* overproducing HlyA and of isogenic strains overproducing the HlyA mutants with the indicated deletions.
Bacteria from individual colonies were picked onto a sheep blood/Cm agar plate that was subsequently
incubated for 24 hours at 37˚C.

doi:10.1371/journal.pone.0112248.g001
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previously [20, 36]. In additional measurements, we used the following PEGs in

osmotic protection experiments: PEG 400 (diameter 1.07 nm), PEG 600

(diameter 1.32 nm), PEG 1000 (diameter 1.72 nm), PEG 2000 (diameter

2.47 nm), PEG 3000 (diameter 3.05 nm), and PEG 4000 (diameter 3.54 nm), all

in the same concentration as the carbohydrates. For the protection experiments,

the sheep erythrocytes were incubated for different times at 37 C̊ with E. coli

HlyA, HlyA mutants, or aerolysin. The lysis of the erythrocytes was quantified by

hemoglobin release as determined at OD543. The results were expressed in

percentage of total hemoglobin release.

Black lipid membrane experiments

Reconstitution of channel-forming proteins into artificial lipid bilayer membranes

has been described previously in detail [49]. Membranes were formed from a 1%

(mass/vol) solution of asolectin (soybean lecithin type IV-S from Sigma, St. Louis,

MO) in n-decane in a Teflon cell consisting of two aqueous compartments

connected by a circular hole with a surface area of about 0.2 mm2. Small amounts

of the concentrated hemolysin solutions were added to 5 ml of the aqueous phase

at one or both sides of the membrane to yield hemolysin concentrations between

0.01 and 1 mg/ml. The aqueous salt solutions (analytical grade, Merck, Darmstadt,

Germany) were used unbuffered and had a pH around 6 if not indicated

otherwise. The temperature was kept at 20 C̊ throughout. The membrane current

was measured with a pair of Ag/AgCl electrodes switched in series with a voltage

source and a current amplifier (Keithley 427). The amplified signal was recorded

with a strip chart recorder. Zero-current membrane potential measurements were

performed as described earlier [50].

Figure 2. SDS-PAGE of purified E. coli HlyA and of HlyA mutants. Wildtype and mutant HlyA were
expressed in E. coli 5K/pANN202–312* and isogenic mutant strains, respectively, and purified from culture
supernatants using preparative SDS-PAGE. Lane 1, molecular mass markers given in kDa; lane 2, HlyA; lane
3, HlyAD71–110; lane 4, HlyAD158–167; lane 5, HlyAD180–203; lane 6, HlyAD264–286. In each lane, 5 mg of protein
was separated and visualized by Coomassie blue staining.

doi:10.1371/journal.pone.0112248.g002
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Estimation of the diameter of the channels formed by wildtype and

mutant HlyA

The channel size can be calculated from the conductance data when the ions move

through the channel similar as in the aqueous phase and when the entry of a

hydrated ion into the effective area, A, of the channel mouth is the rate-limiting

step (and not the diffusion of the hydrated ion through the channel itself). The

estimation is based on the same assumptions that were used previously for the

derivation of the Renkin correction factor [51] for the diffusion of neutral

molecules through porous membranes and porin channels [51, 52], and for the

diffusion of ions through wide and water-filled ion channels [53]. The

permeability of a cylindrical channel (radius r) for solutes is proportional to their

aqueous diffusion coefficient, D, multiplied with the Renkin correction factor

given by:

A=A0~½1-(a=r)�2½1-2:104(a=r)z2:09(a=r)3-0:95(a=r)5� ð1Þ

where A is the effective area of the channel mouth, A0 is the total cross sectional

area of the channel, and a is the radius of the hydrated ions or substrates passing

through the channel. To apply the Renkin correction factor for the calculation of

the channel size, we have to know the radii of the hydrated ions, a, and their

diffusion coefficients, D, in the aqueous phase, being also a function of the

hydrated ion radii. The radii of the hydrated ions can be calculated from the

limiting molar conductivities, li, of the ions by using the Stokes equation:

a ~ Fez2
i

�
6 pglið Þ ð2Þ

where F (F596500 As/mol) is the Faraday constant, e (e51.602?10–19 A?s) is the

elementary charge, zi is the valency of the ions, and g (g51.002?1023 kg/(m?s)) is

the viscosity of the aqueous phase. The validity of the method has previously been

assessed by comparing the size of the cell wall channel of Mycobacterium chelonae

as estimated from the method described above (i.e. from the single-channel

conductance) and from the vesicle-swelling assay using OmpF of E. coli [52, 53].

Results

Secretion and hemolytic activity of the HlyA mutants HlyAD71–110,

HlyAD158–167, HlyAD180–203, and HlyAD264–286

E. coli 5K clones containing the plasmids pANN202–312*Mut37, -Mut70, -Mut71,

and -Mut72, which encode HlyAD71–110, HlyAD158–167, HlyAD180–203, and

HlyAD264–286, respectively, specifically secreted proteins with molecular masses

between about 105 and 110 kDa into the extracellular medium, as shown by SDS-

PAGE of culture supernatants (Fig. 1A). The sizes of these proteins were

consistent with the molecular masses calculated for the four HlyA mutants. In

addition, these proteins reacted with a polyclonal anti-HlyA antiserum (not

shown), indicating that they were indeed the HlyA mutants encoded by the

plasmids. The concentration of these HlyA mutants in the culture supernatants of
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the recombinant E. coli 5K clones was approximately the same as that of wildtype

HlyA (molecular mass, 110 kDa) found under identical conditions in the

supernatant of E. coli 5K/pANN202–312* (about 5 mg/ml in the late log phase; see

Fig. 1A) [11, 15]. This demonstrated efficient secretion of the different HlyA

mutants by the HlyA export apparatus.

The E. coli 5K clones overproducing HlyAD71–110 and HlyAD180–203 exhibited

only a very weak hemolytic phenotype when grown overnight on blood agar

plates, while the isogenic wildtype strain E. coli 5K/pANN202–312* produced

large, clear lysis zones under the same conditions (Fig. 1B). In hemolysis assays

using culture supernatants from both strains, the relative hemolytic activity of

HlyAD71–110 and HlyAD180–203 was about 1% as compared to that of wildtype

HlyA. HlyAD158–167 had a somewhat higher hemolytic activity than HlyAD71–110

but it was definitely much smaller than that of wildtype HlyA. The hemolytic

activity of the fourth HlyA mutant, HlyAD264–286, was extremely low. Only on

blood agar plates stored for some days at 4 C̊ after growth of the bacterial

colonies, we observed some hemolysis beneath the colonies (Fig. 1B). It is

noteworthy that the hemolytic activity of HlyAD71–110, HlyAD158–167, and

HlyAD180–203 relative to wildtype HlyA was the same irrespective if culture

supernatants, protein concentrated by PEG precipitation or purified protein (

Fig. 2) was used in the experiments provided the toxin concentration in the

aqueous phase was the same.

HlyAD71–110 and HlyAD264–286 form ion-permeable channels in lipid

bilayer membranes

We performed single-channel experiments with all four HlyA mutants. The

experiments revealed that HlyAD71–110 and HlyAD264–286 still formed defined

channels in lipid bilayer membranes but with much lower amplitude (i.e. single-

channel conductance) than wildtype HlyA under otherwise identical conditions.

Fig. 3 shows single-channel recordings of asolectin/n-decane membranes in the

presence of wildtype HlyA, HlyAD71–110, and HlyAD264–286 in 150 mM KCl. All

proteins were added to black membranes in a concentration of about 50 ng/ml.

After a delay of several minutes, probably caused by slow aqueous diffusion and/

or rearrangement of the toxin, we observed for HlyA and the two mutants the

occurrence of transient ion-permeable channels. This means that the channels

formed by HlyAD71–110 and HlyAD264–286 also had a limited lifetime (mean lifetime

about 4 s) similar to wildtype HlyA [28]. Wildtype HlyA channels had a single-

channel conductance, G, of about 520 pS, whereas the channels formed by

HlyAD71–110 and HlyAD264–286 had with about 150 pS and 320 pS, respectively, a

much smaller one (all in 150 mM KCl and at 20 mV membrane potential). The

channel-forming activity was approximately the same for HlyA, HlyAD71–110, and

HlyAD264–286, which means that at the same toxin concentration approximately

the same number of channels was observed irrespective whether culture

supernatants, precipitated proteins or pure toxins were added to the aqueous

phase. The results thus indicated that these two mutations had only little influence
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on channel-forming probability or channel lifetime and affected only the single-

channel conductance (i.e. the size) of the HlyA channel.

HlyAD158–167 and HlyAD180–203 showed some membrane activity but

do not form defined ion-permeable channels in lipid bilayer

membranes

Single-channel experiments were also performed with the other two HlyA deletion

mutants. However, for these mutants we did not observe defined channels similar

to those formed by HlyA, HlyAD71–110, or HlyAD264–286. Instead, HlyAD158–167

created current noise with flickers and bursts in the asolectin/n-decane

membranes interrupted by transient and short-lived channels with amplitudes

around 600 to 700 pS in 150 mM KCl (Fig. 4, upper trace). The membrane

activity of this mutant was moderate, which means that a higher concentration of

HlyAD158–167 was needed to observe effects at the asolection membranes.

HlyAD180–203 had an even lower effect on membrane conductance. Only some

membrane activity in the form of current noise but no defined membrane

channels were observed at very high concentration of HlyAD180–203 (Fig. 4, lower

trace).

Figure 3. Single-channel recordings with E. coli HlyA, HlyAD71–110, and HlyAD264–286. Single-channel
recordings of asolectin membranes were performed in the presence of 50 ng/ml HlyA (left side, upper trace),
50 ng/ml HlyAD71–110 (left side, lower trace), and 50 ng/ml HlyAD264–286 (right side). The aqueous phase
contained 150 mM KCl (pH 6). The applied membrane potential was 20 mV; T520˚C. The average single-
channel conductance was 520 pS for HlyA, 150 pS for HlyAD71–110, and 320 pS for HlyAD264–286.

doi:10.1371/journal.pone.0112248.g003
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Single-channel conductance of the HlyAD71–110 and HlyAD264–286

channels

We performed also single-channel experiments with a variety of salts and

concentrations to obtain some information on the size and the ion selectivity of

the channels formed by HlyAD71–110 and HlyAD264–286. Table 2 shows the results of

these experiments together with the single-channel data that have been derived

previously from similar experiments with wildtype HlyA [28] or that were

measured in this study using purified HlyA. The replacement of chloride (Cl-) by

the less mobile acetate (CH3COO-) had only a little if any influence on the single-

channel conductances of HlyA, HlyAD71–110, and HlyAD264–286, indicating that the

mutant hemolysin channels were still highly cation-selective. The influence of the

cations on the single-channel conductance of both mutants was more substantial.

The ion selectivity of the HlyAD71–110 channel was Cs+5Rb+5K+. Na+. Li+.

N(CH3)4
+. N(C2H5)4

+5Tris+, which means that it followed the mobility

sequence of the ions in the aqueous phase. Table 2 also shows the average single-

channel conductance, G, as a function of the KCl concentration in the aqueous

phase for HlyA, HlyAD71–110, and HlyAD264–286. Surprisingly, we neither observed

for HlyA, nor for the two HlyA mutants a linear relationship between

conductance and KCl concentration, which would be expected for wide, water-

filled channels similar to those formed by general diffusion pores of Gram-

negative bacteria [54]. Instead, the slope of the conductance versus concentration

curves on a double logarithmic scale was approximately 0.5, which suggested

negative surface charge effects on the hemolysin channels (see Discussion).

Selectivity of the HlyAD71–110 and HlyAD264–286 channels

Zero-current membrane potential measurements were performed to obtain

further information on the molecular structure of the channels formed by

HlyAD71–110 and HlyAD264–286. Asolectin membranes were formed in 50 mM salt

solution and the mutant proteins were added to the aqueous phase when the

membranes were in the black state. After incorporation of 100 to 1000 channels

into a membrane, ten-fold salt gradients were established by addition of small

amounts of concentrated salt solution to one side of the membrane. For all salts

tested in these experiments (KCl, LiCl, and KCH3COO), the more diluted side of

the membrane became positive, which indicated preferential movement of cations

through the HlyAD71–110 and HlyAD264–286 channels, i.e. the channels are cation-

selective as suggested from the single-channel data. The zero-current membrane

potentials for ten-fold salt gradients were always around 40 mV. Their analysis

using the Goldman-Hodgkin-Katz equation [50] suggested that anions could also

have a certain permeability through the hemolysin channels because the

permeability ratios Pcations/Panions were around 10. However, the permeability

ratios appeared only little changed as compared to wildtype HlyA. Furthermore,

the asymmetry potentials were very similar for the three salts composed of anions

and cations of different mobility. This means probably that the HlyAD71–110 and

the HlyAD264–286 channels are ideally selective for cations because of negative
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charges attached to the channel similar as has been found for wildtype HlyA [28]

(see also Discussion).

Osmotic protection experiments

In previous studies it has been questioned whether E. coli HlyA forms defined

channels in lipid bilayers and erythrocyte membranes [36, 37]. We performed

osmotic protection experiments to check whether HlyA, HlyAD71–110, and

HlyAD264–286 form defined channels in sheep erythrocyte membranes. Of further

interest was the size of the HlyAD71–110 and HlyAD264–286 channels because the

lipid bilayer studies described above suggested a smaller size of these channels as

compared to those formed by wildtype HlyA. For the osmotic protection assays,

sheep erythrocytes either suspended in saline solution or in saline solution

supplemented with 30 mM carbohydrates of different molecular masses were

incubated with HlyA, HlyAD71–110, and HlyAD264–286. For short incubation times

of about 20 min or for small HlyA concentrations (50 ng/ml), melezitose

(diameter 1.14 nm) but neither arabinose (diameter 0.62 nm) nor cellobiose

(diameter 0.92 nm) tended to protect the erythrocytes from osmotic lysis by

HlyA, HlyAD71–110, and HlyAD264–286. However, at incubation times of 60 min and

at hemolysin concentrations of 500 ng/ml none of these carbohydrates could

protect the sheep erythrocytes from lysis. This means probably that all

carbohydrates used in this and in a previous study [36] were able to pass the HlyA

channel. Another possibility, however, was that the HlyA channel was indeed not

defined in size as has been suggested previously [36] and that HlyA acted similar

to a detergent to partially lyze the erythrocyte membrane.

Figure 4. Single-channel recordings with HlyAD158–167 and HlyAD180–203. Single-channel recordings of
asolectin membranes were performed in the presence of 100 ng/ml HlyAD158–167 (upper trace) and 150 ng/ml
HlyAD180–203 (lower trace). The aqueous phase contained 150 mM KCl (pH 6). The applied membrane
potential was 20 mV; T520˚C. The transient conductance steps in the upper trace (HlyAD158–167) had a
conductance of about 600 to 700 pS. The mutant HlyAD180–203 produced under the given conditions only
current noise (fuzzy channels) and no defined conductance states.

doi:10.1371/journal.pone.0112248.g004
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To check such a possibility, we performed osmotic protection experiments with

another cytolytic toxin, aerolysin from Aeromonas, which forms stable heptamers

in the presence of lipids and has a well-defined channel size [39, 55–58]. Osmotic

protection experiments of the same type as described above for HlyA resulted in a

partial protection of sheep erythrocytes towards aerolysin-mediated lysis for toxin

concentrations up to 100 ng/ml when the saline solution was supplemented with

30 mM melezitose and when the cells were incubated with the toxin for 30 min at

37 C̊ (Fig. 5A). However, incubation of the sheep erythrocytes for 90 min with

aerolysin resulted in almost complete lysis in the presence of 30 mM melezitose (

Fig. 5B). This result does not mean that the size of the aerolysin channels is time-

dependent. It simply means that the permeability of the aerolysin channels for

melezitose is not sufficient at a 30 min time scale to induce erythrocyte lysis,

probably because the size of the aerolysin channel is close to the diameter of

melezitose (1.14 nm).

Our data suggest that all carbohydrates used here are sufficiently small to pass

through the defined channels formed by HlyA, HlyAD71–110, and HlyAD264–286. To

elucidate the size of all three channels in more detail, we performed osmotic

protection experiments with other solutes and supplemented the saline with

30 mM PEG of different molecular masses (400, 600, 1000, 2000, 3000, and 4000

Dalton, with diameters of 1.07, 1.32, 1.72, 2.47, 3.05, and 3.54 nm, respectively).

Table 2. Average single-channel conductance, G, of HlyAD71–110 and HlyAD264–286 in different salt solutions.a.

G[nS]

Salt c[M] HlyAD71–110 HlyAD264–286 HlyA

LiCl 0.15 0.045 0.074 0.15

1.0 0.13 n.m. n.m.

NaCl 0.15 0.075 n.m. 0.40

1.0 0.17 n.m. n.m.

KCl 0.01 0.027 0.09 0.15

0.05 0.090 0.21 0.37

0.15 0.15 0.32 0.52

0.5 0.20 0.50 1.0

1.0 0.30 0.75 1.5

3.0 0.80 1.8 3.9

RbCl 0.15 0.15 n.m. 0.55

CsCl 0.15 0.14 n.m. 0.57

KCH3COO 0.15 0.14 0.27 0.48

N(CH3)4Cl 0.15 0.040 n.m. 0.25*

N(C2H5)4Cl 0.15 0.020 n.m. 0.16*

Tris-HCl 0.15 0.020 n.m. 0.084

aThe membranes were formed from 1% (mass/volume) asolectin dissolved in n-decane. The aqueous solutions were unbuffered and had a pH of 6. The
applied voltage was 20 mV, and the temperature was 20 C̊. The average single-channel conductance, G (i.e. current divided by voltage), was calculated
from at least 80 single events. The standard deviation of the single-channel conductance was generally below ¡15%. c is the concentration of the aqueous
salt solutions. The single-channel conductance of wildtype HlyA of E. coli is given for comparison [28]. The values denoted with an asterix were measured
during this study with purified HlyA. n.m. means not measured.

doi:10.1371/journal.pone.0112248.t002
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To avoid any interference with hemolysin concentration and incubation time, we

used in the case of wildtype HlyA the very high HlyA concentration of 0.5 mg/ml

and incubated the cells for 60 min with the toxin at 37 C̊. Above that

concentration and for longer assay times we did not observe much difference in

the protection experiments, i.e. the degree of lysis was virtually constant and

about 100% for small solutes. Fig. 6 shows the results of these experiments. The

maximum erythrocyte lysis was plotted against the molecular mass of the PEGs.

PEG 400 and PEG 600 did not protect the sheep erythrocytes from lysis by HlyA

in agreement with the experiments using carbohydrates. PEG 1000 and PEG 2000

showed partial protection, whereas no lysis was observed for PEG 3000 and PEG

4000.

We performed similar measurements with HlyAD71–110 and HlyAD264–286 and

included the data in Fig. 6. However, since the hemolytic activity of these HlyA

mutants was much smaller than that of HlyA, we had to use a much higher

concentration to reach full hemolysis in the different solutions. At a mutant HlyA

concentration of 2.5 mg/ml and 60 min incubation time, virtually stable

conditions were obtained for sheep erythrocyte lysis. As shown in Fig. 6, PEG 400,

600, and 1000 (diameters 1.07, 1.32, and 1.72 nm, respectively) achieved already

partial protection in the case of HlyAD71–110. Starting with PEG 2000 (diameter

2.47 nm), no lysis of sheep erythrocytes by HlyAD71–110 was observed, which

means that this solute cannot pass the mutant hemolysin channel. Similarly, the

addition of PEG 600 and PEG 1000 resulted already in partial protection of the

erythrocytes in the case of HlyAD264–286, but PEG 2000 did not provide full

protection, indicating that the channel diameter of this HlyA mutant was slightly

larger than that of HlyAD71–110. These results clearly indicate that the deletion of

the amino acid residues 71–110 and 264–286 of HlyA decreased its channel size.

Discussion

The results presented here confirm the notion that E. coli HlyA forms defined

transmembrane channels with a diameter between 2 and 3 nm in both lipid

bilayers and erythrocyte membranes. In addition, we present some evidence that

b-strands could be involved in channel formation by HlyA. In bilayers formed

from asolectin, the HlyA channel has an open state single-channel conductance of

about 520 pS in 150 mM KCl [28, 59]. Several other RTX toxins (ApxI of

Actinobacillus pleuropneumoniae, HlyA of Proteus vulgaris and Morganella

morganii, EHEC-hemolysin of enterohemorrhagic E. coli) form channels of similar

conductance [29, 60, 61]. The data clearly suggest that these toxins do not have a

detergent-like activity as this would result in fuzzy and not well-defined channels.

The osmotic protection experiments performed here and elsewhere [20] also

suggest a defined channel formation for E. coli HlyA. Our experiments with

Aeromonas aerolysin, a toxin known to form a fixed channel following

heptamerization [39, 55–58], further supported this view by showing that osmotic
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protection depends on toxin concentration and incubation time even if a defined

channel was generated.

In a study using pure phosphatidylcholine bilayers and different spectroscopic

methods, no indication for a transmembrane arrangement of HlyA has been

found [37]. Instead, it has been suggested that HlyA inserts only into the outer

leaflet of the lipid bilayer, thereby causing destabilization and transient breakdown

of the membrane. However, spectroscopic analyses of the type used previously

[37] are probably not suited to identify and study the small membrane-spanning

portion of a huge channel-forming complex, because most of the material may be

Figure 5. Results of osmotic protection experiments with aerolysin of A. sobria. Sheep erythrocytes in
saline solution (control) or in saline solution supplemented with 30 mM of different carbohydrates (arabinose,
cellobiose, and melezitose, with diameters of 0.62, 0.92, and 1.14 nm, respectively) were incubated with the
toxin at 37˚C for 30 min (A) and 90 min (B). Erythrocyte lysis was determined as a function of increasing
aerolysin concentrations.

doi:10.1371/journal.pone.0112248.g005
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localized on the membrane surface. As an example, in the case of a-hemolysin (a-

toxin) from Staphylococcus aureus, which is not related to E. coli HlyA, the channel

is formed by a heptamer of about 232 kDa, but less than 200 amino acid residues

(14 b-strands each about 10 residues long, corresponding to about 15 kDa) are

localized within the membrane [62, 63].

The structure of the E. coli HlyA pore is largely unknown although it seems to

be formed by a toxin oligomer as also suggested for CyaA of B. pertussis

[28, 30, 32, 33, 64]. An X-ray structure is so far unavailable for E. coli HlyA. Based

on results of site-directed mutagenesis studies and secondary structure

predictions, it has previously been suggested that the pore-forming domain of

HlyA includes hydrophobic and/or amphipathic a-helices located in the

hydrophobic region (residues 238–410) [14–16, 19]. Studies employing cysteine

scanning mutagenesis and membrane insertion-dependent labeling further

suggested that the hydrophobic region of HlyA is the principal region that inserts

into the membrane [17–19]. An amphipathic helix involved in pore formation

was recently proposed to exist particularly between the residues 272 and 298 [19],

which was corroborated by the finding that a double substitution at positions 284

and 287 by proline, a known helix breaker [65, 66], abolished the lytic activity of

HlyA without affecting binding to membranes [19]. It is remarkable in this

context that a number of PFTs are thought to use a -helices for membrane

insertion, but only for one of these a-PFTs, cytolysin A (ClyA) from E. coli (a

toxin not related to E. coli HlyA), the crystal structure of the pore form is known

[67]. Several other PFTs, on the other hand, such as a-hemolysin from S. aureus

Figure 6. Results of osmotic protection experiments with HlyA, HlyAD71–110, and HlyAD264–286. Sheep
erythrocytes were incubated with the toxins at 37˚C for 60 min in saline solution (control) or in saline solution
supplemented with 30 mM of PEGs of different molecular masses (PEG 400, 600, 1000, 2000, 3000, and
4000, with diameters of 1.07, 1.32, 1.72, 2.47, 3.05, and 3.54 nm, respectively). The concentration of HlyA
was 0.5 mg/ml and that of HlyAD71–110 and HlyAD264–286 2.5 mg/ml. The degree of hemolysis is shown as a
function of the molecular mass of the PEGs.

doi:10.1371/journal.pone.0112248.g006
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[62, 63], aerolysin from Aeromonas [56–58], or anthrax toxin protective antigen

from Bacillus anthracis [68, 69] form transmembrane b-barrels composed of

amphipathic b-strands and are designated as b-PFTs [70, 71].

To address the question whether the pore-forming domain of E. coli HlyA

possibly contains b-strands in addition to a-helices, we searched within the first

300 residues of HlyA for amphipathic b-strands similar to those in bacterial outer

membrane proteins using the two public domain programs PRED-TMBB and

TMBETA-NET. The analyses led to the prediction of at maximum 13 such

segments, some of which were, however, rather short, which means that they are

hardly membrane spanning. According to the secondary structure prediction, we

constructed four HlyA mutants exhibiting deletions of the residues 71–110, 158–

167, 180–203, and 264–286. These regions contain either one or two (residues 71–

110) possible amphipathic transmembrane b-strands. The deletion in HlyAD264–

286 obviously overlaps with the presumed a-helix from residue 272 to 298

suggested by Valeva et al. [19], but our analyses predicted a b-strand spanning the

residues 272 to 283. In addition, the contribution of the G284P substitution to the

loss of lytic activity observed for HlyAG284P/I287P [19] is unclear so far.

HlyAD71–110, HlyAD158–167, HlyAD180–203, and HlyAD264–286 were overproduced

in E. coli 5K and were secreted from the E. coli cells in levels similar to wildtype

HlyA, but they showed strongly reduced hemolytic activity, indicating that either

binding to erythrocytes and/or pore formation was impaired or that the pore

structure was altered. Lipid bilayer experiments using asolectin membranes

revealed that two of these HlyA mutants, HlyAD71–110 and HlyAD264-286, formed

cation-selective channels that resembled those formed by wildtype HlyA but had a

much smaller conductance. This suggested that the deletions in these two mutants

led to a smaller channel size without causing a substantial change of the HlyA

structure, which probably would have resulted in the complete inhibition of

channel formation or in gross disturbance of the channel structure as was

observed for the other two mutants, HlyAD158–167 and HlyAD180–203. The data

rather suggested that part of the channel-forming domain was missing in

HlyAD71–110 and HlyAD264–286, possibly one or two b-strands. It is noteworthy that

we obtained virtually the same results in lipid bilayer experiments using culture

supernatants, precipitated proteins or purified toxins, which makes artifacts such

as the aggregation of HlyA and its mutants rather unlikely. The lipid bilayer

studies also demonstrated that HlyAD71–110 and HlyAD264–286 formed approxi-

mately the same number of channels as HlyA when the same protein

concentration was used, indicating that their channel-forming activity was not

significantly affected. Taken together, the data thus suggested that the very weak

hemolytic activity of these two mutants is presumably caused by the smaller size of

the mutant channels. It is remarkable that other RTX toxins showing a small

single-channel conductance (about 100 pS or less in 150 mM KCl), such as CyaA

of B. pertussis [30, 31], ApxIII of A. pleuropneumoniae [60], or leukotoxin of

Mannheimia haemolytica (formerly Pasteurella haemolytica) (Maier and Benz,

unpublished data), have a similarly low hemolytic activity as found here for

HlyAD71–110 and HlyAD264–286, or are nonhemolytic [72].
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Osmotic protection experiments suggested that the channels formed by HlyA,

HlyAD71–110, and HlyAD264–286 were large enough to allow passage of all

carbohydrates used in this study. Similar experiments with PEGs of different

molecular masses, on the other hand, allowed to roughly iestimating the channel

size for HlyA and the two HlyA mutants. PEG 3000 (diameter about 3.05 nm)

provided full protection against hemolysis by wildtype HlyA, which means that

the HlyA channel diameter is probably smaller than 3 nm. PEG 2000 (diameter

2.47 nm) completely blocked the hemolysis by HlyAD71–110 which still showed a

certain permeability for PEG 1000 (diameter 1.72 nm), suggesting a channel

diameter of about 2 nm for this mutant. The HlyAD264–286 channel appeared to be

somewhat larger than that of HlyAD71–110 because PEG 2000 showed some minor

permeability through the channel. These results argue indeed that removal of the

amino acid residues 71–110 and 264–286 from HlyA decreased the size of the

hemolysin channel.

It was also possible to calculate the channel diameters of HlyA and HlyAD71–110

from their single-channel conductance (see Materials and Methods). Since the

channels formed by both proteins are strongly cation-selective, the conductance

data were used to estimate the relative permeability of the different cations

through the channels. The single-channel conductance for the different cations

taken from Table 2 were for this purpose normalized to that for Rb+ and plotted

as a function of the hydrated ion radii (Fig. 7). Fig. 7A shows the fit of the relative

cation permeability through wildtype HlyA channels (as calculated from the

single-channel data) with the aqueous diffusion coefficients, D, of the ions

multiplied by the Renkin correction factor (eqn. (1); see Materials and Methods).

The best fit was obtained with r51.3 nm, corresponding to a channel diameter of

2.6 nm (the data lie between the channel radii r51.0 nm and r51.6 nm). It is

noteworthy that such a channel diameter agrees very well with the diameter

derived from the osmotic protection experiments described here and elsewhere

[20]. In the case of HlyAD71–110, the best fit of the relative cation permeability with

D multiplied by the Renkin correction factor was obtained using r50.9 nm,

corresponding to a channel diameter of 1.8 nm (the data lie between r50.7 nm

and r51.1 nm) (Fig. 7B). This suggests that the channel formed by HlyAD71–110 is

indeed considerably smaller than that of wildtype HlyA. The single-channel data

thus show satisfactory agreement with the smaller hemolytic activity of this

mutant and the results of the osmotic protection experiments.

The data shown in Table 2 demonstrate that the single-channel conductance of

HlyA, HlyAD71–110, and HlyAD264–286 are not linear functions of the bulk aqueous

salt concentration. Instead, a slope of about 0.5 to 0.6 was observed on a double-

logarithmic scale for the conductance versus concentration curves (Fig. 8). This

indicated that charge effects caused by negatively charged groups influence the

properties of these proteins. The charges result in a substantial ionic strength-

dependent potential inside the channels, which attracts cations and repels anions.

Accordingly, it influences both single-channel conductance and zero-current

membrane potential. In particular, its conductance is at low ionic strength larger

than expected from the channel dimension. The Debeye-Hückel theory provides a
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quantitative description of the effect of charges on counterions in an aqueous

environment. A description of the effect of point charges on a membrane surface

on counterion accumulation is given by the treatment of Nelson and McQuarrie

[73], which in principle does not consider charges attached to a channel.

However, we assume here that the negatively charged groups are localized at the

toxin channel.

In case of a negative point charge, q, in an aqueous environment a potential w is

caused that is dependent on the distance, r, from the point charge:

W~
q : e

{ r
lD

4p:"0
:":r

ð3Þ

e0 (58.85610–12 F/m) and e (580) are the absolute dielectric constant of

vacuum and the relative dielectric constant of water, respectively, and lD is the

Debeye length that controls the decay of the potential (and of the accumulated

positively charged ions) in the aqueous phase:

l2
D~

":"0:R:T
2F 2:c

ð4Þ

where c is the bulk aqueous salt concentration, and R, T, and F (RT/F525.2 mV at

20 C̊) have the usual meaning. The potential w created by a negative point charge

on the surface of a membrane is twice that of eqn. (3) due to the generation of an

image force on the opposite site of the membrane. The concentration of cations

near the point charge, c0
+, increases because of the negative potential. c0

+ is in

both cases (Debeye-Hückel or Nelson-McQuarrie) dependent on the potential w

and given by:

cz
0 ~c:e

{w:F
R:T ð5Þ

Similarly, the anion concentration near the point charge, c0
–, decreases according

to:

c{
0 ~c:e

w:F
R:T ð6Þ

In the following, we assume that the negative point charge is attached to the

channel. In such a case, the channel conductance is limited by the accumulated

positively charged ions and not by their bulk aqueous concentration. The single-

channel conductance, G, as a function of the ion concentration is given by the

linear function:

G(c) ~ G0
: c ð7Þ

where G0 is the specific single-channel conductance (i.e. the slope of the
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conductance-concentration curve). Eqn. (5) can be introduced into eqn. (7), and

we can try to fit the non-linear concentration dependence of the single-channel

conductance of HlyA, HlyAD71–110, and HlyAD264–286 given in Table 2 with eqn.

G(c)5G0?c0
+, using the eqs. (3) to (5) and (7) and the Nelson-McQuarrie

formalism [73]. In Fig. 8, the fit of the conductance data of the three proteins with

eqn. G(c)5G0?c0
+ is shown by solid lines. In the case of HlyA, using G051.3 nS/

M, a best fit was obtained by assuming that 2.3 negatively charged groups (q5-

Figure 7. Calculation of the channel diameters of HlyA and HlyAD71–110 from the single-channel
conductance. The single-channel conductance data of HlyA and HlyAD71–110 were fitted by using the Renkin
correction factor multiplied by the aqueous diffusion coefficients of the different cations. The single-channel
conductance for the different cations taken from Table 2 was normalized to that observed for Rb+ (hydrated
ion radius a50.105 nm), which was set to 1.0, and plotted versus the hydrated ion radii taken from Table 3 of
Maier et al. [60]. The points correspond to the single-channel conductance observed with Li+, Na+, K+, Cs+,
N(CH3)4

+, N(C2H5)4
+, and Tris+, which were all used for the pore diameter estimation (see Discussion). (A)

The fit (solid lines) is shown for wildtype HlyA channels with r51.6 nm (upper line) and r51.0 nm (lower line).
The best fit was achieved with r51.3 nm (diameter52.6 nm), which corresponds to the broken line. (B) The fit
(solid lines) is shown for the HlyAD71–110 channels with r51.1 nm (upper line) and r50.7 nm (lower line). The
best fit of all data was achieved with r50.9 nm (diameter51.8 nm), which corresponds to the broken line.

doi:10.1371/journal.pone.0112248.g007
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3.68610–19 As) are located at the pore mouth and that the channel radius is about

1 nm. For HlyAD71–110, using G050.22 nS/M, a best fit was achieved with 1.7

negatively charged groups (q5-2.72610–19 As) and a channel radius of about

0.7 nm, again suggesting that the HlyAD71–110 channel is much smaller than that of

HlyA. The smaller number of charges agrees well with the removal of three net

negatively charged groups by the deletion of residues 71–110. In the case of

HlyAD264–286, using G050.55 nS/M, a best fit of the conductance data was achieved

assuming 2 negatively charged groups (q523.2610–19 As) and assuming a channel

radius of about 0.8 nm, again clearly smaller as for HlyA. Fig. 8 also shows the

single-channel conductance calculated for the three proteins in the absence of point

net charges, corresponding to eqn. (7), i.e. assuming the same G0 values as

mentioned above, but with c given by the bulk aqueous concentration (see the

broken, dotted, and fractured lines in Fig. 8). A comparison with the solid lines

indicates that in all three cases the charges attached to the channel substantially

influence the conductance at lower bulk aqueous concentrations, while their

influence is rather small at high ionic strength. The number of negative charges

involved in the accumulation of cations at the channel mouth is not very precise,

because the dielectric constant of their environment is not known. When the

dielectric constant is low, then the Nelson-McQuarrie formalism [73] has to be

applied and q in eqn. (3) has to be replaced by 2?q. In the case of high dielectric

Figure 8. Effect of charges in wildtype and mutant HlyA on the single-channel conductance. The single-
channel conductance of the HlyA, HlyAD71–110, and HlyAD264–286 channels is shown as a function of the KCl
concentration in the aqueous phase. The solid lines represent the fit of the single-channel conductance data
with eqn. G(c)5G0?c0

+ (a combination of eqs. (3–5 and 7) assuming the presence of negative point charges
within the channel (for HlyA: 2.3 negative charges, q523.68610–19 As; for HlyAD71–110:1.7 negative charges,
q5-2.72610–19 As; for HlyAD264–286:2 negative charges, q5-3.2610–19 As) and assuming a channel
diameter of 2 nm, 1.4 nm, and 1.6 nm for HlyA, HlyAD71–110, and HlyAD264–286, respectively. c, concentration
of the KCl solution in M (molar); G, average single-channel conductance in nS (nano Siemens, 10–9 S); G0,
specific single-channel conductance in the absence of negative point charges given in pS/M. The broken,
dotted, and fractured (straight) lines show the single-channel conductance of the HlyA, HlyAD264–286, and
HlyAD71–110 channels in the absence of point charges and correspond to linear functions between channel
conductance and bulk aqueous concentration (eqn. (7); G(c)5G0?c).

doi:10.1371/journal.pone.0112248.g008
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environment, the Debeye-Hückel theory is valid. The estimated channel radius is

more precise as has also been demonstrated elsewhere [53]. It is noteworthy that the

effect of charges near the channel mouth has also been theoretically predicted and

experimentally verified in other investigations [74–76] and indicate that

strategically placed charges near a channel can lower its energy barriers and

accumulate ions to guide them through the channel.

In conclusion, the finding that two HlyA mutants with deletions of small

regions predicted to form amphipathic b-strands generated only very small (but

apart from that largely normal) channels suggests that these deletions removed

part of the channel-forming domain and that b -strands may play a role in

channel formation by HlyA. However, since the formation of b-strands in the

deleted regions has not been shown experimentally, we can at present only

speculate that the HlyA channel might contain amphipathic b-strands.

Furthermore, given that putatively a-helical structures in the hydrophobic region

of HlyA have been found to be important for pore formation [15, 16, 19], it

appears unlikely that the channel is formed exclusively from b-strands. It is rather

tempting to hypothesize that E. coli HlyA might use a combination of a-helices

and b-strands for channel formation. Further investigations are required to verify

such a possibility.
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