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Abstract: When processed at a low temperature of 200 ◦C, organic thin-film transistors (OTFTs)
with pentacene channel adopting high-k Neodymium-Titanium oxynitride mixtures (NdTiON) with
various Ti contents as gate dielectrics are fabricated. The Ti content in the NdTiON is varied by co-
sputtering a Ti target at 0 W, 10 W, 20 W and 30 W, respectively, while fixing the sputtering power of
an Nd target at 45 W. High-performance OTFT is obtained for the 20 W-sputtered Ti, including a small
threshold voltage of−0.71 V and high carrier mobility of 1.70 cm2/V·s. The mobility improvement for
the optimal Ti content can be attributed to smoother dielectric surface and resultant larger overlying
pentacene grains as reflected by Atomic Force Microscopy measurements. Moreover, this sample
with the optimal Ti content shows much higher mobility than its counterpart processed at a higher
temperature of 400 ◦C (0.8 cm2/V·s) because it has a thinner gate-dielectric/gate-electrode interlayer
for stronger screening on the remote phonon scattering by the gate electrode. In addition, a high
dielectric constant of around 10 is obtained for the NdTiON gate dielectric that contributes to a
threshold voltage smaller than 1 V for the pentacene OTFT, implying the high potential of the Nd-Ti
oxynitride in future high-performance organic devices.

Keywords: high-k dielectric; organic thin-film transistor; high carrier mobility and small threshold voltage

1. Introduction

Since the discovery of semiconducting organic materials, much effort has been made
to extensively explore organic thin-film transistors (OTFTs) due to their promising advan-
tages of large–area application, low cost, flexibility and compatibility with the Si-based
technology [1,2]. Thanks to continual development, the key parameter, the carrier mobility
of OTFTs, has been improved to over 10 cm2/V·s for single-crystal organics [3] and over
2 cm2/V·s for amorphous thin films [4]. OTFTs have demonstrated electrical characteristics
comparable to those of amorphous-silicon TFTs, and as a result, are integrated on a chip
in novel applications [5]. One important application of OTFTs is to drive organic-light-
emitting-diodes (OLEDs), which promotes flexible flat-panel displays. Another application
is for various sensors to monitor gas, pressure, and deformation. Additionally, OTFTs have
also served applications including radio-frequency identification (RFID) tap, electronic
skin, and flexible circuits [6]. Although some OTFTs have demonstrated good performance,
their threshold voltages are usually larger than 3 V, thus limiting their applications in
portable electronic products powered by a battery at a few volts [7]. One way to lower the
operating voltage of OTFTs with the traditional Si dioxide as the gate dielectric is thinning
the dielectric, but at the expense of increased gate leakage. Other efforts, such as using
organic-inorganic dielectrics and cross-linking passivation agents, have also been made to
reduce power consumption while complicating the fabrication process [8]. As a result, atten-
tion has been paid to high-k materials adopted as gate dielectrics in field-effect transistors
(FET). One famous example is Intel’s 45-nm technology node, where high-k hafnium oxide
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(HfO2) was used as the gate dielectric for Si-based metal-oxide-semiconductor field-effect
transistors (MOSFETs) [9]. On the other hand, pentacene OTFT with HfO2 gate dielectric
demonstrated a carrier mobility lower than 0.1 cm2/V·s because HfO2 had oxide defects
such as oxygen vacancies and dangling bonds, producing a low-quality interface with the
overlying organic channel [10]. Furthermore, other high-k materials, for example, pure
tantalum oxide (Ta2O5) and titanium oxide (TiO2), have also been utilized as gate dielectrics
for threshold-voltage reduction, but the carrier mobility was around 1 cm2/V·s [11].

As a lanthanide oxide, neodymium oxide (Nd2O3) has shown a high potential to act
as a high-k gate dielectric for FETs. Nd2O3 has a dielectric constant of around 20, which is
much higher than that of the traditional silicon dioxide (SiO2) (3.9), but severely suffers
from high hygroscopicity, meaning stability problem when exposed to air [12,13]. With a
high k value up to 80 for Ti oxide, titanium (Ti) doping in gate dielectric has been explored
to raise its dielectric constant and moisture resistance [14]. However, Ti oxide is always
associated with a high trap density and a smaller bandgap (~3.2 eV) than Nd2O3 (~5 eV),
both increasing oxide leakage [15,16]. Therefore, it can be expected that for an Nd-Ti oxide
mixture, Nd could passivate the oxide defects to suppress the leakage problem induced
by Ti, while Ti could reduce the hygroscopic concern caused by Nd. As a result, high-
performance OTFTs with high carrier mobility and a low threshold voltage can be obtained
by using the mixture as a gate dielectric. This work aims to exploit Nd-Ti oxynitrides with
various contents as gate dielectrics for pentacene OTFTs, with the goal of obtaining high
device performances in terms of high carrier mobility and small threshold voltage.

2. Materials and Methods

Initially, silicon wafers (n-type, <100>, 0.005 Ω·cm) were cleaned by the standard
RCA (Radio Corporation of America) method: (step 1) dipped in 5% hydrofluoric acid
for 15 s, (step 2) boiled in deionized water:NH4OH:H2O2 (5:1:1) at 80 ◦C for 10 min,
and (step 3) boiled in deionized water:HCl:H2O2 (5:1:1) at 80 ◦C for 10 min. Then, the
wafers were dipped in 5% HF acid again for removal of native oxide. As a gate dielectric,
pure Nd oxynitride and Nd-Ti oxynitride films with thicknesses of around 50 nm were
then deposited by a sputterer (Denton Vacuum LLC Discovery 635, Moorestown, NJ,
USA) on the wafers in an ambient of 30/6/3-sccm Ar/O2/N2. During the sputtering,
the DC/RF powers for the Ti/Nd targets were set as 0 W/45 W, 10 W/45 W, 20 W/45 W
and 30 W/45 W, respectively, denoted as samples A, B, C and D. Next step was annealing
all the samples at 200 ◦C in N2 for 20 min. This was followed by deposition of 45-nm
pentacene (99% purity, purchased from Luminescence Technology Corp, New Taipei City,
Taiwan.) on the dielectrics by a thermal evaporator (Angstrom Engineering Nexdep,
Kitchener, ON, Canada), where the deposition rate and pressure were fixed at around 1.2
nm/min and 5.3 × 10−6 torr, respectively. Finally, 100-nm source and drain electrodes
were formed by thermally evaporating gold through a shadow mask on the pentacene
film, obtaining a 100-µm-width and 40-µm-length channel. To investigate the capacitance-
voltage characteristics of the gate dielectrics, dummy samples for capacitors were also
cleaned by the RCA method and then received the dielectric deposition simultaneously
with the TFT samples. Then, the Al electrode was thermally evaporated on these dummy
samples to form capacitors with an Al/dielectric/n + Si structure, where UV lithography
and lift-off method were used. An HP 4284A precision LCR meter was used for capacitor
measurement, and the current-voltage curves of the OTFTs were characterized by an HP
4145B semiconductor parameter analyzer. A Wvase 32 ellipsometer was used to measure
the dielectric thickness. The schematics of device structures are shown in Figure 1, and all
the samples were measured in the air at room temperature.
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Figure 1. Device cross-section: (a) OTFT, and (b) capacitor.

3. Results and Discussion

Figure 2 shows the surface morphology of the gate dielectric films, which can greatly
influence the performance of the OTFTs. As reflected by the root-mean-squared (RMS)
values of surface roughness, the pure Nd oxynitride of sample A has the roughest surface
(RMS = 7.98 nm). This rough dielectric surface should be attributed to the strong moisture
absorption of Nd oxynitride as proved by X-ray photoelectron spectroscopy (XPS) for O1s
spectrum in previous work [17], where the peak intensity of Nd-OH bonds was strong
for pure Nd oxide but was reduced by doping the oxide with another element. Localized
moisture absorption on the oxide surface causes its non-uniform expansion and thus its
roughness. By fixing the sputtering power of the Nd target at 45 W and raising that of
the Ti target to increase the Ti content in the dielectric, the dielectric surface roughness
is obviously reduced with rising Ti content from sample A to sample D, indicating the
suppressed hygroscopicity of the dielectric by the Ti incorporation, which is similar to
the past works based on La oxide and Nd oxide [17,18]. The surface morphology of the
pentacene films grown on the dielectrics is shown in Figure 3. Raising the Ti content in
the gate dielectric, the pentacene grains become more uniform and larger due to fewer
nucleation sites on smoother dielectric for pentacene growth, thus increasing the sizes of
the overlying pentacene grains [19].
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Figure 3. 2D AFM images (3 µm × 3 µm) of pentacene films evaporated on the gate dielectrics with
rising Ti content: (a) sample A, (b) sample B, (c) sample C, and (d) sample D.

Figure 4 displays the transfer characteristics of the samples measured at a drain-to-
source voltage (VDS) of −5 V. The transfer hysteresis is obtained by sweeping the gate
voltage from +5 V to−5 V (forward) and then reversely (backward). The difference between
the threshold voltage VT of the backward sweep and that of the forward sweep is used
to define hysteresis ∆VT, which is ascribed to charge trapping at/near the channel and
dielectric interfaces. In Figure 4, negative ∆VT is observed for sample A, resulting from
OH ions formed by the high hygroscopicity of Nd2O3 at/near the pentacene/dielectric
interface [20]. These OH ions can act as donor-like traps, and during the forward sweep,
capture the holes in the pentacene layer to become positively, thus producing an electric
field opposite to the applied gate field [21]. Therefore, the VT negatively shifts in the
ensuing backward sweep. The hysteresis is reduced for sample B, which should be due
to suppressed moisture absorption of the dielectric by the Ti doping. Furthermore, the
hysteresis decreases for sample B and further becomes positive for sample C and sample
D, which can be ascribed to the fact that Ti doping can improve the moisture resistance
of the gate dielectric and so suppress the generation of donor-like traps while inducing
acceptor-like traps [16]. As previously investigated by XPS, one origin of acceptor-like traps
should be the Ti-induced oxygen vacancies, which can raise the binding energy of Ti2p in
the XPS spectrum because they are usually considered positively-charged [22,23]. When
injected from the gate electrode, electrons can be captured by these acceptor-like traps,
which become negatively charged to produce an electric field parallel to the applied gate
field. Therefore, the charged traps can enhance the gate-oxide field to produce a positive
shift for VT.
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The carrier mobility (µ) can be extracted from the saturation regime of p-type OTFT [24,25]:

Id = −WCoxµ

2L
(VG −VT)

2 (1)

µ =
2L

WCox

(
∂
√

Id
∂VG

)2

(2)

where VG is the applied gate voltage; Cox is the dielectric capacitance per unit area; W and
L are the channel width and channel length, respectively.

The subthreshold swing (SS) and corresponding trap density (Nt) can be expressed as
the following formulas [26,27]:

SS =
∂VG

∂(log10 ID)
(3)

Nt =
Cox

e

(
e× SS

kT × ln10
− 1

)
(4)

Extracted from their transfer characteristics, the key parameters of the samples are listed
in Table 1, which are based on the averages of around 10 devices for each sample. The mobility
is firstly improved with rising Ti content in the gate dielectric from sample A to sample C.
This improvement should be due to the suppressed dielectric hygroscopicity and thus
reduced dielectric surface roughness induced by the Ti doping (see Figure 2), which weakens
the surface-roughness scattering [28,29]. Moreover, carriers can also be scattered when
moving across pentacene grain boundaries, named grain-boundary scattering [24,30]. With
a smoother dielectric surface, the size of overlying pentacene grains increases obviously,
as depicted in Figure 3, contributing to less grain-boundary scattering from sample A to
sample C. Owing to the suppressed scatterings from both surface roughness and grain
boundary, sample C has the highest mobility although its SS and Nt are slightly higher.
However, the mobility is then reduced for sample D with excessive Ti content. As reflected
by the trap density calculated from the extracted subthreshold swing in Table 1, excessive
Ti can induce more undesirable oxide defects (possibly including oxygen vacancies and
dangling bonds) to act as traps and ions at/near the interface between pentacene and gate
dielectric, generating severe Coulomb scattering [31]. In summary, the carrier mobility
can be degraded by larger dielectric roughness and more oxide defects generated from
excessive Nd and Ti contents, respectively. Therefore, the highest mobility is achieved for
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sample C with appropriate Ti content. Figure 5 shows the carrier-mobility distribution
where bar color and bar height represent mobility range and device quantity, respectively,
thus statistically supporting the mobility trend with Ti content.

Table 1. Main electrical parameters of OTFTs with increasing Ti content in gate dielectric.

Sample A B C D

RF Sputtering Power of Nd 45 W

DC Sputtering Power of Ti 0 W 10 W 20 W 30 W

µ (cm2/V·s) 0.15 0.20 1.70 0.40

VT (V) −0.81 −0.75 −0.71 2.1

hysteresis (V) −0.36 −0.23 0.33 1.0

SS (V/dec) 0.25 0.16 0.30 3.1

Nt (cm−2eV−1) 2.6 × 1012 1.5 × 1012 4.1 × 1012 6.1 × 1013

on/off ratio 2.0 × 103 1.0 × 104 6.5 × 103 3.7 × 101

Vfb (V) −0.65 −0.28 0.19 0.58

Qox 2.7 × 1011 −3.7 × 1010 −5.5 × 1011 −1.1 × 1012

Cox (µF/cm2) 0.132 0.146 0.171 0.191

k value 7.7 8.6 9.7 10.2

tox (nm) 51.4 52.1 50.3 47.5

RMS dielectric roughness (nm) 7.98 2.21 0.36 0.35
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which should be the result of more negative charges induced by excessive Ti, as supported 
by the dielectric–charge density extracted from the CV characteristics listed in Table 1. 
The negative oxide charges can turn on the device even without an externally applied 
voltage. The leakage current of the gate dielectric can be reflected by the drain current 

Figure 5. Carrier-mobility distribution for pentacene OTFTs with increasing Ti content in gate dielectric.

As shown in Figure 6, the capacitance-voltage (C-V) characteristics are obtained by
sweeping the gate voltages of the capacitors with a structure of Al/dielectric/n + Si from
−4 V to 5 V. The C-V curve shifts positively from sample A to sample D, which corresponds
to a transition of dominance from donor-like trap to acceptor-like trap in the gate dielectric
due to its increasing Ti content. Moreover, the Cox and resultant k values of the gate dielectric
rise with increasing Ti content due to the higher k value of TiO than NdO. As a result, the
magnitude of the threshold voltage is reduced from sample A to sample C. Strangely, sample
D shows a positive threshold voltage for p-type pentacene channel, which should be the
result of more negative charges induced by excessive Ti, as supported by the dielectric–charge
density extracted from the CV characteristics listed in Table 1. The negative oxide charges
can turn on the device even without an externally applied voltage. The leakage current
of the gate dielectric can be reflected by the drain current (under VD = VS = 0 V) in the
output characteristics shown in Figure 7. The largest gate-dielectric leakage of sample D
should originate from the highest Ti content in its dielectric because (1) Ti incorporation
can generate traps in the dielectric as supported by the highest Nt of sample D in Table 1;



Materials 2022, 15, 2255 7 of 10

and (2) Ti oxide has a smaller band gap (~3.4 eV) than Nd oxide (~5.0 eV). In [32], the Nd-Ti
oxynitrides were deposited simultaneously with those in this work, but were annealed
at a higher temperature of 400 ◦C. The pentacene OTFTs with these Nd-Ti oxynitrides as
gate dielectrics also showed the highest mobility for the sample with Ti sputtered at 20 W
(see Figure 8). Interestingly, though higher annealing temperature normally improves the
quality of the gate-dielectric/semiconductor interface to result in higher mobility, NdTiON
annealed at 400 ◦C gives the OTFT lower carrier mobility (0.8 cm2/V·s) than that annealed
at 200 ◦C (1.7 cm2/V·s). This should originate from the chemical reaction at the remote
Si-gate/gate-dielectric interface, which is affected by the annealing temperature. Higher
annealing temperature increases the chemical reaction rate to produce a thicker interlayer,
which reduces the gate screening effect on the remote phonon scattering to degrade the
carrier mobility, which has been investigated for various lanthanide-based high-k gate
dielectrics (including LaTiON and NdTaON) for OTFTs [33,34].
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4. Conclusions

Using Nd-Ti oxynitrides with different Ti contents as gate dielectrics, pentacene OTFTs
have been fabricated at a low temperature of 200 ◦C. The oxynitrides are obtained by
co-sputtering Ti and Nd targets at variable DC power and fixed RF power, respectively.
The surface roughness of the NdTiON film is reduced with increasing Ti content to produce
larger overlying pentacene grains, which should be due to the reduced hygroscopicity of
the gate dielectric. The improved qualities of NdTiON and pentacene contribute to the
smallest threshold voltage (−0.71 V), and the highest carrier mobility (1.70 cm2/V·s) for the
sample with the Ti target sputtered at 20 W for the gate dielectric. This sample also shows
much higher mobility than its counterpart processed at a higher temperature of 400 ◦C
(0.8 cm2/V·s) because its thinner gate-dielectric/gate-electrode interlayer can provide
stronger screening on the remote phonon scattering by the gate electrode. However,
numerous acceptor-like traps are induced by excessive Ti sputtered at 30 W, thus reducing
the carrier mobility and increasing the VT hysteresis. Moreover, owing to the high-k value
of the gate dielectric, the threshold voltage of the sample can be smaller than 0.8 V, implying
its high potential to lower the power consumption of future OTFTs.
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