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Background: Endoscopic biopsy is the pivotal procedure for the diagnosis of

gastric cancer. In this study, we applied whole-slide images (WSIs) of

endoscopic gastric biopsy specimens to develop an endoscopic gastric

biopsy assistant system (EGBAS).

Methods: The EGBAS was trained using 2373 WSIs expertly annotated and

internally validated on 245WSIs. A large-scale, multicenter test dataset of 2003

WSIs was used to externally evaluate EGBAS. Eight pathologists were compared

with the EGBAS using a man-machine comparison test dataset. The fully

manual performance of the pathologists was also compared with semi-

manual performance using EGBAS assistance.

Results: The average area under the curve of the EGBAS was 0·979 (0·958-

0·990). For the diagnosis of all four categories, the overall accuracy of EGBAS

was 86·95%, which was significantly higher than pathologists (P< 0·05). The

EGBAS achieved a higher k score (0·880, very good k) than junior and senior

pathologists (0·641 ± 0·088 and 0·729 ± 0·056). With EGBAS assistance, the

overall accuracy (four-tier classification) of the pathologists increased from

66·49 ± 7·73% to 73·83 ± 5·73% (P< 0·05). The length of time for pathologists to

manually complete the dataset was 461·44 ± 117·96 minutes; this time was

reduced to 305·71 ± 82·43 minutes with EGBAS assistance (P = 0·00).
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Abbreviations: AI, artificial intelligence; DCNNs, deep co

networks; GCNs, graph convolutional networks; WSI, w

EGBAS, endoscopic gastric biopsy assistant system; N

dysplasia; LGD, low-grade dysplasia; HGD, high-grad

intramucosal invasive neoplasia; ROI, regions of interest.
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Conclusions: The EGBAS is a promising system for improving the diagnosis

ability and reducing the workload of pathologists.
KEYWORDS

gastric cancer, endoscopy, artificial intelligence, pathology, gastric
biopsy specimens
Introduction

Gastric cancer is the fifth most common malignant cancer and

the third leading cause of cancer-related mortality worldwide (1, 2).

Gastroscopy is the pivotal procedure for the diagnosis, and

especially the early detection, of the gastric cancer. The critical

step of a gastroscopy examination is endoscopic biopsy when

abnormal mucosa is detected. Additionally, endoscopic biopsy is

the only way to make a definitive diagnosis of gastric mucosal

diseases. In China, 22 million gastroscopy examinations are

performed every year, creating potentially more than 50 million

endoscopic biopsy specimens of gastric lesions (3). Although a rapid

and precise diagnosis of gastric cancer is a necessary prerequisite for

further treatment, the large number of endoscopic biopsy

specimens combined with the current shortage of certified

pathologists yield heavy workloads and affect diagnosis accuracy

(4). According to the WHO 2019 classification system employed in

China (5), visual inspection is not adequate to capture subtle

changes in biopsy tissue because it may lead to different

interpretations and introduce inter-and intra-observer variability.

Recently, artificial intelligence (AI) has been advancing in

the field of pathological diagnosis to provide improved accuracy

and save time (6, 7). Studies have applied conventional neural

networks to help detect and diagnosis gastric cancer, achieving

good results (8). However, an AI system based on the four-tier or

five-tier classification system referred to in the latest WHO

classification (5th edition) dedicated to endoscopic gastric

biopsy still does not exist. The pathological diagnosis of

endoscopic gastric biopsy has many different characteristics

compared with gastric cancer biopsies obtained from surgery,

and they should be considered separately in actual diagnosis.

The e-Pathologist image analysis software can be used to classify

digitized histological images of gastric biopsy specimens into

three categories: carcinoma or suspicion of carcinoma, adenoma

or suspicion of a neoplastic lesion, and no malignancy which is
nvolutional neural

hole-slide images;

ED, negative for

e dysplasia; IIN,

02
the unique classification to the software. However, it has shown

poor robustness in a clinical setting (9).

Moreover, pathologists combine all lesion areas in the entire

biopsy rather than local patches (small images divided from

biopsy) to make a final diagnosis. Deep convolutional neural

networks (DCNNs) can only provide the results of each local

patch due to hardware limitations. Some DCNN methods can

determine the biopsy’s category based on the proportion of

patch categories or feature fusion methods (10–12), which may

affect the classification accuracy due to not considering the

relationship among the patches. Graph convolutional networks

(GCNs) can build relationships among irregular data and may

have the potential to optimize this problem. GCN has been

demonstrated to have good performance for classification in

non-European spatial datasets (13–15).

In this study, we applied whole-slide images (WSI) of

endoscopic gastric biopsy specimens (stained with H&E) expertly

annotated to develop an endoscopic gastric biopsy assistant system

(EGBAS) based onDCNNs and GCNs. The primary function of the

EGBAS was to support pathologists in segmenting the important

regions for diagnosis and help them screen out some negative cases

rather than only provide a final diagnosis.We trained and externally

validated the EGBAS on a large-scale, multicenter test dataset and

compared its performance with the performance of pathologists

with or without the assistance of the AI system.
Materials and methods

Dataset and annotation

The study was approved by the Institutional Review Board of

Zhongshan Hospital, Fudan University (B2018-232R). All

patients who underwent gastric biopsy at participating hospitals

from June 2018 to June 2019 were retrospectively enrolled in the

study. Biopsies were classified using the latest 5th edition WHO

classification of gastric tumor tissue. This classification includes

four categories in order of increasing risk of malignancy: negative

for dysplasia (NED), low-grade dysplasia (LGD), high-grade

dysplasia (HGD), and intramucosal invasive neoplasia (IIN).

Tissue classified as NED is characterized by normal gastric

mucosa, gastric polyps, and inflammatory condition.
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Gastric biopsy specimens were stained with H&E and

mounted on glass slides by the participating hospital. Then,

the slides were collected for the study and de−identified before

WSI scanning. The slides used for training and validation of the

EGBAS were obtained from Zhongshan Hospital (1023 for

training, 106 for validation), Jiangyin Hospital Affiliated to

Nanjing University of Chinese Medicine (120 for training, 16

for validation), and Central Hospital of Minhang District (1230

for training, 123 for validation). For the test dataset, slides were

collected from multiple centers, including Zhongshan Hospital

(ZS, 196 slides), Central Hospital of Xuhui District (XH, 195

slides), Central Hospital of Minhang District (MH, 940 slides),

Zhengzhou Central Hospital (ZZ, 127 slides), and Jiangyin

Hospital Affiliated to Nanjing University of Chinese Medicine

(JY, 545 slides). A total of 2003 slides was reviewed by the

EGBAS. Table 1 presents the number of glass slides per dataset

used in this study by WHO category. Considering human

pathologists cannot read thousands of WSIs in one day, 429

slides (average number of endoscopic biopsies reviewed daily by

pathologists at Zhongshan Hospital) were included in a man-

machine comparison test dataset. All cases in this dataset were

randomly selected from the test dataset and consisted of 104

NED, 83 LGD, 66 HGD, and 176 IIN slides.

The previously diagnosed glass slides of endoscopic

biopsy specimens of gastric lesions were scanned using

whole-slide imaging at ×40 magnification. The scanners

include Aperio AT2 Scanscope Console SQS-1000,

Jiangfeng KF-PRO-005, and Hamamatsu NanoZoomer

S360. For the training dataset, pathologists identified the

diagnostically relevant regions of interest (ROI) in the WSIs

according to the 2019 WHO criteria. The annotation of ROI

for model training was conducted using an NDP.view2

(version 2·7·39) annotation system.

The first step of the annotation procedure was labeling and

verification. Three board-certified pathologists with at least 10

years of experience reviewed the WSIs and checked the final

label with their pathological report. Next, a pathologist

annotated the ROI on WSIs and then passed the annotation to

another pathologist for review. The EGBAS was developed along

with the annotation procedure, and the annotation provided by
Frontiers in Oncology 03
the system was sent to the pathologists to verify it was the

important region for final diagnosis.

Figure 1 shows the annotated endoscopic biopsy specimens,

and different colors indicate the different categories. The

undesired areas such as section identification, black border, or

text annotations were removed before the annotation work.
Image augmentation and
stain normalization

Abundant training data are the key to promoting model

performance, which prevents overfitting effectively. Thus, spatial

[flipping, rotation, and random erasing (16)] and color

(brightness, saturation, and contrast) augmentations, which

could increase a dataset’s diversity, were applied in our

method to enhance the model’s robustness.

The model in the study was trained on the slides from three

centers (ZS, JY, and MH) and tested on slides from five different

centers (ZS, XH, MH, ZZ, and JY). One major problem in

multicenter testing was color variation caused by differences in

chemical raw material, composition of staining protocols, or

color response of digital scanners.

Stain normalization was employed to eliminate undesirable

color variation in tissue area extracted by one automatic

thresholding method (17). All tissue areas were linearly

transformed into the same target mean and standard deviation

in each channel, which were derived from the average of

corresponding channel in the training dataset. Stain

normalization was formulated as follows:

ZR =
XR − m

s
 �  sR + mR

where mR and sR represents the target mean and standard

deviation of channel R, µ and s represents the mean and

standard deviation calculated from current image of channel

R, and XR and ZR are the original value and normalized value of

pixels in the whole image. The same operations were used for the

other two channels (G and B), and finally, the normalized three

channels were merged into a new image.
Algorithm development and training

The workflow of our algorithm is depicted in Figure 2. Given

the input WSIs, the probability map and feature map were first

obtained through DCNNs, followed by discriminative patches

selection. Then, graph structure was established based on

discriminative patches and corresponding feature maps.

Finally, the WSI category was acquired by GCNs. This section

consists of three parts: DCNN design, GCN design, and

implementation details and evaluation metrics.
TABLE 1 Number of whole-slide images of endoscopic biopsy
specimens used in the training, validation, and test datasets.

Class Training Validation Test

NED 885 80 1648

LGD 440 51 87

HGD 457 47 67

IIN 591 67 201

Sum 2373 245 2003
HGD, high-grade dysplasia; IIN, intramucosal invasive neoplasia; LGD, low-grade
dysplasia; NED, negative for dysplasia.
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DCNN design
In the architecture, the Vnet (18) model was selected to

locate the ROI regions whose segmentation effectiveness has

been widely demonstrated. The mean resolution of the images

was approximately 50000 × 110000, which could not be directly
Frontiers in Oncology 04
used as an input of the model due to computation and storage

limitation. A total of 2618 WSIs (2373 for training and 245 for

validation) from ZS were divided into 104000 patches with a size

of 512 × 512, including 72000 for training and 32000 for

validation (training and validation patches came from different
FIGURE 2

The workflow of the algorithm. Deep convolutional neural networks (DCNNs) and deep graph convolutional networks (GCNs) were used.
DCNNs were selected to acquire the probability map of patches and extract the feature map of patches. Discriminative patches were
selected with reference to the overall probability map of whole-slide images (WSIs), which was obtained by stitching all patch probability
maps. Thus, the graph of WSIs was constructed based on discriminative patches and corresponding feature maps, and the graph was fed
into the GCN model to obtain a final classification. HGD, high-grade dysplasia; IIN, intramucosal invasive neoplasia; LGD, low-grade
dysplasia; NED, negative for dysplasia.
FIGURE 1

Annotated images of slide-mounted endoscopic biopsy specimens. Representative images of four categories (NED, LGD, HGD, and IIN) of
gastric biopsy are presented. The abnormal regions distinct for each category are annotated with different colors. One local area is selected in
each slide as a closeup image. HGD, high-grade dysplasia; IIN, intramucosal invasive neoplasia; LGD, low-grade dysplasia; NED, negative
for dysplasia.
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WSIs). We then trained the DCNN model based on these

patches to predict the feature map and probability map of

abnormal (including LGD, HGD and IIN) ratio. Therefore, the

overall probability map of each WSI could be obtained by

stitching the respective results of their patches.

GCN design
Each WSI was only placed in one category. Even though a

scan may have shown several abnormal regions belonging to

different categories, pathologists incorporated all lesion areas in

the entire tissue rather than local patches to make a final

diagnosis. To predict the gastric biopsy slide with human-like

logic, our method used GCNs that could effectively build the

relationship of irregular data structure in non-Euclidean space.

We defined the whole slide as a graph. The patches divided

from the slide were set as nodes. The potential interaction

between two patches were set as edges.

The process of constructing a graph consisted of

discriminative node selection, node feature extraction, and

edge generation. Discriminative nodes were selected through

abnormal grading calculated from the probability map to reduce

redundant information. Similar to the process of pathologists,

only top n nodes in the abnormality ranking were used to build

the graph, which could remove the interference from some pure

negative regions. The DCNN was regarded as the feature

extractor, and all selected discriminative patches in tissue area

were extracted on behalf of the nodes. The edge between two

nodes was based on Chebyshev distance of features: a smaller

distance represented a closer potential interaction while a larger

distance represented a farther interaction. We assigned an edge

between node m and n only when the distance was smaller than

threshold g, as in the following formula:

Emn =
1   if   distancex(m, xn) < g

0   if   distancex(m, xn) ≥ g

(

where xm and xn represents the feature of nodes m and n,

respectively; g == 0 represents no edge in the graph; and g == +∞

represents a fully connected graph. The WSIs in the training and

validation datasets of the GCN were the same as those of the

DCNN, with the only difference being that the GCN was based

on WSI rather than local patches.

Implementation details and evaluation metrics
The proposed method was implemented using the deep

learning framework Tensorflow v1·16 and Pycharm Community

v2019·3·4. Adam was used as an optimizer with the initial learning

rate of 1 × 10−3. The loss function of the DCNN and GCNwere set

to dice loss (18) and focal loss (19), respectively. To accelerate the

training stage, multithreading was used on 4 Tesla V100 GPUs,

and it took 32 hours for 200 epochs in total.

The receiver-operating curve was used as an evaluation

metric in our method to reflect the classification performance.
Frontiers in Oncology 05
Each point on the curve corresponding to the sensitivity and

specificity based on a threshold. A sample was set as positive

only when the classification ratio obtained from the model was

larger than the threshold. As the area under the curve (AUC)

became larger, the classification accuracy improved.
Output of the analysis result

Different modes of system’s output were developed for the

actual usage demand. In order to facilitate the pathologists and

relieve their heavy workload, two special modes, NED-screening

and four-tier classification, were developed. Firstly, the NED-

screening mode would be performed for detecting and

distinguishing the malignant (LGD, HGD and IIN) and benign

(NED) cases by 100% sensitivity. The negative probability (from 0·0

to 1·0) of eachWSI would be predicted by EGBAS. TheWSI would

be regarded as benign with the probability greater than threshold t,

otherwise be regarded as positive. The strategy of this mode was to

remove part of the benign cases on the premise that the 100%

negative predictive value should be guaranteed to avoid the miss

diagnosis. Such a screening could alleviate the heavy workload of

pathologists in practical diagnosis. Secondly, our system assisted the

doctor to classify the remaining WSIs according to four-tier

classification mode by giving the probabilities values of each

category (pNEG , pLGD , pHGD , pIIN ), which were add up to 1

(pNED+pLGD+pHGD+pIIN=1 ). The model believed the WSI tend to

be the category whose corresponding probability was highest, from

which the WSI would be sorted into one of four types including

NED, LGD, HGD and IIN.
Algorithm assessment and comparison
with pathologists

The class of each slide in the large-scale test dataset was

determined by three leading pathology experts in digestive

diseases. Slides with conflicting labeling were removed from

the test dataset.

The man-machine comparison test dataset was fully

automated read by the EGBAS in the four-tier classification

mode and fully manually read by pathologists who participated

in this research. Additionally, it was reviewed fully manually and

semi-manually by pathologists without or with EGBAS

assistance. The NED-screening mode was applied to alleviate

the workload to the pathologists. All pathologists were invited

via email or instant message.

To compare between fully automated and fully manual

reading, pathologists read the WSIs in the test dataset

independently and gave their final diagnosis (NED, LGD, HGD,

and IIN). Then, diagnoses by the EGBAS and the pathologists

were compared by elapsed time, sensitivity, specificity, and

accuracy. Data are reported as the means ± standard deviation
frontiersin.org
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The comparison study of fully manual and AI-assisted

reading by the pathologists contained two parts. For the first

reading, the pathologists read the WSIs in the man-machine

comparison test dataset independently and gave their final

diagnosis. In the second reading after a six-week washout

period, the pathologists reviewed the same WSIs in the test

dataset with the assistance of the AI system. The AI system was

expected to help pathologists in a NED-screening mode. The

pathologists read this part of the WSIs briefly and skip the

diagnosis step to save time. Then, the system delineated

the region critical of the remaining WSIs for the final

diagnosis. The pathologists consulted this delineation before

giving the final diagnosis. The system provided more than the

classification result. The classification from the pathologists was

compared with the label of the WSI in the test dataset. The

performance of the pathologists with or without the assistance of

the EGBAS was compared. To compare the results of the four-

tier classification, agreement was assessed as the percent

agreement and k coefficients. k coefficients ranged from 0·00

to 1·00 and were interpreted descriptively as follows: poor k, less
than 0·20; fair k, 0·20-0·40; moderate k, 0·40-0·60; good k, 0·60-
0·80; and very good k, 0·80-1·00.
Data availability

The dataset is governed by data usage policies specified by the

data controller (Zhongshan Hospital, Fudan University).

The WSIs in the test dataset in this study will be available for

the testing of the AI system upon approval by the Institutional

Review Boards of Zhongshan Hospital. Applications for data

access can be directed to the corresponding authors. All authors

had access to the study data and reviewed and approved the

final manuscript.
Results

Performance of the EGBAS on a large-
scale test dataset

All slides in test dataset (NED, 1648; LGD, 87; HGD, 67; and

IIN, 201) were selected to evaluate the EGBAS’s performance of

screening for NED. Figure 3A depicts three receiver-operating

curves that represent the performance of screening for NED

based on LGD+ (1648 NED, 87 LGD, 67 HGD, and 201 IIN),

HGD+ (1648 NED, 67 HGD, and 201 IIN), and IIN (1648 NED

and 201 IIN). The average AUC was 0·979, and AUC values of

the five centers were all greater than 0·976.

Table 2 shows that the specificity value on the condition of

sensitivity is equal to 100% on screening for NED. The average

accuracy, sensitivity, and specificity were 0·82, 0·79, and 0·88,

and the standard deviation were 0·037, 0·151, and 0·078,
Frontiers in Oncology 06
respectively, across the centers, demonstrating a robust

performance of the EGBAS on screening for NED.

The multiclassification performance of the EGBAS was also

assessed based on the test dataset and four categories were

existed to be classified. The mean accuracy was 0·80, 0·85,

0·85, 0·89, and 0·75 for ZS, XH, MH, ZZ, and JY, respectively

(Figure 3B). The mean sensitivity was 0·81, 0·78, 0·60, and 0·92

for NED, LGD, HGD, and IIN (ranging from 0·74 to 0·88, from

0·46 to 1·0, from 0·50 to 0·89, and from 0·88 to 1·0; Figure 3C).

The average inference time of the EGBRAS for eachWSI was

31·12 ± 7·54 seconds to obtain the final category prediction with

one GPU (Tesla V100).
The comparison of EGBAS with human
diagnosis on the man-machine
comparison test dataset

Eight pathologists participated in our comparative study.

They were all board-certified, achieved a master’s degree in

pathology, and had more than 2 years of practical experience on

the diagnosis of endoscopic gastric biopsy. Pathologists with at

least four years of working experience were regarded as senior

pathologists. All eight pathologists read the WSIs on a computer

in the endoscopy center of Zhongshan Hospital under the

supervision of our researcher. Additionally, this researcher

measured and recorded the length of time needed for

pathologists to read the scans and determine their final

diagnosis. The average length of time to complete the dataset

was 467·54 ± 22·50 for junior pathologists and 490·04 ± 90·96

minutes for senior pathologists. The EGBAS spent less time on

diagnosis than both junior and senior pathologists (P< 0·05;

Figure 4A). The EGBAS took 221 minutes to provide the final

diagnosis and delineate the region critical to the final diagnosis

with one GPU (Tesla V100).

Concerning the diagnosis of all categories, the overall

accuracy of the EGBAS was 86·95%. By contrast, the eight

pathologists achieved an overall accuracy of 66·49 ± 7·73%.

The accuracy of junior and senior pathologists was 61·95 ±

9·09% and 71·04 ± 4·59%, respectively. Therefore, the EGBAS

achieved a higher accuracy than the pathologists (P< 0·05). No

significant difference was found between the accuracy for the two

groups of pathologists (P = 0·09; Figure 4B).

The AI system achieved a higher k score of 0·880 (very

good k) than junior and senior pathologists (0·641 ± 0·088 and

0·729 ± 0·056; Figure 4C); however, this difference was not

significant. Figure 4D presents the confusion matrices of the

four-tier classification of the EGBAS, junior pathologists, and

senior pathologists on the man-machine comparison test

dataset. The deeper color represents the better performance

on the specific classification. Overall, the EGBAS showed better

prediction on the classification of LGD, HGD, and IIN than

the pathologists.
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The comparison between pathologists
with or without the assistance of
the EGBAS

The length of time for the pathologists to complete the first

reading was 461·44 ± 117·96 minutes. With the assistance of the
Frontiers in Oncology 07
EGBAS, this time was reduced to 305·71 ± 82·43 minutes for the

second reading (P = 0·00). Among all the time saved, the

pathologists saved 100·63 ± 46·94 minutes due to spending less

time on the NED cases diagnosed by the EGBAS.

Concerning the diagnosis of all four categories, the eight

pathologists achieved an overall accuracy of 66·49 ± 7·73% for
TABLE 2 Sensitivity and specificity by category and center on screening for NED.

ZS XH MH ZZ JY ALL*

Sensitivity 100% 100% 100% 100% 100% 100%

Specificity (LGD+) 95% 84% 83% 66% 82% 83%

Specificity (HGD+) 96% 91% 94% 72% 82% 89%

Specificity (IIN+) 96% 92% 95% 100% 93% 94%
frontiers
HGD, high-grade dysplasia; IIN, intramucosal invasive neoplasia; LGD, low-grade dysplasia; NED, negative for dysplasia.
*ALL was set up by merging other four test datasets.
A

B

C

FIGURE 3

Results of the assessment of the endoscopic gastric biopsy assistant system on the large-scale test dataset. (A) The receiver-operating curve
(ROC) of screening negative for dysplasia (NED) cases in four centers. The area under the curve (AUC) was 0·981, 0·979, 0·986, 0·977, and 0·976
in ZS, XH, MH, ZZ, and JY. The average AUC was 0·979 in the five centers. (B) Assessment of pathology slide classification. The accuracy,
sensitivity, and specificity of detecting the four categories in all centers are presented. For NED, low-grade dysplasia (LGD), high-grade dysplasia
(HGD), and intramucosal invasive neoplasia (IIN) categories, separate accuracy ranged from 0·750 to 0·850, sensitivity ranged from 0·632 to
0·926, and specificity ranged from 0·90 to 0·912. (C) Classification confusion matrix of the large-scale test dataset, which indicates the
distribution of the predicted label on the true label. ZS, Zhongshan Hospital; XH, Central Hospital of Xuhui District; MH, Central Hospital of
Minhang District; ZZ, Zhengzhou Central Hospital; JY, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine.
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the first reading; this accuracy increased to 73·83 ± 5·73% for the

second reading (P< 0·05).

We compared the performance of the pathologists with or

without the assistance of the EGBAS in a two-tier classification

(NED vs. LGD, HGD, and IIN). The average accuracy,

sensitivity, and specificity of the eight pathologists for the first

reading (manual reading) were 85·51 ± 7·40%, 86·58 ± 12·71%,

and 83·33% ± 20·05% (Figures 5A–C). For the second reading,

the accuracy and sensitivity increased to 89·89 ± 3·51% and

94·99 ± 7·40% (P = 0·032 and 0·014); the specificity was 73·18 ±

13·96% (P= 0·15). For the first reading without AI assistance, the

agreement with the reference standard (measured by the median

quadratically weighted Cohen’s k) for the pathologists was 0·685.
For the second reading assisted by the EGBAS, the median k of

the panel increased to 0·764 (good k), indicating a significant

increase in performance (P< 0·05) (Figure 5D). The EGBAS

achieved 93·01% accuracy in distinguishing between NED and

other positive diagnosis (LGD, HGD, and IIN) with a mean

AUC value of 0·975 ± 0·01 (0·955-0·988; Figure 5E). The

confusion matrix of the pathologists for the first reading and

second reading (Figure 5F) showed less NED specimens were
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misdiagnosed as LGD, HGD, or IIN with the assistance of

the EGBAS.

Considering the different treatments for HGD and IIN, we

also compared the performance of the pathologists in another

two-tier classification (NED and LGD vs. HGD and IIN). The

EGBAS achieved 93·01% accuracy in distinguishing between

NED and other positive diagnoses (LGD, HGD, and IIN) with a

mean AUC value of 0·968 ± 0·010 (0·946-0·982, Figure 5G). The

average accuracy, sensitivity, and specificity of the eight

pathologists for the first reading (manual reading) were

82·69 ± 3·57%, 77·48 ± 10·59%, and 89·13 ± 9·63%. For the

second reading, the accuracy increased to 86·04 ± 2·45% (P =

0·046) while the sensitivity and specificity were 82·96 ± 8·14%

and 89·84 ± 9 78% (P = 0·27 and 0·88). Two different types of

two-tier classification confusion matrix were shown in

Figures 5H and I. Figure 5H (NED vs. LGD, HGD, and IIN)

shown pathologists achieved better performance in detecting

LGD, HGD, or IIN with the assistance of AI system, however,

lower accuracy in NED. Another two-tier classification shown in

Figure 5I (NED and LGD vs. HGD and IIN) revealed that more

lesions that required endoscopic or surgical intervention were
A B

D

C

FIGURE 4

Results of the comparison between the endoscopic gastric biopsy assistant system (EGBAS) and pathologists using the man-machine
comparison test dataset. (A) The length of time for the EGBAS and pathologists (junior and senior) to complete the dataset.(B) The overall
accuracy of the EGBAS and pathologists (junior and senior). (C) The mean k value of the EGBAS and pathologists (junior and senior). (D) A
confusion matrix of the EGBAS, junior pathologists, and senior pathologists using the man-machine comparison test dataset.
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FIGURE 5

The classification results of pathologists with or without endoscopic gastric biopsy assistant system (EGBAS) assistance. (A-C) The accuracy,
sensitivity and specificity of different categories for the first reading (manual reading) and second reading (AI-assisted reading) in a two-tier
classification (NED vs. LGD, HGD, and IIN). P1-P8 represent 8 pathologists. (D) Cohen’s k for each pathologist on four-tier classification.
Each k value is the average pairwise k for each pathologist in two tests. (E) Results of a two-tier classification (NED vs. LGD, HGD, and IIN)
by pathologists. The receiver-operating curve (ROC) was acquired from the EGBAS, and the points represent the performance of eight
pathologists. The dots represent the first reading, and the diamonds represent the second reading. Different colors denote the performance
of different pathologists. (F) A confusion matrix of the four-tier classification on the test dataset for the first reading and second reading.
(G) Results of another two-tier classification (NED and LGD vs. HGD and IIN) by pathologists. The ROC was acquired from the EGBAS, and
the points represent the performance of eight pathologists. The dots represent the first reading, and the diamonds represent the second
reading. Different colors denote the performance of different pathologists. (H) A confusion matrix of the two-tier classification (NED vs LGD,
HGD and IIN) on the test dataset for the first and second reading. POS, positive (LGD, HGD and IIN). (I) A confusion matrix of the two-tier
classification (NED and LGD vs. HGD and IIN) on the test dataset for the first and second readings.
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detected and less lesions were misdiagnosed as HGD or IIN with

the assistance of the EGBAS.
Discussion

Gastric cancer is a frequent diagnosis and a leading cause of

cancer death in China, accounting for 679,000 new cases and

498,000 deaths in 2015 (20). Endoscopic examinations with

biopsy serve a primary role in the diagnosis and surveillance

of patients with gastric precancerous conditions. Endoscopists

with higher endoscopic biopsy rates have higher rates of

detecting gastric premalignant conditions and lower rates of

missing gastric cancer (21). However, a higher endoscopic

biopsy rate is also associated with a higher negative biopsy rate

and a heavier burden for the pathologists. As a solution, AI can

help ease this burden for pathologists.

Considerable debate exists about the best approach for AI

systems to help pathologists classify tissues. Some deep learning

algorithms have been applied in histopathologic classification

and have achieved a better diagnostic performance than

pathologists in liver cancer (22), breast cancer (23), melanoma

(24), and prostate cancer biopsy (25, 26). Previous results have

showed that deep learning can detect a huge amount of data

critical for the final diagnosis that are not accessible to visual

inspection. With the increasing use of WSI for pathological

diagnosis, more advantages have been discovered compared with

the use of glass slides (27). The endoscopic biopsy specimens of

gastric lesions are small, and one slide is enough for a case.

Compared with specimen obtained from other ways, we found

that the endoscopic biopsy specimen is perfectly suited to the use

of WSI for primary diagnosis. According to research by Yoshida

et al., the e-Pathologist software yield unsatisfactory results for

three-tier classification of gastric biopsy WSI (28). The overall

concordance rate was 55·6% and the k coefficient was 0·28 (fair

agreement). Song et al. detected the gastric cancer region in

WSIs using DCNN and obtained slide-level prediction by

averaging the top 1000 probabilities (29). The tissue examined

in their study included both endoscopic biopsy and surgical

specimens. The model achieved a sensitivity of near 100% and an

average specificity of 80·6% on a real-world test dataset and

performed robustly with WSIs from other medical centers. This

research showed the feasibility and benefits of using AI systems

in routine practice scenarios. Ziba et al. (30) built a deep

learning–based system to classify breast histopathological

images in two steps. First, the model was trained to classify the

patches, and second, a decision tree combined the patches to

obtain a final diagnosis. Additionally, Wang et al. (31) obtained

whole-slide gastric image classification relying on two stages:

first, selecting patches, and second, utilizing these patches to

diagnose disease based on deep learning.
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The application of a two-stage algorithm can effectively

combine local and global information. However, these models

did not consider the potential interactions among local patches,

which could greatly influence the diagnosis of pathologists.

Considering the evolution and spread of the disease,

pathologists always incorporate all suspected lesion areas in

the entire tissue and develop a pattern of relationships among

them to make a final decision. To predict the gastric biopsy slide

with human-like logic, our method used a GCN that could build

the relationship of features extracted from discriminate patches

as a graph in non-Euclidean space and yield a slide-level

category by comprehensive training. With the assistance of the

EGBAS, the overall time for pathologists to diagnose was only

0·662 times as much as the fully manual review, and the accuracy

rate increased from 66% to 73%. As far as we know, this is the

first research on an AI system that aimed to subdivide

endoscopic biopsies into four categories (LGD, HGD, IIN, and

NED) and was verified as helpful to pathologists’ diagnosis.

Referring to the existing research, we identified some

practices that need to be emphasized in an AI system before it

could be established as an ideal AI system for clinical

application. First, the deep learning algorithm should be

established based on large number of specimen slides collected

from multiple centers, and the WSIs should be scanned using

different brands of scanner devices to improve generalization.

Additionally, algorithms should be developed to normalize WSIs

collected from different centers. Second, the system should focus

on assisting pathologists to improve their diagnostic accuracy

rather than providing a diagnostic result. A semi-automated

approach will not reduce workload as much as a fully automated

approach, but its performance might improve the diagnostic

ability of pathologists. Indeed, the pathologist is the one who

should be responsible for the diagnosis rather than the AI

system. Therefore, reducing pathologists’ workload and

improving their accuracy should be the primary goal for the

AI system. Third, the algorithm should be trained to simulate

real-world diagnosis and performed in a multi-category,

complex working pattern. In the real world, the pathologists

have to face a broad spectrum of various diseases and even some

orphan diseases to obtain the final diagnosis. The binary

classification does not fit the actual work. In our research, we

divided the complex WHO 2019 classification of endoscopic

gastric biopsy into a four-tier selection. Fourth, the test dataset

for verifying the performance of the AI system should contain

WSIs collected from multiple centers to ensure the stability of

the system. These practices presented a huge challenge for us and

we made great efforts to meet these practices. They were also

considered to be the general rules and guidelines for our study

design of the EGBAS.

Considering the large number of patients that require

endoscopic examination for screening, the cost-effectiveness
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should be taken into account to ease the heavy medical burden.

To some extent, our system might be the perfect solution for this

dilemma because it can screen NED specimens with negative

predictive value, which can alleviate pathologists’ workload and

speed up the diagnosis. Its two-tier classification can detect and

distinguish malignant (LGD, HGD, and IIN) and benign (NED)

cases with 100% sensitivity before providing the final diagnosis.

The high sensitivity ensures the system will avoid missing the

diagnosis of lesions that should be treated with endoscopic or

surgical intervention. Thus, pathologists will be able to pay less

attention to these benign cases and can focus on the malignant

cases. In our research, pathologists saved approximately 156

minutes with the assistance of the EGBAS, and of this time,

approximately 100 minutes were saved due to spending less time

on the NED cases diagnosed by the EGBAS. This remarkable

result demonstrated that pathologists can save valuable time

with the assistance of the EGBAS. Thus, endoscopists can raise

their endoscopic biopsy rate and also perhaps decrease the rate

of false negatives (21).

Our research proved that the EGBAS can help pathologists

to not only save time but also improve the accuracy of their

diagnosis. The overall accuracy was increased to 73·83% in the

four-tier classification, and the k score was raised to 0·764 with

the assistance of the EGBAS. Additionally, the accuracy

significantly increased to 89·89% (NED vs. LGD, HGD, and

IIN) and 86·04% (NED and LGD vs. HGD and IIN) in two

different two-tier classifications. The results of our research

demonstrated that the system can focus on delineating the

important regions related to final diagnosis for pathologists to

improve the accuracy of their diagnosis. The delineation on

WSIs could help them highlight the important regions rather

than interfere with their diagnosis. The classification of the

biopsy tissue is always a tough task due to the existence of

various histological conditions such as necrosis, hyperplasia,

inflammation, and structural abnormalities in gastric biopsy

tissues. Additionally, this task is made even more difficult by

the process to distinguish benign lesions frommalignant tumors.

Sometimes, LGD cases are misdiagnosed as NED cases, causing

patients to obtain a wrong follow-up protocol. The primary

reason for this misdiagnosis is that the pathologist neglected

some abnormal regions, which can be small in the WSI. With the

help of the EGBAS, abnormal regions are delineated from

benign tissue so that small regions also can attract the

attention of pathologists, greatly reducing the false negative

rate. Comparing with the system that only provides a

classification result, our system can better fit in a wide range

of regions who adopt different classification criteria (32, 33).

There are several limitations in this study. First, the EGBAS did

not quantitatively analyze gastric atrophy and inflammation in

H&E-stained WSIs; in the future, we will add this to the system to

provide more information to guide further treatment. Second,

gastric neuroendocrine tumor and gastric lymphoma were not

considered as a diagnosis because immunohistochemical staining
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is needed to diagnose them. We aim to train the model to detect

more diseases in the future. Third, we did not include an

unclassified label in this research. In a pathologist’s daily routine,

some cases will be diagnosed as unable to be classified due to the

low quality of the slides or improper biopsy by endoscopists.

In summary, our study showed promising results that the

EGBAS can improve the diagnosis ability of pathologists and

reduce their workload. Additionally, the system can reduce

intra-observer variability and help pathologists focus on the

regions important to the final diagnosis. This is the first research

about using an AI system for four-tier classification of

endoscopic gastric biopsy, and further improvements will be

made to apply the EGBAS in routine practice.
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