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ABSTRACT

Alternative processing of pre-mRNA plays an im-
portant role in protein diversity and biological
function. Previous studies on alternative splicing
(AS) often focused on the spatial patterns of
protein isoforms across different tissues. Here we
studied dynamic usage of AS across time, during
murine retina development. Over 7000 exons
showed dynamical changes in splicing, with differ-
ential splicing events occurring more frequently in
early development. The overall splicing patterns for
exclusive and inclusive exons show symmetric
trends and genes with symmetric splicing patterns
that tend to have similar biological functions.
Furthermore, we observed that within the retina,
retina-enriched genes that are preferentially ex-
pressed at the adult stage tend to have more dy-
namically spliced exons compared to other genes,
suggesting that genes maintaining retina homeosta-
sis also play an important role in development via a
series of AS events. Interestingly, the transcrip-
tomes of retina-enriched genes largely reflect the
retinal developmental process. Finally, we identified
a number of candidate cis-regulatory elements for
retinal AS by analyzing the relative occurrence
of sequence motifs in exons or flanking introns.
The occurrence of predicted regulatory elements
showed strong correlation with the expression
level of known RNA binding proteins, suggesting
the high quality of the identified cis-regulatory
elements.

INTRODUCTION

The investigation of alternative splicing (AS) has attracted
great attention in recent years. AS increases the diversity
of mRNAs and proteins (1), and thereby plays an im-
portant role in increasing and fine-tuning the function
of proteins (2). Disruption of AS has been linked to a
number of human diseases, including retinal diseases
(3–5). The leap from the pre-genomics studies of individ-
ual genes to high-throughput technologies, such as micro-
arrays and deep sequencing, has enabled the investigation
of transcription and splicing events on a more global,
genomic scale (6–8). Application of these techniques vir-
tually re-branded AS from being rare to being almost uni-
versal (9,10). Experimental evidence indicates that the
majority (�95%) of human multiple-exon genes, which
account for �86% of the genome, are indeed alternatively
spliced. Taken together, this collection of all possible al-
ternatively spliced mRNAs, is referred to as the spliceome.
Although substantial qualitative and quantitative infor-
mation on a number of spliceomes has been gathered,
most described splicing profiles are studied at the fully
mature stage of the tested tissues. However, not only
does AS generate a varying composition of isoforms in
adult tissues, but splicing profiles also change during the
development of these tissues.

Retinal tissue has one of the highest levels of AS (11,12),
and dysregulation of AS and mutations in general splicing
factors have been associated with retinal diseases (13–16).
For example, among the many genes that can cause retin-
itis pigmentosa (RP), a form of retinal degeneration, three
genes associated with dominant RP (PRPF3, PRPF8 and
PRPF31) encode widely expressed proteins involved in
function of the spliceosome, the molecular machine that
carries out the splicing process (3–5). Moreover, mutation
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of PRPF31 has been implicated in dysregulation of the
splicing of the rhodopsin gene and subsequent induction
of apoptosis of retinal cells (17). Overall, it has been
estimated that at least 15% of disease-causing mutations
disrupt the cis-regulatory elements for splicing (18–20).
Therefore, we expect AS to play a crucial role in retinal
development and disease. However, despite its likely im-
portant role in the retina, global and detailed knowledge
about AS in the retina is limited.

In this study of retinal RNA splicing, we used the
unbiased methodology of exon microarrays to analyze
the dynamics of AS events from embryonic day 15
(E15) through postnatal development. We focused on
those AS exons whose inclusion rate underwent a signifi-
cant change between the investigated developmental
stages. Instead of enumerating all AS events at each
given time point, we studied changes in AS by examining
the relative inclusion level of exons during retinal devel-
opment (Figure 1a). We observed that a number of AS
exons had a significant dynamic change in their inclusion
level at different stages. Interestingly, exons from
retina-enriched genes show a higher frequency of
dynamic AS during retina development than exons of
genes whose expression is not enriched in the retina.
The AS profiles of these retina-enriched genes showed
strong association with special biological functions and
exhibited a stage-specific signature. Through exhausted
motif search, we found a number of cis-regulatory
motifs over-represented for these AS events in intronic
or exonic regions, providing the foundation for further
mechanistic studies.

MATERIALS AND METHODS

Experimental design

Affymetrix Mouse Exon 1.0 arrays were used to investi-
gate retinal gene expression and splicing at six develop-
mental time points. Retinas from embryonic day 15 (E15),
E18, postnatal day 1 (P1), P5, P12 and 2 month (adult)
littermate embryos or pups were pooled so as to generate

two independent biological replicates for each time point
from E15 to P12 and triplicates for adult. Total RNA was
isolated using TRIzol (Invitrogen, Carlsbad, CA, USA)
and the samples were further purified using the RNeasy
Mini Kit (Qiagen). On-column DNase I digestion was
applied to all samples. For comparison, we analyzed
brain gene expression at the exon level in tissue from
E15 and adult mice, using two biological replicates per
time point (pooled embryonic brain and individual
adult). Normalization of exon and gene expression data
was performed using GC pre-background adjustment,
RMA background correction and quantile normalization
(Partek Genomic Suite software). The overall expression
level for a given gene is defined as the average expression
level of all core probesets for the gene.

Quantitative study of AS

To focus on dynamic changes in relative exon usage, in-
dependent of overall gene expression variation, we used
the normalized intensity (NI) of an exon relative to overall
gene expression in a way similar to that defined by Clark
et al. (21),

NIe ¼ log2
Ie
Ig

where Ie and Ig are the expression levels for a given exon
and the gene that harbors the exon, respectively. The
difference of NI for a given exon at two time points, or
two samples, is called the splicing index (SI) of the two
points, or samples (21),

SI12 ¼ NIðt1Þ �NIðt2Þ

where t1 and t2 are two time points or two samples.
SI thus describes the temporal difference of exon inclu-
sion levels or difference between the samples. Note that
in this study we focus exclusively on AS on cassette
exons, and ignore the splicing events that occur within
exons.

Figure 1. Determination of AS exons. (a) Schematic representation of dynamic AS in our study. (b) SI of exons between any retina stage and adult,
and their corresponding t-test P-value (minus log scale of base 10). The circle points represent AS exons identified in the study.
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Determination of dynamic AS exons

To obtain a reliable set of dynamically spliced exons, we
first excluded 5944 genes that showed low levels of expres-
sion (<4.758 in log2 scale) at 5 or 6 developmental time
points examined. The low expression cutoff was chosen as
roughly the lowest one-third of all gene expression levels.
We then determined the threshold at which to consider a
significant difference between exon NIs at different time
points by calculating the SI distribution between the rep-
licates at the ‘same stage’. The hypothesis is that there are
no significant dynamically spliced exons among replicates
at the same time point. Since the SI distribution is close
to a normal distribution (Supplementary Figure S1),
we selected the conservative value of 3s (where s is
the standard deviation of the SI distribution between rep-
licates) as the minimal SI difference needed to define a
significant AS event. Furthermore, we performed robust
t-test on the NIs of all exons between each stage (dupli-
cates) and adult (triplicates). The P-values were obtained
for the significance of exon NI difference. The P-value
cutoff was chosen as 0.01.

Differentially expressed genes

Differentially expressed genes were used in principal
component analysis (PCA). To define the differentially
expressed genes, we calculated P-value and fold change
(FC) of gene expression between any stage and adult.
We chose 0.01 as the cutoff of P-value, whereas the FC
cutoff was chosen as three times the standard deviation
of gene expression difference between replicates at the
same time point. Genes that satisfied both the P-value
and FC cutoffs for comparison between any stage and
adult were defined as being differentially expressed
during development.

Tissue-enriched genes

Similar to that described by Yu et al. (22), we obtained
gene expression profiles across multiple tissues based
on the NCBI UniGene database. We then calculated ex-
pression enrichment (EE) scores for each gene in 47
tissues. The corresponding P-value was calculated based
on hypergeometric probability distribution and further
modified by Bonferroni correction for multiple testing
on the 47 tissues. If EE of one gene in a tissue was
within the top 5% of all EE distributions and its
P-value was <0.05, the gene was classified as a tissue-
enriched gene.

Enriched Kyoto encyclopedia of genes and genomes
pathway and gene ontology terms

A enriched Kyoto encyclopedia of genes and genomes
(KEGG) pathway or gene ontology (GO) term was
selected as an enriched KEGG pathway or GO term for
a group of genes if its enrichment score (ratio of frequency
in foreground to that in background) is >1.5 and its
P-value was <0.05 after multiple-test Bonferroni correc-
tion. The P-value was calculated based on the hyper-
geometric distribution.

Dynamic AS regulatory motifs

Previous studies (6,23,24) indicated that splicing cis-regu-
latory elements fall in the vicinity of the splice site (SS),
usually within 200 nt from the SS. Our motif search
focused on four regions: (i) upstream intron: last 200 nt
in the upstream intron from the 30 splicing site (30SS), or
the sequence from the previous exon end to the 30SS of the
exon of interest, whichever is shorter; (ii) 50 exon: first
200 nt sequence of the exon from the 50-end or the whole
exon, whichever is shorter; (iii) 30 exon: 200 nt sequence
from the 30-end or the whole exon, whichever is shorter;
(iv) downstream intron: first 200 nt in the downstream
intron from the 50SS or the sequence from the 50SS to
the next exon, whichever is shorter. Repeat elements
were defined by RepeatMasker (http://repeatmasker.org)
and excluded from the analysis.

All 5376 potential m-mer nucleotides (m=4, 5 and 6)
were studied as potential AS cis-regulatory elements
because the lengths of most of known splicing regulatory
motifs are around this range (25,26). We calculated the
frequency of m-mer nucleotides in AS exons and
non-AS exons. Non-AS exons are referred to exons
which have high NI and have no significant change
during development. The � value for each m-mer nucleo-
tide, as defined below, represents a measure of the differ-
ence in frequency between the two groups (24):

� ¼
fAS � fnonffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NAS

+ 1
Nnon

� �
gð1� gÞ

r

where fas and fnon are the frequencies of m-mer nucleotide
in AS and non-AS exons, NAS and Nnon are the total
numbers of single nucleotides in the two exon groups, and

g ¼
NAS fAS+Nnon fnon

NAS+Nnon
:

A �-value greater than 0 means the m-mer nucleotide
occurs more than expected in AS exons as compared to
non-AS exons, whereas �< 0 means the m-mer element
occurs less than expected.

To determine the statistical significance of m-mer occur-
rence, we calculated the enrichment score, defined as the
ratio of its frequency in AS exons to that in non-AS exons.
We focused on those sequences whose position-dependent
frequencies in AS exons deviated significantly from those
in non-AS exons. P-values were calculated using the
Kolmogorov–Smirnov (KS) test. The m-mer nucleotide
was selected as an enriched cis-element only if its � fell
within the top 5%, its enrichment score was in the top
quarter of all cis-elements, and its KS test P-value was
<0.05 after Bonferroni correction.

To evaluate the predicted motifs, we calculated the false
discovery rate (FDR) of the prediction. We shuffled AS
and non-AS exons groups with the same group sizes as
real data set. We then performed the same motif discovery
algorithm on the randomized data set. The FDR was
defined as M1/M0, where M1 is the average number of
motifs from a number of randomized data sets, and M0

is total number of real motifs obtained.
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Quantitative real-time PCR gene expression analysis
of retinal cells and other tissues

Total RNAs were extracted from adult mouse retina,
brain, heart, kidney, liver and testis using Trizol
(Invitrogen) according to the manufacturer’s instructions.
One microgram of total RNA from each tissue was used
to synthesize cDNA using Superscript III RT (Invitrogen)
with random hexamers. For more detailed analysis of
regional gene expression patterns in the retina, laser
capture microdissection (LCM) was used. Dissection of
retina at earlier developmental time points, and the
retinal layers [ganglion cell layer (GCL), inner nuclear
layer (INL) and outer nuclear layer (ONL)], as well as
cDNA preparation, were performed as described previ-
ously (27). PCR primers were designed specifically for
each isoform of pleckstrin homology domain containing,
family B (evectins) member 1 (Plekhb1). The primer se-
quences for amplification of the isoform containing exon
7 (chr7:107798442–107798546 from mm9 Assembly) are
50-AAGGTCAGGTGTACAACCCTCTCA-30 in exon7
and 50-TGTGTCACACCAGGACCTGCATAA-30,
which spans the junction of exons 8 and 9. The primer
sequences for the isoform not containing exon 7 are 50- A
AATTCCACCCCGGTACGCGTCTA-30, which spans
the junction sequence between exons 6 and 8 and 50- AT
AAGTGAACCAAGAGCAGCACCCGT-30 in exon 9.

Quantitative real-time PCR (qPCR) was performed on
an iQTM5 Multicolor Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA) with iQ SYBR green
supermix (Bio-Rad). The output data was analyzed with
Bio-Rad iQ5 Standard Edition V 2.1 program. We used
the ratio of relative transcript amount of Plekhb1 with the
exon 7 to that without exon 7 to approximately represent
the inclusion rate of exon 7.

RESULTS

Determining dynamic AS events

In this study we have studied the dynamic usage of exons
during retinal development. Relative retinal exon expres-
sion levels were profiled using Affymetrix Mouse Exon
arrays. Whole retina was harvested at six time points: em-
bryonic day 15 (E15), E18, postnatal Day 1 (P1), P5, P12
and at adult age (2 months old). To determine the differ-
ential usage for each exon between two points, we used the
SI to describe the relative expression level difference for
the exon. In this work, the adult stage was chosen as the
reference point (t2) for comparison. The SI value of the AS
event can be either positive or negative. A positive SI rep-
resents an exon that is more included (inclusive exon) at
one stage compared to adult. In contrast, a negative SI
describes an exon that is less included (exclusive exon) at
one particular stage compared to adult.

To obtain reliable AS events, we applied a series of fil-
tering operations on the exon expression data (‘Materials
and Methods’ section). Exons belonging to low expressed
genes were excluded, since low expression of a gene could
introduce high noise in SI. We calculated the P-value of SI
using a t-test for each exon between retina developmental

stages. Only exons with high absolute SI values and sig-
nificant P-values were considered to be dynamically
spliced exons (Figure 1b, magenta points). We denoted
these exons as AS exons and the genes harboring these
exons as AS genes.

Global view of AS events during retina development

In total we analyzed 96 787 exons from 10 686 expressed
genes at the core level according to Affymetrix annotation.
Among them, 7087 exons (8.2%) of 3566 genes (33.4%)
underwent dynamical splicing at least at one stage
compared to adult. We next examined the global pro-
perties of these dynamically spliced exons.
First, approximately half of the AS exons are

stage-specific (top half in Figure 2a), suggesting that
these genes may have a unique isoform at one particular
developmental stage. The other AS exons show different
exon usage compared to adult retina at multiple stages.
The numbers of inclusive and exclusive AS exons at each
stage are roughly equal (Figure 2a).
Second, we checked the relative positions of the AS

exons in the genes. We found that alternative promoter
usage is a widespread mechanism for generating alterna-
tive transcripts during retinal development. In contrast,
exons at poly(A) sites and other sites do not show enrich-
ment for dynamical splicing (Figure 2b). Although indi-
vidual examples have been shown for alternative promoter
usage (28–31), here we have shown that this is the general
trend for AS genes during development.
Third, we found that AS exons have higher GC content

(46–54%) than do constitutive exons (40–46%), both
in the exons themselves and in their flanking introns
(Figure 2c). This finding is consistent with previous
reports and is attributed to the fact that alternatively
spliced sites tend to have a more stable structure (32,33).
Another possible reason for higher GC-content in AS
exons could be that the 50 region in a gene tends to have
higher GC-content and AS exons are enriched at the
50-end of genes. We indeed found that the GC content
of AS exons and their flanking introns are higher in 50

regions than in other positions. In contrast, there is no
obvious difference in GC content between constitutive
exons at 50-end and at other positions (Supplementary
Table S1), so it seems a unique feature for AS exons
that their higher GC-content is a function of their
relative genomic position.
Fourth, pathway analysis of AS genes revealed that

genes involved in phototransduction, ABC transporter,
and extracellular matrix receptor interactions are
over-represented as being alternatively spliced during
retinal development. Further, GO analysis confirmed
that membrane-associated and extracellular matrix pro-
teins are enriched for AS genes (details in Supplementary
Tables S2 and S3).
Finally, the number of AS genes ranges from 1500 to

2500 from E15 to P5 (Figure 2d). The number of AS genes
decreases dramatically to less than 400 at P12, suggesting
that the retinal spliceome at P12 closely resembles that in
adult retina. Interestingly, although we used the spliceome
at the adult stage as reference, the number of AS genes
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at P1 and P5 are greater than those at E15 and E18.
This observation indicates that AS activity might be at
its highest level at early postnatal days.

Splicing patterns and the associated biological functions

To examine whether the genes sharing similar splicing
patterns during development share other attributes, we
clustered genes based on their exon inclusion levels. We
used k-means (k=8) with metrics of Euclidian distance
to cluster all AS exons based on their SI profiles across
developmental stages (Figure 3a). The average profile for
each cluster is shown in Figure 3b. Several major features
emerge from this analysis.
First, we observed symmetry between pairs of clusters

with opposite SI profiles (exclusive and inclusive). The SI
profiles of clusters C0 and C7, C1 and C6, C2 and C5 and
C3 and C4 are highly symmetric. One possible explanation
for such symmetric splicing patterns would be that two
exons in one gene are mutually exclusive. However, only
149 pairs of mutually exclusive exons were identified in the
symmetric clusters from >7000AS exons. We also
examined the gene expression profiles for these clusters
and there is no obvious correlation between gene expres-
sion levels and exon SIs (Supplementary Figure S2).
Therefore, we expect other intrinsic reasons for opposite
splicing trends between genes and further investigation is
needed to explore the underlying mechanism.
Second, the genes with opposite splicing patterns tend

to share similar biological functions. We performed GO
analysis on all clusters and calculated enrichment score of

each GO term in each cluster. We then examined the simi-
larity between these clusters in terms of biological func-
tions by calculating the correlation coefficient of
enrichment score profiles for all GO terms between the
clusters. It is interesting to see that clusters with symmetric
SI profiles always have high correlation coefficients of
their GO enrichment score profiles (Figure 3c). This ob-
servation suggests that genes with certain biological func-
tions do not have preference for direction (i.e. inclusion or
exclusion) of AS. Rather, altered function for certain
classes of genes is shared at particular developmental
time points, but for some genes the altered function is
brought about by inclusion of an exon, and in cases it is
brought about by exclusion of an intron.

Third, these clusters have different temporal features
during development. Clusters C2 and C5 show significant
AS only in early stages (E15 and E18) and the SI level then
rapidly approaches adult stage levels. In contrast, the
genes in clusters C0, C1, C6 and C7 have significant AS
changes from E15 to P5. The splicing patterns persist for a
long period in the early time points so that even at P5, the
SI level is still significantly different from that at the adult
stage. The third type of clusters includes C3 and C4, which
have significant SIs at P5 and modest SIs at P1. The dif-
ferent temporal splicing pattern genes exhibit different GO
functions. For example, one cellular component, ‘photo-
receptor outer segment’, and eight biological processes,
such as ‘visual perception’ and ‘sensory perception of
light stimulus’, are significantly over-represented in the
C2 and C5 cluster pair. Genes in this group includes

Figure 2. Global view of AS events during development stages. (a) Stage-specific and non-specific AS events at each stage. (b) AS exon percentages
at different locations, from 50 and 30, respectively. The dashed lines represent the ratio of AS exons to all exons at all locations. (c) GC contents for
AS exons and constitutive exons (***P=0). (d) Number of AS genes at each stage compared to adult.

7924 Nucleic Acids Research, 2011, Vol. 39, No. 18

http://nar.oxfordjournals.org/cgi/content/full/gkr545/DC1


Arr3, Pcdh15 and Pde6c. The molecular function ‘struc-
tural constituent of eye lens’ is significantly enriched
(P< 1.5� 10�6) in the two cluster pairs (C0 and C7; C1
and C6). Example genes include Bfsp2, Cryaa and Cryab.
The biological process ‘cell adhesion’ is enriched for genes
in clusters of C3 and C4 (e.g. gene Robo2). The result
suggests that genes with different splicing patterns tend
to have distinct biological functions.

It is interesting to point out that those genes preferen-
tially expressed in mature Muller and cone cells (34) tend
to have different AS patterns. Genes expressed in cone
photoreceptors are more significantly enriched in clusters
with early AS changes (i.e. clusters of C2 and C5), whereas
genes expressed in Muller cells are over-presented in
clusters whose splicing patterns change at late stage (i.e.
C0, C1, C6 and C7). This is consistent with the knowledge
that cone cells are born before birth, while the birth of
Muller cells peaks at early postnatal days in mouse (35).

Retina-enriched genes are enriched for AS during retina
development

We then asked whether the genes that maintain retinal
homeostasis in the adult retina also play a role in devel-
opment. We define retina-enriched genes as genes that are
preferentially expressed in ‘adult’ retina compared to
other tissues. After applying our criteria (see ‘Materials
and Methods’ section), 394 retina-enriched genes were

identified in our study, <4% of all genes. We found that
retina-enriched genes are indeed enriched for AS at all
retinal developmental stages (Figure 4a). In particular,
they are significantly enriched at stages E15
(P< 1.2� 10�11), E18 (P< 1.5� 10�11), and P1
(P< 2� 10�4). In general, over 52% of retina-enriched
genes underwent AS at least at one stage compared to
�31% of all the genes (P=1.9� 10�11, Figure 4b).
As a control, we calculated the percentage of AS genes

in other tissue-enriched gene sets, including brain, spleen
and muscle. We found that spleen and muscle-enriched
genes are not enriched for AS during retina development.
In contrast, the percentage of AS genes in the brain-
enriched gene set is much higher than average during
retina development, indicating the strong association
between these two neuronal tissues, retina and brain.
In order to examine whether the enrichment of AS

exons in retina-enriched genes is due to the overall
higher expression level of these genes, we compared the
frequencies of dynamic AS exons for retina-enriched genes
and other genes at the same expression level by grouping
the genes with similar expression levels. We found that
retina-enriched genes tend to have higher chance to
harbor AS exons than other genes at almost all expression
level intervals (Figure 4c). Therefore, the observation that
retina-enriched genes tend to have more AS exons is not
simply a function of their high expression level.

Figure 3. K-mean clustering of AS exon SI profiles during retina development. (a) SI profiles of AS exons clustered by k-means (k=8). (b) Average
SI of AS exons in each cluster. The number n in bracelet is number of unique harboring genes in the cluster. (c) Hierarchical clustering of AS exon
clusters based on correlation of GO term enrichment scores between gene cluster pairs.
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To test whether the observation is only applied to retina
or it is a general rule for other tissues, we carried out a
similar analysis by comparing AS profiles between E15
and adult brain (Supplementary Figure S3). In this case,
genes that are preferentially expressed in adult brain show
a higher percentage of AS genes, while retina-enriched
genes have lower percentage of AS genes. This result
suggests that the genes maintaining tissue homeostasis
might play an important role in development by express-
ing different gene isoforms, resulting in the expression of
different gene products.

Spliceome of retina-enriched genes can be a signature
of developmental states

We have shown that retina-enriched genes tend to have
a higher percentage of AS exons during development.
Interestingly, their collective splicing pattern largely
reflects their developmental stage. Specifically, we per-
formed PCA on exon NI and gene expression, respect-
ively, across retinal development to examine whether the
developmental time points showed a pattern correspond-
ing to linear time. When the PCA was based on all 96 787
exons, or the 7087 AS exons, respectively, the time points
were not positioned according to developmental stage
(Figure 4d). In contrast, when the PCA was based on

the set of 598 retina-enriched AS exons, the relative
position of the points closely followed the developmental
stage of the samples from E15 to adult (Figure 4d). Similar
trends were observed if we used expression of different
gene sets to describe the developmental stages
(Figure 4e). Interestingly, the AS analysis did not resolve
the later time points so well and the gene expression
analysis did not resolve the earlier time points so well.
This finding suggests that the collective splicing of
retina-enriched genes is a good indicator for developmen-
tal stage, and can complement gene expression patterns as
a marker of retinal development.

AS sequence motifs for retina development

To understand the possible regulatory mechanisms con-
trolling AS, we attempted to identify cis-regulatory
elements connected to retinal AS by employing a
splicing motif discovery algorithm (see ‘Materials and
Methods’ section). We compared the occurrence of
short sequence segments in AS exons and their flanking
introns with that in non-AS counterparts. We searched
over-represented sequence motifs in four regions:
upstream intron, 50 exon, 30 exon, and downstream
intron. Numerous significant cis-elements associated with
AS were discovered. Similar to the finding that splicing

Figure 4. Retina-enriched AS pattern as signature of retina development. (a) Number of retina-enriched AS genes at each stage, compared to
expected number derived from all general AS genes, The double asterisks represent the P< 10�3. (b) Percentage of all AS genes and four
tissue-enriched (retina, brain, spleen and muscle) AS genes. (c) Comparison between AS percentage of retina-enriched genes and all other genes
at different intervals of gene expression level. (d) PCA on NI of all exons, AS exons and retina-enriched AS exons, respectively. (e) PCA on gene
expression of all genes, differentially expressed genes, and retina-enriched differentially expressed genes, respectively. The circle sizes (from small to
large) represent the retina developmental stages (from early to late).
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enhancers at 50 SS and 30SS overlap extensively (24), most
of them were observed to be enriched within multiple
regions (Figure 5a). This finding suggests that many AS
regulatory elements are not limited to a specific region.
The FDR for the predicted motif is 1.24% based on
random shuffling evaluation (see ‘Materials and
Methods’ section for details). We then clustered all
enriched sequence elements according to their sequence
similarity. Consensus motifs (logos) were generated for
all clusters (Figure 5b). We observed that many of the
representative AS motifs in different regions (e.g. exons
and introns) exhibit sequence similarity.

Interestingly, we found that the occurrences of some
motifs in AS exons or introns are correlated with the
gene expression level of splicing regulatory factors
during development. For example, the occurrence of CU
CUCU negatively correlates with the expression of neural

polypyrimidine tract binding protein (nPTB), which pri-
marily functions as a splicing repressor in neuronal cells
(Figure 5c). nPTB regulates AS events by binding to the
sequence motif CUCUCU located in introns flanking the
AS exons (36–38). The observed negative correlation
between nPTB expression and CUCUCU occurrence
is consistent with nPTBs inhibitory role. The study of
correlation between AS motifs and genes provides us
with the potential to find novel splicing regulators of
retinal AS. For example, the expression of the gene
muscleblind-like 1 (Mbnl1) is positively correlated with
cis-regulatory elements GCGGG during retina develop-
ment (Figure 5d). This finding suggests that Mbnl1 may
play a role in AS events during retina development.
We then used the observed correlations to perform a

global assessment of the quality of the predicted motifs.
We calculated the correlation between the occurrence of

Figure 5. Identification of cis-regulatory elements. (a) Venn-diagram of cis-regulatory elements discovered in upstream intron, AS exon and down-
stream intron. (b) Enriched representative motifs in three regions. Each motif’s name consists of letter-number-letter. The first capital letter ‘E’
represents enriched. The number in the middle, ‘30, ‘00 and ‘50 represents upstream intron, exon, and downstream intron, respectively. The lower-case
letter is a random order number of the motif. The motif name in the bracelet represents the motif which is very similar (dissimilarity <1.7) to the
motif with the logo shown. (c) Negative correlation between expression level of Ptbp2 (nPTB) and occurrence enrichment of CUCUCU in upstream
intron of AS exons. (d) Positive correlation between expression of Mbnl1 and occurrence enrichment of GCGGG. (e) Distribution of correlation
coefficients between gene expression of 209 RNA binding proteins and occurrence enrichment of all identified AS motifs. As comparison, the
distribution for RNA binding proteins and all m-mer nucleotides are also shown.
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identified cis-regulatory elements and the gene expression
of 209 RNA-binding proteins with GO terms of ‘RNA
binding’ and/or ‘RNA splicing’ and differentially ex-
pressed during retina development. The correlation
between any pair of a predicted cis-regulatory element
and an RNA binding protein were calculated and the
overall distribution is shown in Figure 5e. The distribution
is clearly enriched for highly correlated pairs compared to
the correlation distribution for all 4, 5, 6-mer nucleotides
and RNA binding proteins. As another negative control,
we calculated the correlation between expression level of
randomly selected genes and the occurrence of predicted
motifs, and found that the correlation is significantly
lower than the observed correlation between RNA
binding proteins and motifs (P=0). Taken together, our
results suggest that the identified motifs are enriched for
bona fide regulatory elements. These elements provide the
foundation for further mechanistic studies of retinal AS.

Splicing patterns also show cell type specificity

The above-described studies examined the dynamics of AS
during development, which represents splicing changes in
the temporal dimension. In a different dimension, AS
patterns can also vary between different cell types even
within the same tissue. For example Basigin 2 (Bsg2) has
been reported to show an AS pattern that is specific to
photoreceptor cells as compared to other retinal and
non-retinal cells (39–41). Using a bioinformatics
approach based on available expressed sequence tag
(EST) data sets from retinal and non-retinal tissues, we
independently identified Bsg2 as having an AS form that is
preferentially expressed in the retina, and using QPCR
analysis of retinal layer samples obtained by laser
capture microdissection (LCM) also found that the
retinal isoform is preferentially expressed in photorecep-
tors (T. Masuda et al., unpublished data). Using the same
EST-based approach, coupled with our analysis described
above, we searched for genes that might show both retinal
cell type-specific AS as well as developmentally modulated
AS. An example of such a gene is Plekhb1. The
development-related microarray data indicated that exon
7 of Plekhb1 became more inclusive as retinal develop-
ment proceeded (Figure 6a). Using a QPCR assay with
specific primers that could distinguish the splice isoforms
with and without exon 7, we found that the exon 7 con-
taining isoform is strongly enriched in the retina compared
to non-retinal tissues (Figure 6b).
We then used the QPCR assay with LCM-derived RNA

from retinal samples from E 11.5, E17.5, P0, P6 and
2 month old mice to dissect splicing patterns along both
the temporal and spatial dimensions. At the earlier devel-
opmental time points we could not dissect specific retinal
layers because at these stages the retina is consists of a
morphologically homogeneous neuroblastic layer. At P6
we separated distinct INL and outer nuclear (photorecep-
tor) layers. At the 2 month stage we dissected distinct
INL, ONL and retinal ganglion cell (RGC) layers.
The LCM/QPCR results showed a general pattern of
increasing exon 7 inclusion over developmental time
(Figure 6c) that was similar to the microarray data

(Figure 6a). More significantly, the LCM results showed
that the exon 7 containing splice isoform of Plekhb1 is
highly enriched in photoreceptors. These results, taken
together, demonstrate the potentially complex landscape
of spatiotemporal RNA splicing regulation.

DISCUSSION

In this work, we used the mouse retina as a model system
to study the dynamics of AS during development. Our
study provides insight into the molecular basis of the
retinal development, identifying a large number of exons
(>7000) that undergo statistically significant splicing
changes during development. A global clustering of
exons based on their splicing patterns revealed a symmet-
ric relationship between exon clusters. The genes in
opposite splicing trends (more inclusive versus more ex-
clusive compared to adult) tend to share similar biological
functions. Interestingly, retina-enriched genes are more
significantly enriched in AS genes than other genes
during retina development. In fact, 52% of retina-enriched
genes compared to 31% general genes underwent such AS
events, suggesting that the genes regulating homeostasis in
the adult retina also play an important role during devel-
opment, and part of this activity may be regulated
by modulation of the expression of alternative isoforms.

Figure 6. Differential splicing patterns (including or excluding exon 7)
of gene Plekhb1 in different tissues, at different stage and in different
retina cells. (a) SI of Plekhb1 exon 7 for retina development stages
based on microarray data. (b) Ratio of qPCR data with exon 7 to
that without exon 7 for different tissues. (c) Ratio at different develop-
mental time points and in different LCM-derived retina layers. The
ONL is composed exclusively of photoreceptor cells.

7928 Nucleic Acids Research, 2011, Vol. 39, No. 18



We also identified many cis-regulatory elements that are
likely to regulate splicing events during retinal develop-
ment, providing the foundation for further studies of AS
in the retina.

We made several interesting observations and these find-
ings could be generalized to other systems. For example,
we found that retina-enriched genes are enriched for AS
changes during retinal development. We performed a
similar analysis on mouse brain and found that genes pref-
erentially expressed in adult brain are also enriched for
AS during brain development. This suggests that our ob-
servation might be a general rule that genes maintaining
tissue/cell-type homeostasis also play an important role
during development via numerous AS events. Another
possible general rule is that genes with opposite symmetric
splicing patterns tend to share similar biological functions.
This finding indicates that even though functions of indi-
vidual genes are of course dependent on the inclusion or
exclusion of a particular exon, the biological functions are
not related to the direction of AS, either inclusive or ex-
clusive, on a global scale.

We also found that genes specific for different cell types
tend to have different temporal AS profiles. For example,
Muller-specific genes tend to have different isoform
patterns from adult until postnatal stage P5, while
cone-enriched genes tend to have significant AS only at
early developmental stages. Another interesting example is
Plekhb1, which shows differential splicing both during
development and across cell types. This suggests that dif-
ferent cell types within the retina may have distinct AS
patterns during development and have different critical
time points during their differentiation. In order to
deconvolute average signals obtained using a complex
system such as the retina we plan to analyze AS in
retinal development at the cellular level. In other words,
we will perform a similar analysis on different retinal cell
types, rather than in whole retina, as we did in this study.
We believe that such analysis will provide more biological
insights into the role of AS in retinal development.

In an effort to define the motifs responsible for retinal
AS, we identified short RNA sequences that are enriched
in AS exons or their flanking introns as compared to their
occurrences in non-AS exons. The discovery of these
putative motifs represents the first step towards a mech-
anistic study of AS regulation in the retina. The next step
will be experimental validation of these motifs and identi-
fication of the potential splicing factors that recognize
these motifs. Protein microarrays provide an ideal
approach for this problem. We will synthesize the
putative RNA motifs and probe them individually on
protein microarrays that contain thousands of proteins.
Such an approach has proven to be successful in identifi-
cation of novel protein–DNA interactions (42). We expect
that this approach will provide insights into protein–RNA
interaction specificity and lead to the discovering of novel
splicing factors and regulatory molecules.
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