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Background: It is reported that radiomic features extracted from quantitative
susceptibility mapping (QSM) had promising clinical value for the diagnosis of
Parkinson’s disease (PD). We aimed to explore the usefulness of radiomics features
based on magnitude images to distinguish PD from non-PD controls.

Methods: We retrospectively recruited PD patients and controls who underwent brain
3.0T MR including susceptibility-weighted imaging (SWI). A total of 396 radiomics
features were extracted from the SN of 95 PD patients and 95 non-PD controls based
on SWI. Intra-/inter-observer correlation coefficients (ICCs) were applied to measure the
observer agreement for the radiomic feature extraction. Then the patients were randomly
grouped into training and validation sets in a ratio of 7:3. In the training set, the maximum
correlation minimum redundancy algorithm (mRMR) and the least absolute shrinkage
and selection operator (LASSO) were conducted to filter and choose the optimized
subset of features, and a radiomics signature was constructed. Moreover, radiomics
signatures were constructed by different machine learning models. Area under the ROC
curves (AUCs) were applied to evaluate the predictive performance of the models. Then
correlation analysis was performed to evaluate the correlation between the optimized
features and clinical factors.

Results: The intro-observer CC ranged from 0.82 to 1.0, and the inter-observer CC
ranged from 0.77 to 0.99. The LASSO logistic regression model showed good prediction
efficacy in the training set [AUC = 0.82, 95% confidence interval (CI, 0.74–0.88)] and
the validation set [AUC = 0.81, 95% CI (0.68–0.91)]. One radiomic feature showed a
moderate negative correlation with Hoehn-Yahr stage (r = −0.49, P = 0.012).

Conclusion: Radiomic predictive features based on SWI magnitude images could
reflect the Hoehn-Yahr stage of PD to some extent.

Keywords: Parkinson’s disease, magnetic resonance imaging, machine learning, substantia nigra,
neuropsychological tests
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INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease and affects 1% of the population
above 60 years (Tysnes and Storstein, 2017). The main
pathological change of PD is the degeneration and death
of dopaminergic neurons in the substantia nigra (SN).
Postmortem study has shown that loss of dopaminergic
neurons occurs most severely in the lateral ventral tier,
followed by the medial ventral tier of the SN pars compacta
(Fearnley et al., 1991). Neuroimaging has a limited role in the
diagnosis of PD especially in routine MR. In an in vivo study,
susceptibility-weighted imaging (SWI) was found to be more
sensitive for detection brain mineralization than conventional
MRI sequences. After the pioneering work by Kwon et al.,
using SWI with ultrahigh field MRI (Kwon et al., 2012), the
observations were reproduced by 3 T scanners, and all these
studies focused on the subregion in the dorsal aspect of the
SN with the loss of the “swallow tail” sign in PD patients
(Kim et al., 2019). The inconsistency of the swallow tail sign
occurrence in healthy subjects (Schmidt et al., 2017), and the
disappearance of the swallow tail sign can also be found in
some cognitive disorders (Rizzo et al., 2019), these findings
make it more difficult to diagnose Parkinson’s disease using only
MRI signal changes.

During the past decade, radiomics have developed rapidly
not only in oncology studies but also for many other diseases.
Radiomics are the processes for high-throughput extraction
of quantitative features that result in the conversion of
images into mineable data and the subsequent analysis of
these data for decision support. These are different to the
traditional practices of treating medical images as pictures
intended solely for visual interpretation, and potentially improve
diagnostic, prognostic, and predictive accuracy (Gillies et al.,
2016). Recent study showed that some radiomics features
extracted from quantitative susceptibility mapping (QSM) had
promising clinical value for the diagnosis of PD (Xiao et al.,
2019). But the preprocess of QSM is complicated and the
easily recognizable pointers for the slice selection is not very
clear. In SWI, the magnitude image can be acquired directly
and has been an easy applicable diagnostic tool for nigral
degeneration in PD (Schwarz et al., 2014). Whether the
radiomics features based on magnitude image could help to
distinguish PD from non-PD controls and the relationship
between the clinical features and radiomics features has not
reported before.

Abbreviations: PD, Parkinson’s disease; SN, Substantia nigra; mRMR, Maximum
correlation minimum redundancy algorithm; LASSO, Least absolute shrinkage
and selection operator; PACS, Picture archiving and communication systems;
MDS-UPDRS, Movement disorder society-unified Parkinson’s disease rating scale;
GLCM, Gray level co-occurrence matrix; RLM, Run length matrix; GLSZM, Gray
level size zone matrix; LGOCV, Leave group-out cross-validation; H&Y, Hoehn-
Yahr stage; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive
Assessment; HAHA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale;
PDSS, Parkinson disease sleep scale; LEDD, Equivalent levodopa daily dose; CI,
Confidence interval; SD, Standard deviation.

MATERIALS AND METHODS

Data Collection
We recruited PD patients from the Movement Disorder Center
at the neurological department of Qilu Hospital of Shandong
University (Qingdao) from January 2016 to November 2019 who
had undergone 3 T brain MR imaging including a SWI sequence.
The study was performed in accordance with the code of ethics
of the World Medical Association (Declaration of Helsinki) for
experiments involving humans and the protocol was approved by
the Research Ethic Committee of our hospital. Clinical diagnoses
of PD were made according to established criteria (Postuma
et al., 2015) by two specialists (CZ and JZ) who have specialized
in movement disorders for more than 10 years. As a control
group, we selected previously retrieved patients from the picture
archiving and communication systems (PACS) with the following
inclusion criteria: patients with diagnosis of headache or vertigo
syndrome who had an MRI with SWI but without PD. The
exclusion criteria of PD and control group were as follows: (1)
acute cerebral infarction and hemorrhage; (2) a history of stroke,
brain surgery and head trauma, or with obvious hypo-intensity
lesions in the basal ganglia and brainstem in SWI; (3) brain
tumor, cerebral inflammatory diseases (4) not scanned at the
same 3.0 T MR; (5) an obvious artifact in SWI.

Firstly, we retrieved 1,015 consecutive cases of neurological
patients who had undergone SWI scanning of which a total of
182 patients had a diagnosis of PD, and 38 of these 182 patients
were excluded according to the exclusion criteria. Among
the 144 PD patients, 54 patients had a complete evaluation
including a series of neuropsychological tests and an MDS-
UPDRS (movement disorder society-unified Parkinson’s disease
rating scale) evaluation at the same period as the SWI scanning.
Then, we filtered out 95 inpatients as the control group. In order
to keep the number in the PD group equal to the control group,
we randomly selected 41 patients among the other 90 PD patients
who did not have evaluation scales. At last, 95 PD patients and
95 non-PD controls were incorporated into this study. Then,
through the ratio of 7:3, 126 patients were randomly assigned to
the training set (PD: n = 68, controls: n = 58) and 64 patients were
assigned to the validation set (PD: n = 27, controls: n = 37).

Scanning Parameters
All the SWI sequences were scanned using the 3 Tesla MRI
system (Ingenia scanner, Philips Medical Systems, Netherlands).
The axial scans were set parallel to the intercommissural line.
Slice thickness = 2 mm; TR = 20 ms; TE = 27 ms; flip angle 15◦;
FOV = 220 mm; number of signal acquisition 1; and matrix size
284 × 230.

Region of Interest Segmentation and
Radiomic Feature Extraction
We downloaded the original DICOM magnitude images of SWI
sequences and imported them to the ITK-SNAP1 software for
region of interest (ROI) drawing of the SN pars compacta.

1http://www.itksnap.org/pmwiki/pmwiki.php
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FIGURE 1 | The axis (A,C), sagittal (B), and coronal (D) plane of the SN, the crossline located at the middle area of the red nucleus in (A) and at the bottom of the
red nucleus in (B,D). The red ROI in (C) is according to the SN hypo-intensity area in (A).

One experienced radiologist (QR) manual sketched the hypo-
intensity area of the SN on the axis image at the level of
the bottom of the red nucleus determined by the sagittal and
coronal location, as was shown in Figure 1. After more than
1 month, the same radiologist performed a ROI drawing with
the same method for intra-observer agreement assessment, and
another radiologist (XS) performed ROI segmentation with the
same method independently to assess inter-observer reliability.
Intra-/inter-observer correlation coefficients (ICCs) were applied
to measure the observer agreement for the radiomic feature
extraction. ROIs with intra- and inter- observer CCs ≥ 0.75 were
used for feature extraction.

We extracted radiomic features from the 2D slices of the SN
ROI by AK software (Artificial Intelligence Kit V3.0.0.R, GE
Healthcare); a total of 396 features were extracted including: (1)
histogram features (n = 42), describing the intensity information
and its overall distribution of the focus; (2) form factor
features (n = 15), describing the shape, compactness, and other
information of the focus by mathematical method; (3) gray level
co-occurrence matrix (GLCM) features (n = 154), describing
the complexity of the focus, the level change, and the texture
thickness; (4) run length matrix (RLM) features (n = 180), and (5)
gray level size zone matrix (GLSZM) features (n = 11), describing
the complexity of the focus, the level change, the thickness of the
texture, and other information.

Feature Selection and Model
Construction
The maximum correlation minimum redundancy algorithm
(mRMR) was performed to eliminate the redundant and

irrelevant features, and then, the least absolute shrinkage
and selection operator (LASSO) was conducted to filter and
choose the optimized subset of features in the training set.
Moreover, radiomics signatures were constructed by different
machine learning models including random forest (rf),
linear support vector machine (svmLinear), radial support
vector machine (svmRadial), and k nearest neighbors (knn)
as well as logistic regression model. And the rad_score of
each patient was calculated by selected features weighted by
their coefficients by different machine models. According
to each patient’s rad_score, the patients were classified into
the PD and control class by an optimal cutoff value. The
significant differences of the classification were evaluated
by Wilcoxon test. We used ROC analysis to evaluate the
performance of the model. Besides, to evaluate the stability
of the best machine learning model, we performed 100-
fold leave group-out cross-validation (LGOCV) analysis.
Finally, we used a decision curve to evaluate the clinical
usefulness of the model.

Statistical Analysis
All statistical analyses were performed using R statistical software
(v. 3.5.1)2. Firstly, the “mRMRe” package was used to screen the
radiomic features for relevancy and non-redundancy. Then the
LASSO logistic regression in the “Glmnet” package were applied
to select the predictive features and construct the radiomics
model. ROC curves were plotted using the “pROC” package. The
“dca.R” package was applied to plot the decision curve.

2https://ww-w.Rproject.org
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The Spearman correlation analyzed these predictive features
with clinical factors. The outcome results were interpreted
according to the degree of association as strong (| r| >0.7),
moderate (0.4<| r| <0.7), or mild (0.1<| r| <0.4) after taking
significant correlation (P < 0.05) values into consideration.

RESULTS

Demographic Characteristics
The clinical and demographic characteristics of the subjects are
summarized in Table 1. There was no significant difference of age
or sex between the two groups (P > 0.05).

Radiomics Signature Construction and
Validation
At first, a total of 396 radiomic features were extracted from
each subject. The intro-observer CC ranged from 0.82 to 1.0, and
the inter-observer CC ranged from 0.77 to 0.99, which means
the intro- and inter- observer were in good reproducibility, in
the training set, the mRMR was performed and 30 features
were retained. After that, a total of 16 PD-related features
including five histogram features, one form factor feature, one
RLM feature, and nine GLCM features were filtered to construct
the radiomics signature using a multivariate logistic regression
model (Figures 2A,B). The 16 features with non-zero coefficients
are shown in Figure 2C and the weight of each feature that
contributed to the established signature is displayed. According
to the optimal cutoff value of 0.31, the patients were classified into
PD class and control class (Figure 2D), there was a significant

TABLE 1 | The demographic characteristic of the PD and control groups.

PD Control P

Age (y, mean ± SD,
range)

63.88 ± 10.08 (31–80) 62.53 ± 14.81
(19–85)

0.461

Gender (male/female) 44/51 47/48 0.663

Age of onset (y,
mean ± SD, range)

58.42 ± 9.80 (30.5–75) NA

MDS-UPDRS 56.28 ± 26.45 (15–127) NA

MDS-UPDRS-I 11.94 ± 5.46 (1–22) NA

MDS-UPDRS-II 15.06 ± 8.13 (3–43) NA

MDS-UPDRS-III 27.46 ± 14.55 (8–62) NA

MDS-UPDRS-IV 2.04 ± 4.26 (0–19) NA

H&Y 1.85 ± 0.78 (1–4) NA

MMSE 27.33 ± 2.89 (17–30) NA

MoCA 19.73 ± 8.84 (10–29) NA

HAMA 9.70 ± 6.57 (0–28) NA

HAMD 15.28 ± 9.28 (1–42) NA

PDSS 115.56 ± 22.76 (66–149) NA

LEDD (mg) 491.51 ± 309.65 (75–1249) NA

MDS-UPDRS, I-IV, Movement disorder society unified Parkinson’s disease
rating scale, Part I–Part IV; H&Y, Hoehn-Yahr stage; MMSE, Mini-Mental State
Examination; MoCA, Montreal Cognitive Assessment; HAHA, Hamilton Anxiety
Scale; HAMD, Hamilton Depression Scale; PDSS, Parkinson disease sleep scale;
LEDD, the equivalent levodopa daily dose was calculated according to previous
study (Tomlinson et al., 2010).

difference between the rad-scores in both the training (p< 0.001)
and validation (p < 0.001) sets of the PD and control classes.

The radiomics signature showed good predictive performance
with an AUC value of 0.82 (95% confidence interval (CI): 0.74–
0.88) in the training set using the LASSO logistic regression
model (Figure 3A), and the biggest value of 0.81 (95% CI:
0.68–0.91) in the validation set using the multivariate logistic
regression model (Figure 3B). Based on the Youden index,
accuracy, sensitivity, specificity, and other parameters were
calculated, as shown in Table 2. In the training set, the accuracy,
sensitivity, and specificity were 0.76, 0.69, and 0.81, and 0.69,
0.64, and 0.72 in the validation set, and the results were similar
using different machine learning models in the validation set
except for logistic VS knn, svmLinear VS knn, and svmRadial
vs. knn (delong test, p < 0.05). rf was overfitted with an AUC
of 1 (0.97–1) in the training group and 0.73 (0.59–0.84) in
the test group, both multivariate logistic regressions, svmLinear
and svmRadial showed preferable performance (Figure 3B).
Besides, to verify the reliability of our results, we performed
100-fold LGOCV analysis in the multivariate logistic regression.
The AUC values [mean ± standard deviation (SD)] of the
100 tests were 0.778 ± 0.191 and 0.606 ± 0.157 in LGOCV,
respectively (Figure 3C).

We used decision curves to evaluate the clinical usefulness
of the model as shown in Figure 4. It shows that the radiomics
signature was superior to the clinical model regarding “treat all”
vs. “treat none” strategies when the threshold probability was
within the 0.1–0.9 range.

Correlation of the Predictive Features
With Clinical Factor
Spearman correlation analysis showed a moderate negative
correlation between H&Y and correlation angle 90, offset 7 (r = –
0.49, P = 0.012), gait freezing and correlation angle 0, offset 7
(r = –0.47, P = 0.0047), and UPDRS-I and intensity variability
(r = –0.40, P = 0.006). There were another four radiomic features
with correlation coefficient values of more than 0.3 between
H&Y. The results are shown in Figure 5.

DISCUSSION

In this study, we investigated the changes of radiomic features
of the SN based on SWI to differentiate PD from non-PD
controls and the relationships between the radiomic feature
and PD patients’ clinical characteristics. A radiomics signature
constructed by 16 predictive features in our study showed good
predictive efficacy in distinguishing PD from controls in the
training set (AUC = 0.82, 95% CI: 0.75–0.89), and validated
the validation set (AUC = 0.81, 95% CI: 0.70–0.93). Based
on the Youden index, the sensitivity and specificity of the
radiomics signature in the validation set were 64 and 72%
for PD vs. controls, which was lower than a previous study
(Cheng et al., 2019).

In a previous study, age was a significant determination of
deep gray matter iron accumulation in normally aging subjects
(Pirpamer et al., 2016). Not only affecting the normal subjects,
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FIGURE 2 | (A) Tuning parameter (λ) selection in the LASSO model using 10-fold cross-validation via minimum criteria. Binomial deviances from the LASSO
regression cross-validation model are plotted as a function of log (λ). The coefficients vary by log (λ), the dotted vertical lines were drawn at the optimal values using
the minimum criteria and the 1-SE criteria. (B) The LASSO coefficient profiles of 16 features with non-zero coefficients are shown in the plot. (C) The retained
non-zero coefficients features are plotted on the y-axis and their coefficients in the LASSO Cox analysis are plotted on the x-axis. The rad-scores of each patient
were calculated and classified into PD and control class according to the cutoff value 0.31. (D) Patients with a rad-score less than 0.31 represent the true
classification of PD patients, bigger than 0.31 means PD patients were falsely classified into the control class. The Wilcoxon test shows there is a significant
difference of the model in classifying the patients into these two classes.

FIGURE 3 | (A) ROC curve of the training set. (B) ROC curve of the validation set. (C) boxplot of the results of 100-fold LGOCV in the training and validation sets.

the age of onset of PD may affect the patients’ phenotype, the rate
of progression, and motor or non-motor complications (Palermo
et al., 2020). What is more, the young-onset PD patients showed
relatively less nigrostriatal degeneration than the late-onset ones
(Kübler et al., 2019). Our results showed that more than a half

of radiomics features with non-zero coefficients had no relation
with age and the age of onset (| r| <0.1), and less than half of
features only manifested mild correlations correspondingly. This
result showed that age may be not a critical determination factor
affecting the nigrostriatal radiomics feature.
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TABLE 2 | The statistical parameters of the training and validation set.

Accuracy Sensitivity Specificity Positive predictive value Negative predictive value

Logistic Train 0.76 (0.66–0.82) 0.69 0.81 0.81 0.70

Validation 0.69 (0.54–0.80) 0.64 0.72 0.67 0.70

Rf Train 1.00 (0.97–1.00) 1.00 1.00 1.00 1.00

Validation 0.69 (0.54–0.80) 0.64 0.73 0.72 0.66

svmLinear Train 0.75 (0.67–0.83) 0.86 0.68 0.64 0.88

Validation 0.78 (0.64–0.88) 0.84 0.74 0.64 0.90

svmRadial Train 0.81 (0.73–0.87) 0.86 0.76 0.76 0.86

Validation 0.69 (0.54–0.80) 0.67 0.70 0.64 0.72

Knn Train 0.74 (0.65–0.81) 0.74 0.74 0.79 0.68

Validation 0.59 (0.45–0.72) 0.55 0.64 0.64 0.55

rf, random forest; svm, support vector machine; knn, k nearest neighbors.

Generally, the degeneration of the SN pars compacta is
responsible for the appearance of the motor symptoms of PD
patients (Mallet et al., 2019). It was also reported that iron
deposition in the SN might be closely correlated with motor
symptoms through neuroinflammation in PD patients (Liu et al.,
2017). To our knowledge, there were few studies reporting the
relationships between the SN and non-motor symptoms of PD.
A recent report showed that a focused transcranial Doppler
device targeting the SN had one or more improved cognitive
scores in PD patients (Nicodemus et al., 2019). Although more
than half of radiomics features with non-zero coefficients had
no relation with MoCA, more than half had a mild relation
with MMSE. We thought the SN could manifest the cognitive
condition of PD patients to some extent.

Neuropsychiatric symptoms are now known to affect the
majority of patients and contribute greatly to reduced quality
of life in advanced PD patients. In a review by Butala et al.
(2019), it was reported that the caudate nucleus, the dorsal
raphe nucleus, the orbitofrontal cortex, and the limbic regions

FIGURE 4 | The decision curve of the radiomics signature. The x-axis
represents the threshold probability, the y-axis represents the net benefit, the
green curve represents the hypothesis that all patients were in the PD class,
the black curve parallel to the x-axis represents the hypothesis that all patients
were in the control class. The blue curve represents the threshold of 0.1–0.9,
where the radiomics signature gains more benefit than treating all the patients
or where no one was treated.

potentially contributed to more severe and refractory symptoms
in depressed PD patients, while the brainstem nuclei, the anterior
cingulate cortex, and the precuneus might relate to anxiety.
Our results showed that most of the SN radiomic features had
mild or even no correlation with psychiatric conditions, which
was basically consistent with the above overview, with another
possible reason that the traditional scales lack adequate specificity
for psychiatric features in PD.

MDS-UPDRS included: I, non-motor experiences of daily
living; II, questionnaire of daily living motor experiences; III,
motor examination; IV, motor complication; and H&Y which
related with disease progression. Our results showed more than
half of radiomic features had a mild and moderate correlation
with UPDRS, and separately with UPDRS-I, UPDRS-II, and
H&Y. What is interesting, one radiomics feature (correlation
angle 90, offset 7) had a moderate negative correlation with
H&Y stage (r = −0.49, P = 0.012). This feature showed a linear
dependency of gray level values to their respective voxels in the
GLCM with angle = 90 and offset = 7, which is a value between 0
(uncorrelated) and 1 (perfectly correlated). Although more than
half of the features had no correlation with gait freezing, one
feature had a moderate correlation with gait freezing. Previous
research based on MR multiple gradient echo sequences showed
that gait-freezing PD patients had a greater motor score and
nigral iron content than the non-freezing ones (Wieler et al.,
2016). Moreover, deep brain stimulation of the SN pars reticulata
has been reported to improve resistant gait freezing (Weiss
et al., 2011). We thought the SN could indicate the severity of
symptoms in Parkinson’s patients, including motor and non-
motor symptoms to some extent.

In another aspect, our results showed that more than half
of radiomic features had a mild correlation with LEDD. This
result was the same as previous reports that the echogenic
SN area by transcranial sonography correlated with dopamine
reuptake (Weise et al., 2009), and magnetic susceptibility of the
SN correlated with the LEDD (Langkammer et al., 2016). It may
be speculated that the SN radiomic features obtained from SWI
are able to detect tissue changes at a level that is primarily relevant
for treatment response.

Several limitations in our primary and exploratory study
should be noted: (a) we used a single slice of a 2D region
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FIGURE 5 | Correlation heatmap of the 16 significant features and clinical factors.

of interest for radiomic feature extraction, (b) the sample
size is relatively small because of the fact that this was a
single-center study. Larger and more randomized samples are
needed in the future.

In spite of these limitations, we constructed a fine model
using SN radiomic features for distinguishing PD from non-
PD controls and conducted analysis of the relationships between
these features and clinical characteristics. What is encouraging
is that our results indicated that radiomics based on SWI could
provide the potential value of the prediction of PD progression.
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