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Aside its function in locomotion, posture maintenance and respiration, the human skeletal 

muscle (hSKM) is reported to be a critical metabolic regulator [1]. The hSKM is 

acknowledged as the primary site of glucose metabolism and storage [1]. Additionally, it 

serves as a reservoir for amino acids [1,2]. In recently times, the hSKM has also been 

described as an endocrine organ. It is known to secrete a plethora of myokines that 

systemically affect other organs including the liver, pancreas, and immune system among 

others [3,4]. Proper function of the hSKM is therefore critical for maintaining whole body 

metabolic homeostasis. As such, perturbations in skeletal muscle resulting in metabolic 

and functional changes has deleterious consequences on the overall health of an organism. 

Unsurprisingly, muscle health decline is associated with poor disease prognosis in numerous 

conditions [2]. Thus, paying attention to muscle health may be pertinent to improving 

disease outcomes and overall wellbeing of an organism.

The specific progressive loss of upper and lower motoneurons remains a mystery in 

Amyotrophic Lateral Sclerosis (ALS) pathology and has inspired many controversies 

particularly concerning the site of disease onset. Corticomotoneuron glutamate-induced 

hyper-excitability was initially thought to induce ALS onset by causing lower motoneuron 

degeneration [5–8]. Earlier researchers were of this view because of clinical reports 

indicating that motoneurons with no corticomotoneuron synapses, such as oculomotor 

and abducens, were spared in ALS pathology [5,6]. Thus, initial research efforts were 

geared towards curbing excitotoxity. In fact, Riluzole, the first FDA-approved drug was 

designed for this purpose. However, it was soon realized that just mitigation of glutamate 

hyperexcitability does not prevent disease progression and eventual death [9].

More recent studies have now shown that ALS is non-cell autonomous and may involve 

other tissue types such as astrocytes, microglia, Schwann cells, and skeletal muscle. Among 

these tissue types, findings have reported pathological involvement of the hSKM in ALS 

onset and progression. A prior study reported changes in activity of Cyclin dependent 
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kinase-5 (Cdk5), a kinase implicated in myogenesis and AChR clustering, prior to symptom 

onset [10]. Another showed that Nogo-A, an axonal guidance protein secreted by the 

hSKM and known to repel axons when aberrantly expressed, is upregulated in both patients 

and transgenic models before early symptom onset [11]. That same report demonstrated 

a positive correlation between Nogo-A upregulation and disease severity. Furthermore, 

studies on hSKM-specific expression of mutant SOD1 genes (G93A and G37R) in mice 

models demonstrated altered muscle morphology and metabolism [12,13]. However, they 

had differing results on the effect of the diseased muscle on neuromuscular junctions (NMJ), 

thus leaving the specific role of the hSKM debatable. Nonetheless, findings from transgenic 

models were called into question. Some researchers raised concerns on whether observations 

made in transgenic models could be a consequence of the excessively high copy levels 

of the mutant human SOD1 gene in the primary transgenic models and not necessarily 

impairments representative of the disease condition in humans [14,15]. This necessitated 

the utilization of human tissue-derived models in ALS research. However, initial efforts to 

specifically investigate patient hSKM in vitro faced challenges in the ability to culture the 

primary skeletal muscle cells [16,17]. It was observed that patient tissue-derived myoblasts 

could not be reliably expanded over several passages before becoming senescent [16,17]. 

In essence, patient biopsy-derived myoblasts had a very limited culture span compared to 

myoblasts obtained from healthy patients. Notwithstanding the point, the studies indirectly 

validated the claim that the ALS muscle has inherent defects that may negatively affect 

regeneration.

The availability of patient derived induced pluripotent stem cells (iPSCs) created an 

opportunity to study human ALS hSKM directly. By ectopically expressing inducible 

MyOD, Lenzi et al. generated and studied mutant FUSed in Sarcoma (FUS) and Tar 

Binding Protein-43 (TDP-43) myotubes [18]. They demonstrated differences in response 

to acetylcholine stimulation between healthy and FUS and TDP-43 mutant myotubes [18]. 

Another study by Pichiarelli et al. demonstrated deficits in endplate maturation specifically, 

ACh receptor (AChR) clustering in FUS 1 and FUS 2 in myotubes generated from patient 

iPSCs [19]. Interestingly, endplate maturation showed no improvement even in the presence 

of healthy motoneurons [19]. While the human reports suggest there are some inherent 

deficits in the ALS hSKM that may contribute to ALS pathology, no study directly 

assessed the function of ALS hSKM. Thus, the study by Badu-Mensah et al. aimed to 

investigate the regenerative and functional deficits of the ALS skeletal muscle. Using 

a previously published small molecule-directed differentiation protocol, ALS myoblasts 

were generated from patient-derived iPSCs (ALS-iPSCs) harboring mutations in the SOD1 

gene [20]. Resultant ALS myoblasts were morphologically and quantitatively assessed via 

phase-contrast microscopy, immunocytochemistry, and flow cytometry. The authors noted 

that although ALS myoblasts were proliferative and expressed myogenic markers at levels 

comparable to healthy controls, they were flat and irregularly shaped as previously described 

by Pradat et al. [16] for tissue samples, additionally, ALS myoblasts were found to have 

reduced regeneration capability. Resultant ALS myotubes were shorter, thinner and had 

reduced AChR expression compared to healthy myotubes. These findings indicate that there 

are intrinsic deficits in the ALS hSKM that have deleterious effects on hSKM regeneration.
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Furthermore, the authors assessed the contractile function of the aneural ALS hSKM models 

generated. Skeletal muscle weakness is an established ALS hallmark [21,22]. However, 

while muscle weakness has been solely attributed to axonal retraction, existing evidence 

suggests that the ALS hSKM may inherently contribute to observed weakness [18]. Thus, 

contraction fidelity (i.e., the ability to respond to stimulus), contractile force and time-to-

peak (TTP) (time between stimulation and muscle contraction peak) of the iPSC-derived 

ALS hSKM were assessed. Compared to healthy hSKM, ALS hSKM had significantly 

reduced contraction fidelity, force and delayed TTP. Mitochondrial analysis to gain clues for 

the observed contractile deficits revealed reduced inner mitochondrial membrane potential 

and metabolic plasticity.

Collectively, the authors generated ALS hSKM models from patient-derived iPSCs that 

reliably recapitulated patient conditions and can now be used as a platform for ALS research 

and drug discovery purposes. With the models, they demonstrated that the human skeletal 

muscle is a target for mutant SOD1 toxicity. Additionally, the authors showed that the 

ALS hSKM has inherent deficits that negatively affect its regeneration. Also, evidence was 

presented that these deleterious alterations in the ALS hSKM affect its function independent 

of axonal denervation. Some hSKM deficits were shown to contribute to NMJ dysfunction. 

These findings demonstrate that the ALS hSKM is not a mere victim of motoneuron 

denervation but is an active participant in NMJ disruption during ALS progression.
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