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Abstract

We describe the methodology and results from our validation study of the fully automated

antibody structure prediction tool available in the BIOVIA (formerly Accelrys) protein model-

ing suite. Extending our previous study, we have validated the automated approach using a

larger and more diverse data set (157 unique antibody Fv domains versus 11 in the previous

study). In the current study, we explore the effect of varying several parameter settings in

order to better understand their influence on the resulting model quality. Specifically, we

investigated the dependence on different methods of framework model construction, anti-

body numbering schemes (Chothia, IMGT, Honegger and Kabat), the influence of compati-

bility of loop templates using canonical type filtering, wider exploration of model solution

space, and others. Our results show that our recently introduced Top5 framework modeling

method results in a small but significant improvement in model quality whereas the effect of

other parameters is not significant. Our analysis provides improved guidelines of best prac-

tices for using our protocol to build antibody structures. We also identify some limitations of

the current computational model which will enhance proper evaluation of model quality by

users and suggests possible future enhancements.

Introduction

Recent advances and success in using antibodies in treating diseases, including cancer, inflam-

mation and rheumatoid arthritis [1, 2], have created great interest in designing new antibody

biologics. Building three-dimensional models from protein sequences is frequently an impor-

tant step in the antibody design process, enabling researchers to study antibody properties

such as stability, antigenicity, aggregation propensity, solubility, viscosity, and more. In addi-

tion, when used in combination with protein-protein docking methods, these models can be

used to understand and predict antibody-antigen interactions.

Homology modeling is a well-established method, which has been shown to produce quite

accurate models for a protein sequence if an X-ray structure of a protein with a sufficient

degree of sequence similarity is available[3, 4]. The area of antibody design and engineering is

a case for which homology modeling is particularly well suited, because in general the overall

sequence and structural similarity between antibodies is very high. In particular, the frame-

work regions of antibodies are very well conserved, with most of the variability occurring in
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the complementarity-determining regions (CDRs). This property of antibodies has led to the

development of specialized structure prediction methods [5, 6, 7, 8, 9, 10, 11] which have been

shown to outperform generalist methods [12].

Antibody structure prediction methods generally follow a two-stage approach. In the first

stage, an accurate model of the framework regions (i.e. excluding the CDR regions) is con-

structed based on appropriate templates [5, 6, 7, 8, 9, 10, 11]. The framework templates are typ-

ically selected based on sequence similarity from a curated database of antibody structures.

Models are then built either based on a single template for the whole structure [5, 7] or sepa-

rate templates can be used for the VH and VL chains [5, 6, 10, 11]. In the latter case an addi-

tional step is required to determine the relative orientation of the chains [5, 6, 11].

In the second stage, the hypervariable loop regions of the structure are rebuilt. Five of the

six CDR regions typically adopt a limited number of conformations [13] and can in most cases

be accurately modeled by grafting the regions from an appropriate template [14]. However, a

number of different approaches are possible for CDR template selection and loop grafting [5,

6, 7, 8, 9, 10, 11].

The H3 loop is more difficult to model because this region exhibits a much larger degree of

variation in loop length and conformations adopted. For H3, ab initio loop modeling methods

have been shown to increase accuracy compared to template based models in some cases [7, 8,

9].

A blind prediction experiment assessing various antibody structure prediction methods

was performed in 2009[15]. The results of BIOVIA’s participation in this experiment generally

validated our template-based modeling approach. However, it also identified some deficiencies

in our modeling process. The lessons learned allowed us to improve our performance in the

second instalment of the Antibody Modeling Assessment (AMA-II), which was executed in

early 2013 (http://www.3dabmod.com) [5, 12].

Based on the further experience gained from this, we developed a fully automated antibody

modeling protocol which can be run through the Discovery Studio [16] graphical user inter-

face or in batch mode from the command line. This method is very fast, and can be run on

multiple processors with coarse grain parallelization. In addition, the protocol can process

combined heavy and light chain inputs, matching separate heavy and light chains by name, or

performing permutations combining a set of heavy and light chains. These features make it an

ideal solution for structure prediction of multiple sequences. On a standard desktop PC, a sin-

gle Fv or Fab structure can be predicted in less than 6 minutes; using a server with 30 proces-

sors predictions for a set of over 150 Fv sequences can be completed within an hour.

The fully automated method was initially validated using the sequences from the AMA-II

experiments; that study included a diverse set of sequences, but consisted of only eleven tar-

gets. We designed the current work to extend the validation of our methods to 157 antibody

sequences for which structures are available, and to analyze the influence of several parameters

to obtain better understanding of the effect on model quality. This analysis improves the rec-

ommendations we can offer when using our protocol to build antibody structures.

Materials and methods

Computational methodology

The automated structure prediction method consists of three stages: Framework template

selection, framework model construction, and CDR refinement. These are run in succession

without manual intervention after the specification of the initial run parameters.

Framework template selection. Templates for each target sequence are selected by align-

ing against sequences in the Discovery Studio antibody database using a Hidden Markov
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Model [17], and then identifying those with the highest sequence similarity and identity. By

default CDR regions are excluded from consideration but the user may choose to include

them. The five best templates are found for the whole Fv or Fab region, and also for each of the

light and heavy chains.

Framework model construction. We evaluated the following framework model construc-

tion methods implemented in the software:

1. Single Template: This is the most straightforward approach, in which a model is built based

on a single Fv/Fab framework template. This template, which contains both the light and

the heavy chain regions, is selected by sequence similarity from a curated antibody

database.

2. Chimeric: This method builds a model based on a chimeric template. This template is

assembled from separate light and heavy chain templates. A third interface template, con-

taining the whole Fv/Fab region, is used to determine the relative spatial orientation of the

individual light and heavy templates. The templates are selected from the database by

sequence similarity for the relevant regions. Note that the light or heavy templates can be

identical to the corresponding domain of the interface template.

3. Top5: This approach builds a model by using up to five Fv/Fab framework templates simul-

taneously. The five templates which have the best sequence similarity to the target are iden-

tified in the database. However, any template with a similarity not within 10% of the best

one are rejected so occasionally fewer than five templates may be used. The models are built

based on a multiple sequence alignment of these templates to the target sequence. This is

done using the capability of MODELER [18] to construct models based on multiple tem-

plates by simultaneously optimizing restraints from all of the templates. MODELER uses an

additive distance restraint function that peaks at the equivalent distance between atoms in

each template. The contribution for each template is weighted by local sequence similarity,

as described in detail in the MODELER paper [18].

In each case, one or more models are built using MODELER, and the top model as ranked

by the MODELER PDF Physical Energy is used for further refinement.

CDR refinement. The top-ranking framework structure can then have any or all of its

CDR loops refined. The CDR loops are located using the IMGT [19], Chothia [13, 20, 21],

Honegger[22] or Kabat [23] numbering schemes.

Loop templates are identified based on alignment of the target to sequences in the antibody

database which have identical CDR loop lengths. The templates may be filtered to use those

which have the correct Chothia canonical type if available; the canonical type definitions

[21] are shown in S1 File. The templates are ranked with a BLOSUM62 similarity score of the

CDR region plus the stem residues. There is an additional ranking which favors templates that

have high scores for the other two CDR loops in the domain. This can be beneficial as the con-

formation of the three loops may be interdependent. The final ranking is by crystallographic

resolution. MODELER is used to build one or more new CDR models while keeping the

framework region intact.

Validation dataset

Validation of the method requires predicting the structures of antibodies for which the struc-

tures have been experimentally determined, but which are not yet present in the template

database. Therefore, the computations were performed using the templates present in the Dis-

covery Studio 4.1 database, while the validation set was created by searching the Protein Data
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Bank (PDB) [24] for newer antibody structures. Sequences were retained regardless of their

similarity to those in the database because real usage often involves predicting the structures of

a highly similar series of sequences, which may have identical frameworks or loop regions.

This yielded an initial set of 249 Fv target sequences. Any structure with missing residues

within the light or heavy chain was excluded. The set was further pruned to 95% sequence

identity, choosing representatives with more complete termini and/or having structures with

better crystallographic resolution. This resulted in a validation set of 157 unique Fv sequences.

These are listed in S1 Text.

While most of the structures were of good or reasonable crystallographic resolution below

3.0Å, 16 were in the range from 3–5 Å and three had been determined by electron microscopy

with ‘resolution’ above 13 Å. The deviations between the experimental and predicted models

for the electron microscopy structures are as likely to be due to inaccuracies in the deposited

structure as in the prediction, so they were excluded from the analysis, leaving 154 structures.

The organism classifications of this final set are 75 human, 68 mouse, 5 rabbit, 4 rhesus

macaque and 2 chicken antibodies; note however that this includes engineered structures. 125

have kappa light chains and 29 have lambda light chains.

Loop length distributions, using the Chothia definitions, are shown in Fig 1.

The vast majority of the target sequences have at least one template in the Discovery Studio

database with a sequence similarity above 90% for the Fv domain and above 80% for all CDR

regions except for H3, as is shown by the histograms in Fig 2.

Validation calculations

Structures were predicted for the validation set using a variety of the available options:

• Each of the framework template modeling methods

Fig 1. Length distributions for each of the CDR loops.

https://doi.org/10.1371/journal.pone.0177923.g001
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• Building different numbers of models

• IMGT, Kabat, Honegger and Chothia loop definitions, the latter with or without canonical

filtering

Comparison of predicted and experimental models. The predicted models were com-

pared with the experimental X-ray structures using the same methods as were applied in the

AMA-II assessment [12]. This entailed superimposing each predicted-experimental pair using

the β-sheet core, and then calculating RMSDs of the peptide carbonyl atoms for the light and

heavy chain framework regions and for each of the CDR loops as defined by the Chothia

scheme. Carbonyl RMSDs are used as they are sensitive to variations such as peptide flips

which are not revealed by the commonly-used C-α RMSDs. In addition, the deviation in tilt

angle between the light and heavy chain regions was calculated, again using the same method

Fig 2. Distribution of sequence similarity of query sequence to database templates. CDR loops were defined using the Chothia numbering

scheme.

https://doi.org/10.1371/journal.pone.0177923.g002
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as for the AMA-II work [5]. The RMSD and tilt angle information, together with details of the

templates used in each prediction, are tabulated in S1 Table.

Further analysis. Custom protocols were created in BIOVIA’s Pipeline Pilot to analyze

and compare the predictions. Many of the results are presented using box plots which are a

compact means of displaying the distributions for several sets of data on the same chart. The

bottom and top of the box are at the first and third quartile respectively, while the line within it

marks the median value and a dot marks the mean value. The ‘whiskers’ are calculated by the

Tukey method as 1.5 of the lower and upper quartile ranges. In some plots, any outliers beyond

these values are plotted as small squares, and this is the definition of ‘outlier’ used in parts of

the discussion. The results obtained by different methods were also assessed using a pairwise t-

test, with p values below 0.05 being considered to be statistically significant.

Detailed analysis was performed within Discovery Studio 4.5, utilizing its sequence align-

ment, structural superimposition and visualisation capabilities.

Results and discussion

Template based refinement of the CDR loops by homology modeling requires a template with

identical loop length. The validation dataset contains 6 sequences in which no template was

available for one of the loops using any of the loop definitions, and a further 4 and 5 cases

respectively for the Kabat and Honegger definitions. Details can be found in S1 Text. The set

of 11 predictions using the Honegger definition were examined; the similarities for the best

framework model were all above 77%. The overall and framework RMSDs for this group ver-

sus the remainder of the set with framework similarity above 77% were compared. Fig 3 shows

that in addition to the unsurprising decrease in accuracy of the overall RMSD, the quality of

the framework models is also generally poorer. There are particularly large distortions if long

Fig 3. Effect of missing loop templates. Framework (FR) and overall (FV) RMSDs for predictions with all

loops modeled or not.

https://doi.org/10.1371/journal.pone.0177923.g003
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CDRH3 loops are misplaced. These cases have been excluded from the remaining analyses,

leaving 148 sequences for the Chothia and IMGT methods.

Framework models

The predictions were run for the sequence set using each of the three framework modeling

methods (Single, Chimeric and Top5) with all other conditions the same. Fig 4 is a boxplot for

the RMSD of the predicted models versus the experimental structures for the framework (FR)

and whole Fv region including CDRs (FV), and Table 1 lists the p values which show whether

the results are significantly different. These show that the Top5 method yields more accurate

framework models which result in better models overall, and there is little difference between

the Single and Chimeric approaches.

As expected, the accuracy of the predicted model depends on the availability of sufficiently

similar templates. Fig 5 shows the framework RMSD and tilt deviation for predictions using

the Top5, Chimeric and Single methods. In each case, quite accurate results are generally

obtained for all similarities above 85% but markedly worse below that, as shown in Table 2.

All but four of the validation set do have at least one template in the database with>85%

similarity.

The similarity value used for the Top5 plot is that of the highest similarity template avail-

able, so it is interesting to note that while the similarity of the other four templates used may

be lower, the models produced by this method tend to be more accurate than those using just

the single best template even for very high similarities.

The CDR loops are by default excluded from the similarity and identity calculations used to

select the templates for framework modeling. Including them makes no significant difference

to the overall accuracy of the models, as shown in Fig 6. However, as discussed below, there

are some sequences for which including the CDRs is beneficial.

Fig 4. Comparison of framework modeling methods. Framework (FR) and overall (FV) RMSDs (Å) for the

three methods.

https://doi.org/10.1371/journal.pone.0177923.g004
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CDR loop refinement

The accuracy of the CDR loop modeling will depend on the quality of the initial framework

model, as shown in Table 3, but also on the similarity of the loop templates. This trend is

shown in Fig 7.

It has been shown in previous studies that the accuracy of the loop models is related to its

length [25]. This is particularly relevant in the case of H3.

However, even for quite long loops, reasonable models may be obtained if there is a highly

similar template available. This is illustrated by Fig 8, which is a heat map of the average CDR

RMSD for each H3 loop length/similarity combination present in the dataset. The Discovery

Studio 4.1 database provided templates with a similarity above 85% for over a quarter of H3

loops with lengths greater than 13 (8 out of 29 cases); as the number of structures deposited in

the PDB grows this should increase.

The predictions were run for the sequence set using the IMGT, Honegger, Kabat, Chothia

and Chothia with canonical filtering loop definitions, all other parameters being the same. In

Fig 9, while there is some variation, there is no clear overall best choice. Comparing each of the

other definitions against Chothia, the only statistically significant differences are that the

framework RMSD and tilt angle deviations are slightly worse using the Kabat definition (p val-

ues 0.05 and 0.03).

To examine the effect of different template choices in more detail, we identified the cases

where different sets of templates had been selected by the Chothia definition with and without

Table 1. Statistical comparison of framework modeling methods.

FR p value FV p value

Top5/Single <0.001 <0.001

Top5/Chimeric <0.001 0.005

Single/Chimeric 0.39 0.35

https://doi.org/10.1371/journal.pone.0177923.t001

Fig 5. Effect of framework template similarity. (A) Boxplot of the RMSD binned by percentage similarity to the best template for the three framework

modeling methods. (B) Boxplot of the tilt angle deviation.

https://doi.org/10.1371/journal.pone.0177923.g005
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canonical filtering. Those which had reasonable framework templates (similarity >85% and

RMSD< 1.0 Å) and with loop RMSDs differing by more than 0.5Å were analysed. The pre-

dicted structures are available in S1 Dataset and S2 Dataset.

CDR L1. Using the above criteria, in the comparison of canonical filtering against

the unfiltered Chothia definition, there were two cases where canonical filtering was better

than unfiltered (4LIQ_LH_FV and 4QWW_CD_FV) and one in which it was worse (4K7P_

LH_FV).

In 4LIQ, the choice of the correct kappa kL1:2A canonical for all three templates produces

the correct conformation around the Asn30 residue with phi ~ 60˚ and psi ~ -120˚, which is in

a ‘marginal’ region of the Ramachandran plot. Without filtering, two of the selected templates

are of canonical type kL1:2B which have phi/psi in ‘allowed’ regions but are not correct in this

context. The choice was made on the basis of the scores including the stem regions, which

Table 2. Statistics for similarities above and below 85% for the Top5 method.

Number Mean Median 75th percentile

RMSD (Å) <85% Similarity 4 2.0 1.9 2.3

RMSD(Å)>85% Similarity 144 0.8 0.75 0.9

Tilt Deviation(˚) < 85% Similarity 4 9.2 9.2 11.0

Tilt Deviation(˚) >85% Similarity 144 4.6 4.2 5.8

https://doi.org/10.1371/journal.pone.0177923.t002

Fig 6. Effect of including CDR regions in similarity calculations.

https://doi.org/10.1371/journal.pone.0177923.g006
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were very slightly better; however, apart from being the wrong canonical type, the similarity

and identity for the loop itself were lower. The effect, as shown in Fig 10, a plot of backbone

and C-Beta atoms for the X-ray structure and the two predictions, is quite localised.

4QWW is rather more complicated. All the templates selected had the correct kL1:1 canoni-

cal type with or without the canonical filtering. In the case of filtering the templates selected

were 4EBQ, 1AY1 and 1YQV. 1AY1 does not adopt the canonical conformation, with the

Ser30 being flipped, however the predicted conformation was closer to the other two. The

unfiltered prediction chose 4EBQ, 1AY1 and 3C09; the latter has better similarity than 1YQV

but lower resolution. While its conformation is broadly similar to that of 4EBQ and 1YQV,

favourable interactions with the L3 loop cause it to be displaced. The net result is that the pre-

dicted model tends towards the incorrect conformation of 1AY1.

The L1 loop of 4K7P is canonical kL1:2A. The templates of this type selected using filtering

are 1MQK, 1F6L and 3V7A. However, the latter is flipped at Tyr30 relative to the other two;

Table 3. Statistics for CDR RMSD similarities above and below 85% framework similarity.

Mean RMSD(Å) Median RMSD(Å) 75 Percentile RMSD (Å)

CDR Sim <85% Sim >85% Sim <85% Sim >85% Sim <85% Sim >85%

L1 2.0 0.9 1.7 0.7 2.0 1.1

L2 0.9 0.5 0.9 0.3 1.2 0.5

L3 2.6 1.2 2.3 0.9 3.2 1.4

H1 1.1 1.0 0.9 0.7 1.7 1.1

H2 1.7 0.9 1.7 0.7 2.6 1.1

H3 8.6 3.7 9.8 3.0 11.1 4.8

https://doi.org/10.1371/journal.pone.0177923.t003

Fig 7. Effect of loop template similarity. Boxplots showing the effect of similarity of each CDR region on the RMSD for that loop.

https://doi.org/10.1371/journal.pone.0177923.g007
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while the predicted loop lies closer to 1MQK and 1F6L at residues 29 and 31, it adopts the

flipped conformation at residue 30. The templates chosen without canonical filtering are 1F6L,

2FR4, 1P7K. This set has a high ranking because they are also high scoring templates for the L2

and L3 loops. 2FR4 and 1P7K do not belong to any canonical type, but differ from type kL1:2A

only in having a leucine rather than isoleucine at residue position 2 and adopt similar confor-

mations to 1F6L.

Fig 8. Heat map of average RMSD (Å) for CDR H3 length versus % similarity of best loop template.

https://doi.org/10.1371/journal.pone.0177923.g008
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The results for 4QWW and 4K7P suggest that it might be beneficial to check that the con-

formation of templates adheres to the canonical type.

CDR L2. For the L2 loop, 4JO4_LH, which is one of the rabbit sequences, has canonical

type kL2:1. With canonical filtering, the selected templates are 2CMR, 1LK3 and 1OP3. With-

out filtering, the latter is replaced by 1DFB. All templates are of the correct canonical type and

have 100% identity. The conformations are all correct except for some deviation at residue 52

for 1DFB, which does not explain well why the predicted loop is flipped at the 50–51 peptide

Fig 9. Effect of different loop definitions on RMSDs and tilt angle deviation.

https://doi.org/10.1371/journal.pone.0177923.g009

Fig 10. 4LIQ CDR L1. X-ray structure red, prediction using canonical filtering green, prediction using

unfiltered Chothia loop definition blue.

https://doi.org/10.1371/journal.pone.0177923.g010
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bond. Examination of a run in which 50 models were generated for each loop shows that this

is an anomalous result, with only three of the models adopting the flipped conformation rela-

tive to the templates. This is shown in Fig 11A.

Conversely, in the case of 4C83_BA, accurate results are produced by the unfiltered method

but there is a flip of the 50–51 peptide bond for the model obtained with filtering. The L2 loop

of 4C83 is of type kL2:1 and the canonically-filtered templates are 2W9D, 4F33 and 4I9W.

Without filtering, the latter is replaced by 3NCY which is also of the correct canonical type. As

before, all the templates are in the correct canonical conformation and are 100% identical.

Examination of a run with canonical filtering generating 50 models again shows that most do

adopt the same conformation as the template but three are flipped. This is shown in Fig 11B.

So, it seems that the differences in these cases are not really due to the method of choosing the

templates but are an artefact of model building.

4JG1_LH is a case in which canonical filtering yielded a poor set of templates. The canoni-

cal type is kL2:1, which requires isoleucine or valine at residue 48 and glycine at 64 The tem-

plates matching this type which were selected were 4D9Q, with a similarity and identity of

67%, while the other two, 2ADF and 1FJ1, had no similarity at all for the three loop residues.

This pair adopted the conformation typical for the canonical whereas 4D9Q did not. Without

filtering, the three templates selected (3BQU, 1I8K and 3I9G) had similarities of 100% with

two being 100% identical. This set of templates had similar conformation to 4D9Q and cor-

rectly modelled the loop. However, they differed from the canonical definition by having a ser-

ine instead of glycine at residue 64. These are shown in Fig 12 together with some examples of

typical kL2:1 canonical loops for comparison.

CDR L3. There were no cases found where the RMSD for the L3 loop differed by more

than 0.5Å between the filtered and unfiltered templates.

CDR H1. 4M5Y_LH benefits from canonical filtering, by selecting templates 3CX5, 4HC1

and 2XA8 which are all of the correct canonical type, H1:2. The templates have reasonable sim-

ilarity and identity to the target, and adopt the same conformation. Without filtering, the first

two of these are selected but the highest ranked template is 2XZC, which has a very high score

because of high identity of the loop and stem regions. But it does not conform to any canonical

type and adopts a different conformation which dominates the prediction.

In the case of 4O02_LH, all the selected templates were of canonical type H1:1 and had

100% similarity, 71.4% identity and a score of 89. They were 1WT4 in both cases, plus 3CMO

Fig 11. Predicted CDR L2 loop and templates for 4JO4 and 4C83. (A) 4J04; 3 anomalous conformations are shown in red; the other 47 in blue are close

to the templates shown in yellow. (B) 4C83; 3 anomalous conformations are shown in red; the other 47 in green are close to the templates shown in yellow.

https://doi.org/10.1371/journal.pone.0177923.g011
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and 1EHL with filtering. The unfiltered selection, which includes in its ranking criteria the

scores of the other two loop regions, chose 1A6V_I and 1A6V_J. All the templates had the

correct canonical conformation except for 1A6V_J, which differed at residues 29–30; the pre-

dicted model was similar to this. 1AV6 is a structure which contains three non-crystallographi-

cally related copies demonstrating the variability in conformation which can arise due to

packing. Comparing the loops, the main-chain RMSDs are between 1–1.7Å for H1, 1.3–1.8Å
for H2 and 1.1–1.5Å for H3.

4LEO_BA has a>0.5Å worse RMSD for the H1 loop for the prediction using canonical fil-

tering versus unfiltered Chothia, but neither is very accurate (1.7Å and 1.2Å). The templates

(3EO0_B and 1MJ8_H for both, plus 1MH5_B with filtering and 2UYL_B without) all had

similarity/identity of 71%; this is relatively low compared to most of the other cases.

CDR H2. 4NKI_LH is a case where using canonical filtering yielded a much better result

for H2 versus the unfiltered Chothia definition (RMSD for the loop residues 0.4Å vs 2.4Å).

The target sequence has canonical type H2:3. With filtering, the selected templates were

3HI6_H, 3HI5_H and 3KYM_B (Fig 13A), whereas without filtering the templates chosen

were 3HI6_H and 3K2U_H, 2WUC_H, the last two of which are canonical H2:2 (Fig 13B).

The reason for this choice was that they have slightly better scores for the loop region including

the stems; however they adopt a significantly different conformation especially at Pro52A.

In 4G80_BA, the canonical type is H2:2, and the templates chosen using filtering are

1NJ9_B, 3EFD_H and 3IVK_A. The latter adopts an anomalous conformation at Pro52A but

the prediction is closer to the other two; this produces a good fit, with a loop RMSD of 0.66Å.

Without filtering, the templates are again 1NJ9_B, 3IVK_A and the H2:3 canonical 1SEQ_H.

In addition to being the wrong canonical type, 1SEQ_H also has similarity/identity of only

25% but has a better score including stem regions than 3EFD. It has a drastically different con-

formation and the resulting prediction, having only one template with a typical canonical con-

formation, is inaccurate with a loop RMSD of 1.56Å.

Fig 12. 4JG1 L2 loop. X-ray structure red, prediction with canonical filtering green, prediction with no filtering

blue. Templates with no filtering cyan; 4D9Q orange; 2ADF and 1FJ1 white. Some typical kL2:1 loops are

shown in purple for comparison

https://doi.org/10.1371/journal.pone.0177923.g012
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Filtering by organism

The protocol allows the choice of templates for both the framework and CDR loops to be

restricted to those from a specified organism. Running a prediction on just the sequences clas-

sified as human, with canonical filtering and specifying the organism as ‘human’, 47 sequences

had at least one loop with no templates found, of which 23 had no loops matched and so no

model created. Predictions on the sequences classified as mouse with filtering by organism

‘mouse’ resulted in 37 cases where at least one loop could not be modelled. Combining the

results for which all loops were predicted using organism filtering and comparing against the

prediction with no organism filtering showed little overall difference, with some loop types

being rather worse with the filtering. So in general it does not appear to be beneficial to use

this option. It should be noted that the taxonomic classification will not be correct in the case

of engineered antibodies, as one or more loops may not derive from the organism of the rest of

the structure.

Effect of number of cycles of refinement

The predictions were run to generate N framework models using the Top5 method, and then

for the best of these, N loop models using the Chothia definition, for N = 1, 10, 25 and 50. Fig

14 shows that very little difference can be seen between the overall results for the framework or

loop regions. There is a slight improvement for the framework and loop regions except for H3

on increasing from 1 model to 10, but little change thereafter. The differences are only statisti-

cally significant for the framework region and loops L2 and H2, and probably not large enough

to be meaningful in practice.

Examination of outliers

In order to understand factors affecting the accuracy of the predicted structures, outliers were

examined to see what might be giving rise to unusually large discrepancies from the X-ray

structures in a small subset of cases. As is clear from Fig 5, a major consideration is whether

high similarity templates are available in the database. To account for this, the analysis was per-

formed considering only those for which there was an overall Fv template with similarity

above 85%. In addition, cases without loop templates of the correct length are also likely to be

Fig 13. 4NKI_LH H2 loop. X-ray structure red, predicted structure blue, H2:3 templates green, H2:2 templates yellow. (A) with canonical filtering. (B)

without canonical filtering.

https://doi.org/10.1371/journal.pone.0177923.g013
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unreliable so these were excluded from this part of the analysis. The predictions generated

using the Top5 framework template method and Chothia loop numbering were used for the

analysis; these structures are available in S1 Dataset.

Framework region. Fig 15A shows that the framework RMSD for 75% of the predicted

structures is within 0.9Å of the experimental structure, with a median value of 0.7Å and all

below 1.5Å. The four outliers with RMSDs above 1.3Å are listed in Table 4: 3ZL4_LH (1.5Å),

4QHM (1.5Å), 4LVH_CB (1.4Å), 4QHM (1.5Å) and 4MWF_LH (1.4Å). Fig 15B shows that

the tilt angle deviations are generally quite low, with 75% falling below 6˚. There are five outli-

ers with angles above 9˚ shown in Table 5: 3ZL4_LH (15.6˚), 4CNI_BA (13˚), 4NIK_BB

(11.4˚), 4MWF_LH (10.0˚) and 4FZE_LH (9.9˚). Unsurprisingly, some structures are outliers

for both RMSD and tilt deviation.

Fig 14. Effect of number of cycles of refinement. Box plots showing variation in framework and loop RMSDs for different numbers of framework

models and CDR refinement cycles.

https://doi.org/10.1371/journal.pone.0177923.g014
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The best ranked template for 3ZL4_LH is 2XZC_LH. The sequences of the Fv regions have

a very high identity, differing only in the last four residues of the L chain and one near the end

of the H chain. Superimposing the X-ray structure onto this template and calculating the

framework RMSD gives a value of 1.7Å, similar to the discrepancy in the predicted model.

However, examination of the full sequence shows that the light chain of 3ZL4 has lambda vari-

able and constant domains, whereas in 2XZC there is a kappa constant domain[26]. The struc-

ture was engineered in order to investigate the effect of switching between kappa and lambda

constant domains on the structure and functionality of the antibody; this was found to cause a

12˚ change in the elbow angle. If the structure of the full Fab domain is predicted, all of the

templates used for the framework model have a lambda constant domain and the RMSD for

the framework of the Fv region of this structure falls to within 1.1Å of the X-ray structure.

Examining 4LVH_CB, the discrepancies in the framework lie mainly at the N-termini of

the L and H chains, which appear to be misaligned by one residue. The misalignment in the L

chain occurs around Pro8, which is in the trans form in the X-ray structure but adopts the cis

conformation in the predicted model. The most similar template has a trans Pro8 but the other

four are cis. In the case of the H chain, the discrepancy arises in the region before Gly8, Gly9

and Gly10. This highly flexible region allows for variation in the templates which is reflected in

the model structure. An examination of the experimental structure for violations shows that

there are 45 non-planar peptide bonds whereas there are none in the predicted structure; com-

parison of Ramachandran plots similarly shows fewer violations in the predicted structure. It

is unsurprising that a modeled structure does not replicate these violations.

In 4QHM_BA, the most obvious structural difference is in the turn between Gln39 and

Leu45 of the heavy chain. Examining the relationship to the templates, it is evident that while

the overall similarity to the target is within 10% of that of the best template, the discrepancy is

greater if the CDR regions are also considered. This is shown in Table 6. In this case the inclu-

sion of the lower-similarity templates appears to be leading to sub-optimal modeling of some

regions; the single template method yields a lower framework RMSD (1.0Å). However, the

overall RMSDs for the models produced by the two methods are very similar (1.49Å and

1.42Å). Better results (framework RMSD 1.0Å, overall RMSD 1.1Å) are obtained in this case

Fig 15. RMSD and tilt angle deviation for predictions with good templates available.

https://doi.org/10.1371/journal.pone.0177923.g015
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by not excluding the CDR regions from the similarity and identity calculation; the top 5 overall

templates are still the same but only the first two are used as the similarities of the others are

over 10% poorer.

4MWF_LH is an outlier both for RMSD and tilt angle deviation. The H3 loop is 16 residues

long and includes a disulfide bridge. It adopts a significantly different conformation from the

H3 loops used to build the framework model, and even more different from any of the tem-

plates used for CDR modeling, which only have similarities of 25–31%. It is likely that this

large discrepancy in the final loop conformation causes the inaccurate orientation of the

domains.

4CNI_BA and 4FZE_LH may be outliers for tilt angle because they adopt VL-VH orienta-

tions towards the extremes of the distributions found using the ABangle webserver [27] for at

least one of its measures. In the case of 4FZE, this is particularly marked for the HL angle,

whereas for the template 4JZO (which is used twice as it exists in two slightly different forms

in the crystal structure) this angle lies towards the other extreme. Using the single template

method for framework prediction with the template 3MA9 yields a much more accurate struc-

ture with tilt deviation 3.7˚, framework RMSD 0.6Å and overall RMSD 1.5Å.

Loop regions. The loop regions were examined in a similar way to identify factors other

than template similarity which could adversely affect accuracy. This part of the analysis was

therefore further restricted to the cases for which the loop being investigated had at least one

template with similarity above 85%. The RMSD ranges for these are shown in Table 7 and Fig

16.

CDR L1. In the L1 outliers shown in Table 8, the deviation in 4HIE_AB arises from the

templates having a significantly different conformation for residues 30 and 31. These residues

are SS in all the templates but TN in the target sequence. The Ser30 residues of the templates

have backbone angles which are not in the allowed region of a Ramachandran map. This con-

formation may be stabilised by non-bonded interactions e.g. a hydrogen bond between Ser31

and Asp50 and Tyr32 whereas the Asn31 makes completely different interactions with Arg91,

Asp92, and Phe100A.

4NIK_BB is another example of a fairly long loop (11 residues) containing 3 glycines;

although the sequences are identical, there is a high degree of variability in the loop conforma-

tion of the template and target crystal structures.

Table 4. Framework RMSD outliers.

Name RMSD(Å) Tilt(˚) Identity(%) Similarity(%) Templates

3ZL4_LH 1.5 15.6 77–97 83–98 2XZC_LH,3MLY_LH,3MLX_LH,2J6E_LH,2YK1_LH

4QHM_BA 1.5 8.1 64–89 80–96 4JAM_LH,4JAM_BA,4FQQ_CD,4FQQ_AB,3GO1_LH

4LVH_CB 1.4 4.2 69–96 82–97 4F15_CB,2GCY_AB,2OR9_LH,2ORB_LH,2ORB_MI

4MWF_LH 1.4 10.0 67–82 81–91 4DN3_LH,4DN4_LH,1RHH_AB,1RHH_CD,1G9M_LH

https://doi.org/10.1371/journal.pone.0177923.t004

Table 5. Tilt angle deviation outliers.

Name RMSD(Å) Tilt(˚) Identity(%) Similarity(%) Templates

3ZL4_LH 1.5 15.6 77–97 83–98 2XZC_LH,3MLY_LH,3MLX_LH,2J6E_LH,2YK1_LH

4CNI_BA 1.2 13.0 73–87 82–95 3SKJ_LH,2KH2_BB,2FJH_AB,2FJF_AB,3BDY_LH

4NIK_BB 1.2 11.4 69–84 83–92 3TNN_BA,3H42_LH,4F58_LH,4F57_LH,1NL0_LH

4MWF_LH 1.4 10.0 67–82 81–91 4DN3_LH,4DN4_LH,1RHH_AB,1RHH_CD,1G9M_LH

4FZE_LH 1.1 9.9 67–82 80–90 3MA9_LH,3NPS_CB,4JZO_BA,4JZO_FC,3MAC_LH

https://doi.org/10.1371/journal.pone.0177923.t005
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CDR L2. The outlying L2 loops are listed in Table 9; note that while there seem to be a

large number of them, the median and 75 percentiles are lower than for other loops. The L2

loops are typically very short using the Chothia and IMGT definitions, so the cases with outly-

ing RMSDs are likely to arise from misalignments in the stem region. This is the case for

4O02_LH in which the loop is defined as residues 50–52 and the RMSD (which is calculated

for 50–53) is 2.5Å for Chothia and similar for IMGT. The framework templates deviate from

each other at residue 53, which results in the prediction similarly deviating from the experi-

mental structure. It is worth noting that the values for Kabat which extends the loop to 7 resi-

dues and Honegger which has 12, the RMSDs are 0.8Å and 1.0Å respectively; the framework

templates align better and so the loop can also be placed more correctly.

In the case of 4K7P_XY, the discrepancy occurs because the target sequence has a proline at

residue 51 of the loop region which adopts the cis conformation in the crystal structure. How-

ever, none of the framework templates has a proline in this position and so are all in the trans

configuration; of the CDR templates, only one has proline and it too is trans. Even if the CDR

regions are included in the framework template similarity, only one has a Pro51 and it is not in

the cis conformation.

4U1G_CB is a case where the predicted and experimental loops appear reasonably similar

but both have main chain torsion angles which are not in the allowed regions of a Ramachan-

dran plot–but for different residues. This leads to different placement of the carbonyl group

and sidechains in the loop. The distortions in the PDB structure of 4U1G_CB are quite

extreme. None of the CDR templates adopt its unusual main-chain conformation at Tyr50

(although the tyrosine ring is in a similar position) so it seemed possible that this loop was

incorrectly placed in the crystal structure. Therefore, the re-refined structure from pdb_redo

(http://www.cmbi.ru.nl/pdb_redo/) was examined; this was closer to the predicted structure,

with an RMSD for the loop of 1.0Å.

CDR L3. The outliers for CDR L3 are shown in Table 10. The L3 loop of 4QHK_NM has

an RMSD of 3.6Å. The difference between the prediction and the crystal structure arises from

the presence in the latter of two non-proline cis-peptides in the loop, Asp92-Ser93 and Phe94--

Ser95. In addition, most of the main-chain angles are in unfavourable regions of a Ramachan-

dran map, shown in Fig 17A. There are no cis-peptides in any of the framework or CDR

templates used to model this structure and fewer main-chain violations in the prediction, as

shown in Fig 17B. It seems to be a case in which the prediction is plausible but the experimen-

tal structure is in an unexpected conformation.

Table 6. Similarities for the 4QHM_BA templates.

Template Similarity(no CDR) Identity(No CDR) Similarity(All) Identity(All)

4JAM_LH 96.3 89.4 93.4 87.3

4JAM_BA 95.2 88.4 90.8 84.7

4FQQ_CD 88.4 79.4 81.6 68.6

4FQQ_AB 88.4 79.4 80.9 68.1

3GO1_LH 87.8 73.0 79.9 63.8

https://doi.org/10.1371/journal.pone.0177923.t006

Table 7. RMSD statistics for the CDR loops.

L1 L2 L3 H1 H2 H3

Median RMSD(Å) 0.6 0.3 0.8 0.6 0.6 1.5

75 Percentile RMSD(Å) 1.1 0.5 1.2 1.0 0.9 2.8

Number of Outliers 8 13 2 16 10 1

https://doi.org/10.1371/journal.pone.0177923.t007
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CDR H1. Table 11 lists the outliers for the CDR H1 loop. The predicted H1 loop of

4NNP_LH deviates significantly from the observed structure. Examining against the frame-

work templates, the difference in the region around Ser31 may be due to interactions between

the H1 and H3 loops–the latter is 17 residues long in the target structure whereas that of the

templates are only 7 or 10 and adopt a quite different conformation. In all cases there are

hydrogen bonds between the two loops. There is no obvious reason for the marked difference

at Gly26; the flexibility of this residue presumably allows the remainder of the loop to adopt a

different conformation as the result of crystal packing.

CDR H2. Table 12 lists the outliers for the CDR H2 loop. 4OGY_LH is an outlier for both

the H1 and H2 regions. The framework templates show good agreement to the X-ray structure

for both the H1 and H2 stem regions. For the H1 loop, the templates all adopt a similar confor-

mation to each other but differ from the target X-ray structure; again, there is a Gly26 residue.

The H2 loops all have Gly54 and Gly55. In fact, of the outlying H1 and H2 loops, all but one

contains one or more glycine residues.

4NKI_LH is the case where using canonical filtering will yield a much better result for H2

as discussed in detail in the Comparison of Loop Definitions section.

CDR H3. The H3 loops show much more variability than the others, as is expected. Exam-

ining the one outlying case 4LLV_LH, which is shown in Table 13, it is noted that the crystal

structure contains other non-crystallographically related heavy chains. Comparing their H3

Fig 16. RMSDs for CDRs for predictions with good templates available.

https://doi.org/10.1371/journal.pone.0177923.g016

Validation of antibody structure prediction tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0177923 May 18, 2017 20 / 26

https://doi.org/10.1371/journal.pone.0177923.g016
https://doi.org/10.1371/journal.pone.0177923


loops, the RMSDs are 4.3Å and 1.6Å, showing that there is a significant degree of conforma-

tional flexibility possible for this loop, which contains four glycine residues and is sixteen

residues long. The loop templates have very high identity with the target sequence (2FX7 is

identical, the other two only differ by one residue) and all adopt a very similar conformation

to the predicted model. It seems likely that the conformation is driven by the local packing

environment in the crystal, which is markedly different between 4LLV and 2FX7, and could

well be quite different in a non-crystalline environment.

Conclusions

In general, the automated antibody structure prediction can produce models with quite accu-

rate framework regions (RMSD typically below 0.9Å and tilt angle deviation below 6˚) and

reasonable CDR loops for all but H3, as shown in Table 7. The Top5 framework method

produces small but significant improvements in model accuracy, but the predictions are not

particularly sensitive to the other parameters. Of the various combinations of parameters

examined, the best overall results were obtained using the Chothia scheme with canonical fil-

tering, with 5 CDR templates and 10 CDR models generated, and using the default values for

other settings. While the differences between the various sets of results obtained using the

Top5 framework method and varying other parameters are statistically insignificant, the use of

more templates and the generation of more models can be helpful in some cases. The predic-

tions using these parameters are available in S3 Dataset.

Table 8. Outliers for CDR L1.

RMSD(Å) Length Residues Identity(%) Similarity(%) Templates

4NIK_BB 2.9 11 GTSSDVGGYNY 100 100 4F57_L,2MCG_1,1MCS_B

4IOF_FE 2.8 7 SQSVSSA 100 100 2R8S_L,3PNW_V,3PNW_A

4NKI_LH 2.7 11 GTSSDVGGYNY 100 100 4F57_L,2MCG_1,1MCS_B

4HIE_AB 2.6 7 SQSVTNY 71 86 3GIZ_L,3EYQ_C,3F12_A

4O4Y_LH 2.4 9 SQSVYNKNY 22–78 56–89 4J1U_A,3UTZ_D,1QFW_L

4FZ8_LH 2.3 12 SQSLLHSNGYNY 67–75 92–100 3NZ8_B,3QEH_H,3QEH_B

4K94_LH 2.2 7 SQSVSSA 100 100 2R8S_L,3PNW_V,3PNW_A

4IDJ_LH 2.1 8 SQTISNNF 38–50 75–88 2V7N_A,4HWE_L,4FQL_L

https://doi.org/10.1371/journal.pone.0177923.t008

Table 9. Outliers for CDR L2.

Name RMSD(Å) Length Residues Identity(%) Similarity(%) Templates

4O02_LH 2.5 3 YTS 100 100 4G6M_L,1FNS_L,1YNT_A

4K7P_XY 2.4 3 APS 67–100 67–100 3BKY_L,2OSL_B,1AD0_A

3WHE_09 1.6 3 GNS 67–100 67–100 3H42_L,4D9L_L,2JB5_L

4U1G_CB 1.5 3 YAS 67–100 100 1NSN_L,1I9R_L,3U9P_L

4N9G_NM 1.3 3 YTS 100 100 1FGV_L,4JR9_L,3ESU_F

4IOF_FE 1.3 3 STS 67–67 100 2R8S_L,3PNW_V,3PNW_A

4KVC_LH 1.2 3 GAS 100 100 1UYW_L,1IGC_L,1IGY_A

4QHN_BA 1.2 3 ENY 0–100 100 4JAM_L,4JAM_B,3MLR_L

4IDJ_LH 1.2 3 GAS 100 100 4FQL_L,1RHH_A,1IQD_A

4PY7_BA 1.1 3 AAS 100 100 3NCJ_L,3BN9_C,2R56_L

4M1G_LH 0.8 3 RTS 67–100 67–100 3LS5_L,1MIE_L,1AE6_L

4NKO_AB 0.8 3 KVS 100 100 2GK0_A,1I9J_L,3NN8_B

4LVH_CB 0.8 3 TAS 67–100 100 4F15_C,1H0D_A,2HRP_L

https://doi.org/10.1371/journal.pone.0177923.t009
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The accuracy of the models depends heavily on the availability of appropriate templates for

the framework and loop regions. The number of such templates continues to grow steadily;

whereas the database used for this validation contained a total of 4950 non-redundant domain

sequences, the latest Discovery Studio 2016 release has 6981. Tools are also provided which

allow a user to update the database to include new entries as they are added to the PDB and/or

their own proprietary structures.

In cases where there is no template available for a loop, the prediction should be viewed

with scepticism. It may be possible to improve the prediction method to reduce the impact of

missing templates in future.

The method is quick, as it is generally not necessary to build multiple structures or perform

long refinement cycles to generate good models. However, the analysis of template choices

suggests that loop modeling may sometimes benefit from the use of more than three templates

to reduce the impact of a template with an anomalous conformation, and that it could be use-

ful to generate multiple loop models and discard those belonging to minor clusters.

While the use of canonical filtering will in many cases choose appropriate templates, this

needs to be balanced against other factors in particular the sequence similarity of the loop

itself, as shown in the case of 4JG1. Some of the canonical definitions including kL1:2A and

kL2:1 may be overly restrictive in the specificity of residues required at certain positions; these

should be reviewed

Table 10. Outliers for CDR L3.

Name RMSD(Å) Length Residues Identity(%) Similarity(%) Templates

4QHK_NM 3.6 7 WDSFSTF 57–100 71–100 4JAM_B,4JAM_L,2G75_B

4LVH_CB 2.5 6 TKEVPY 67–83 100 2ORB_L,2OR9_L,2HRP_L

https://doi.org/10.1371/journal.pone.0177923.t010

Fig 17. (A) Ramachandran map of the 4QHK_NM X-Ray structure. (B) Ramachandran map of the predicted structure for

4QHK_NM. For both plots, the cyan line contains the favourable regions and the magenta line the marginally allowed regions.

Proline residues are marked by squares, glycine by triangles and other residues by circles. Residues falling in the disallowed

regions are coloured red. The residues of the L3 loops are highlighted in yellow.

https://doi.org/10.1371/journal.pone.0177923.g017
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It has been found that in addition to the similarity of the Fv region, the structure will

depend on whether the type of constant light chain is lambda or kappa [28]. A possible

improvement to the method would be to check that all the framework templates derived from

structures with the appropriate constant domain type.

The positioning of the N-terminal section of the chains may be particularly sensitive to the

conformational differences which may be present in the templates due to the commonly-

found proline in the L-chain or adjacent glycine residues in the H chain.

Long loops can show considerable variation for different chains within the same crystal

structure. It seems likely that, especially for long loops which contain glycine residues, the con-

formation observed in a particular crystal environment may not necessarily be more ‘correct’

than another. The analysis of other loops indicates that quite subtle changes in the chemistry

can lead to different non-bonded interactions and hence loop conformations.

The presence of cis-peptides either in templates when not found in the X-ray structure or

vice-versa can lead to discrepancies. While a non-proline cis-peptide arising in a prediction as

Table 11. Outliers for CDR H1.

Name RMSD(Å) Length Residues Identity(%) Similarity(%) Templates

4NNP_LH 5.0 7 GFNFSSS 71–100 86–100 2QR0_B,3PGF_H,2R8S_H

4OGY_LH 4.5 7 GFTFSHY 86–100 100 3SKJ_H,3KR3_H,2ORB_H

4MWF_LH 4.5 7 GGTFDNY 86 86 1RZG_C,1RZG_A,2QAD_D

4KXZ_LH 4.0 7 GYTFSSN 86–100 100 3EO0_B,1JFQ_H,6FAB_H

4QHK_NM 3.2 7 GGSISSY 86–100 100 4FQQ_D,4FQQ_B,1U6A_H

3W9E_BA 3.1 7 GGTLRTY 57–86 86 1LO4_H,4DN3_H,4DN4_H

4M62_LH 2.8 7 GGTFSSY 100 100 3NPS_B,3QOT_H,4HJ0_C

4JO4_LH 2.6 8 GFSFTNNY 50–75 75–100 1ORS_B,2AJU_H,3CX5_J

4KQ3_LH 2.6 7 GGTFSSY 100 100 3QOT_H,1RZI_B,4HJ0_C

4NWT_LH 2.4 7 GGTFSNY 100 100 1RZG_A,1RZG_C,2QAD_D

4N90_ED 2.4 9 GGSISSGDY 67–100 78–100 3B2U_C,2VXQ_H,3TNM_H

4KI5_DC 2.3 7 DYTFTDY 86 86 2W60_A,3MO1_B,3MNZ_B

4FZE_LH 2.2 7 RGTLSSY 71 86 3NPS_B,3QOT_H,2G75_A

4QHM_BA 2.0 7 GGSMGGY 57–86 71–86 4JAM_H,4FQQ_D,4FQQ_B

4R2G_MN 1.8 7 GGSISNY 71–86 86 4FQQ_D,4FQQ_B,3FN0_H

4OCX_LH 1.8 8 GFSITSPY 75 88 3G5Y_B,1KCU_H,1KCR_H

https://doi.org/10.1371/journal.pone.0177923.t011

Table 12. Outliers for CDR H2.

Name RMSD(Å) Length Residues Identity(%) Similarity(%) Templates

4NKI_LH 2.8 4 PSGG 75–100 100 3K2U_H,2WUC_H,3HI6_H

4OGY_LH 2.7 4 SSGG 50–100 75–100 3GJF_H,4GLR_H,3K2U_H

4MWF_LH 2.5 4 PLFG 75 100 3GBN_H,4EVN_A,1RHH_B

4BZ2_LH 2.3 4 PYNG 75–100 75–100 1UM5_H,2PCP_B,1F3D_H

4LF3_AB 2.3 4 YDGS 75–100 75–100 4ERS_H,4G5Z_H,3EYQ_D

4I18_BA 2.2 4 PYYG 75–100 75–100 3DVN_B,3DVG_B,3EFD_H

4LLW_BA 1.8 4 PNSG 75–100 75–100 1L7I_H,3CVI_H,1KTR_H

4KXZ_LH 1.8 4 PIVD 25–100 75–100 3EO0_B,3QEG_H,3LH2_I

4LVH_CB 1.7 4 GGSE 50–100 75–100 4F15_B,2Q76_B,1P2C_B

4K94_LH 1.7 4 PYSG 100 100 2FJH_B,3IVK_A,1ZA3_B

https://doi.org/10.1371/journal.pone.0177923.t012
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a result of a cis-proline in a template could perhaps be avoided, it is not clear what other mea-

sures could be taken to avoid this.
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