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Abstract

Spatiotemporal prediction of the response of planted forests to a changing climate is

increasingly important for the sustainable management of forest ecosystems. In this study,

we present a methodology for estimating spatially varying productivity in a planted forest

and changes in productivity with a changing climate in Japan, with a focus on Japanese

cedar (Cryptomeria japonica D. Don) as a representative tree species of this region. The

process-based model Biome-BGC was parameterized using a plant trait database for Japa-

nese cedar and a Bayesian optimization scheme. To compare productivity under historical

(1996–2000) and future (2096–2100) climatic conditions, the climate scenarios of two repre-

sentative concentration pathways (i.e., RCP2.6 and RCP8.5) were used in five global cli-

mate models (GCMs) with approximately 1-km resolution. The seasonality of modeled

fluxes, namely gross primary production, ecosystem respiration, net ecosystem exchange,

and soil respiration, improved after two steps of parameterization. The estimated net pri-

mary production (NPP) of stands aged 36–40 years under the historical climatic conditions

of the five GCMs was 0.77 ± 0.10 kgC m-2 year-1 (mean ± standard deviation), in accordance

with the geographical distribution of forest NPP estimated in previous studies. Under the

RCP2.6 and RCP8.5 scenarios, the mean NPP of the five GCMs increased by 0.04 ± 0.07

and 0.14 ± 0.11 kgC m-2 year-1, respectively. The increases in annual NPP were small in the

southwestern region because of the decreases in summer NPP and the small increases in

winter NPP under the RCP2.6 and RCP8.5 scenarios, respectively. Under the RCP2.6 sce-

nario, Japanese cedar was at risk in the southwestern region, in accordance with previous

studies, and monitoring and silvicultural practices should be modified accordingly.
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Introduction

At present, spatiotemporal prediction of the response of planted forests to a changing climate

is increasing in importance. The planted forest area worldwide reached 293.9 million ha,

which is 7% of total forest area, by 2020 [1]. This increase has highlighted the importance of

predicting the spatial responses of planted forests to changing climatic conditions in terms of

material and energy flows in terrestrial ecosystems. In particular, predicting the future risk of

decreasing productivity and carbon (C) sequestration in planted forests and modeling of C

dynamics [2] are expected play important roles.

Prediction of a planted forest’s response to climate change through modeling of C dynamics

depends strongly on the climate scenarios employed. To fully use the information in climate

scenarios and quantify changes in the stock and flow of C, process-based modeling, which

quantifies processes such as photosynthesis and respiration and represents them as numerical

expressions, is an effective approach. Several process-based models, including ORCHIDEE

[3], LPJ-GUESS [4] and 3-PG [5], have been applied to planted forests, and Biome-BGC

(BBGC) has been used to model various tree species in Europe [6, 7] and East Asia [8, 9].

Appropriate parameterization is an essential step in the use of process-based models. Pro-

cess-based models have been parameterized for various plant functional types [10]. In recent

years, however, a powerful dataset of plant traits has been developed for each tree species [11,

12], enabling species-specific or plant trait-based parameterization of process-based models

[13] with a focus on the relationship between the diversity of plant traits and the ecosystem

response to climate change [14]. A plant trait database (PTDB) for Japanese cedar (Cryptome-
ria japonica D. Don), which is described later, and Japanese cypress (Chamaecyparis obtusa)

was published recently [15]. We can refer to this PTDB for representative values of eco-physio-

logical parameters to apply in process-based models, such as leaf nitrogen (N) content and spe-

cific leaf area (SLA). Thus, the PTDB enables model users to select parameters in a

physiologically supported manner. In addition, Bayesian calibration [16, 17] or optimization

(BO) is an effective approach for certain parameters with little or no data in the PTDB. These

Bayesian approaches support the selection of parameters through repeated model runs, known

as Markov chain Monte Carlo (MCMC) sampling, in which data are effectively used to esti-

mate optimal parameter values and their uncertainties [16, 17].

The modeling research described above has also focused on the coastal region of East Asia,

which is the region with the highest proportion of planted forest [1] and is characterized by a

relatively warm and humid climate. Japan has the unique characteristic that a single tree spe-

cies is planted across a wide climatic range, from subtropical to cool temperate [18]. Thus, the

parameterization and validation of process-based models for planted forests in this region

remain a challenge, and clarification of the application range of such models is needed. On the

other hand, Japan increased its stock of planted trees at an extremely high rate after World

War II [19]. Forest covers two-thirds of the land area at present, and a stand age of approxi-

mately 50–60 years is common for planted forests [20]; those stands are now mature and can

be harvested. Thus, forest resources in Japan are currently rich. However, the effects of ongo-

ing climate change on mature tree plantations remain unclear, and previous research has sug-

gested the potential risk of declining stand productivity [5, 21, 22]. Therefore, demand for

spatiotemporal prediction of the productivity of planted forests in Japan is increasing to sup-

port the implementation of adaptation strategies for climate change. Research into the produc-

tivity of Japanese cedar plantations, which cover 18% of the total forested area and 44% of the

planted forest area in Japan [20], must be undertaken with the highest priority due to its

importance to the timber industry.
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Previous studies have shown that Japanese cedar may be vulnerable to climate change, espe-

cially drier climatic conditions. Matsumoto et al. [22] estimated the vulnerability of Japanese

cedar to a warming climate at the national scale based on two indices—namely, the ratio of

annual transpiration to precipitation and soil water-holding capacity. They found that the area

of high vulnerability is distributed in the western part of Japan and that Japanese cedar growth

may decrease extensively from western to eastern Japan under future climate scenarios with

increases in mean annual temperature of 2.2–3.2 degrees C by 2081–2100 [22]. Matsumoto

et al. [22] calculated transpiration [23] based on stomatal conductance [24–26] and vapor pres-

sure deficit (VPD) using second mesh order (approximately 10-km resolution) climate scenar-

ios at a monthly timescale. At present, third mesh order (approximately 1-km resolution)

climate scenarios at a daily timescale are available [27], and prediction of the stomatal response

of Japanese cedar to climate scenarios with high spatiotemporal resolution can be undertaken.

In addition, quantitative prediction of the changes in stand productivity is essential for the

development of forestry policy.

Based on this background, we focus on estimating changes in stand productivity, evaluated

as net primary production (NPP), rather than on mortality under severe climatic conditions.

In extremely severe climate scenarios, increased mortality may be caused by hydraulic failure

and reduced production of non-structural C [28]; process-based models covering these pro-

cesses are being developed rapidly and will become popular in the near future. In this study,

our general objective is to contribute to the development of adaptation strategies for climate

change for the forestry sector in East Asia. As a specific objective, we parameterize a process-

based model for planted forests in Japan at the national scale to quantify the climatic limita-

tions on stand productivity and detect regions with possible declines in NPP, with a focus on

Japanese cedar as a representative tree species that grows in a warm and humid region of East

Asia.

Materials and methods

Biome-BGC (BBGC)

We used the process-based ecosystem model BBGC ver.4.2 [29] as the basis for modeling C

dynamics. BBGC is a two-leaf model that simulates the stocks and fluxes of C, N, water and

energy. This model requires input data on daily maximum, minimum, and mean air tempera-

tures; precipitation; daytime VPD and solar radiation; and day length. BBGC also requires

eco-physiological data (see section Parameterization) and site data (see section Site data) to

run its simulations. The NPP is calculated by gross primary production (GPP) minus autotro-

phic respiration in daily routine. GPP is calculated using Farquhar’s model [24] connected

with the stomatal conductance model [30]. In this routine, the function of the maximum rate

of carboxylation (Vcmax) is associated with the parameterization conducted in this study, as fol-

lows:

Vcmax ¼
FLNR� 7:16� ACT

CN leaves� SLA
; ð1Þ

where FLNR is the fraction of leaf N in Rubisco, ACT is the activity of Rubisco scaled based on

temperature and the concentrations of oxygen (O2) and carbon dioxide (CO2), and CN_leaves
is the C:N ratio in leaves. The photosynthesis rate is reduced with four scaling factors—namely,

air temperature, VPD (S1 Fig in S1 File), soil water potential (S1 Fig in S1 File), and solar radi-

ation. Autotrophic respiration comprises maintenance respiration, which is a function of tem-

perature and the N pool of the living tree, and growth respiration, which is a fixed proportion

of GPP. The allocation of C to tree organs, such as leaves, stems, coarse roots, and fine roots, is
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determined as a fixed ratio based on eco-physiological parameters. Other processes such as the

decomposition of woody debris and soil organic matter have been described in detail previ-

ously [29]. In this study, we use BBGC as applied in many previous studies of planted forests to

estimate changes in NPP based on a simple physiological response without acclimation to cli-

matic factors, i.e., increased temperature and elevated CO2 concentration.

First, we made minor changes to the BBGC code. The turnover rate of fine roots was sepa-

rated from that of leaves, as in previous studies [6, 7, 31]. In addition, the function driving the

soil water retention curve, which represents the relationship between soil water content and

soil matric potential, was replaced; the original pedo-transfer function based on soil texture

(i.e., sand, silt, and clay content) was switched to the function of van Genuchten’s model [32].

This change affected the estimation of GPP, in combination with site data (see section Soil
water retention curve), due to the reduction function for stomatal conductance associated with

soil water potential (S1 Fig in S1 File).

Plant trait database (PTDB)

We used a PTDB for Japanese cedar [15] for the parameterization of BBGC. The PTDB con-

tains 16,410 data entries for 177 types of plant traits in Japanese cedar, which were collected

through review of previous studies published since 1950. The PTDB was also used for the vali-

dation of modeled NPP through extraction of observed NPP values from the database (see sec-

tion Statistics and validation).

Flux data for Japanese cedar plantations

In addition to the PTDB, monitored and calculated flux values for Japanese cedar at two eddy

covariance monitoring sites, the Takayama coniferous forest (TKC) and Kahoku experimental

watershed (KHW), were used for the parameterization of BBGC.

Takayama coniferous forest (TKC). The TKC is located in a cool temperate region

(36.140 deg N, 137.371 deg E; Fig 1A). The tree plantation was established in 1961 or later. The

mean annual temperature is 10.7 deg C (from 1967 to 2006) and the mean annual precipitation

is 1722 mm (from 1967 to 2006). The plant area index ranges from 4.9 to 5.2 m2 m-2. Further

site information is available from the Asiaflux website (http://asiaflux.net/index.php?page_id=

111). The monitoring data used in this study include daily datasets of climate, GPP, ecosystem

respiration (RE), and net ecosystem change (NEE) estimated using the eddy covariance

method for 2006 (stand age of 46 years). For more detailed information about the flux calcula-

tion and gap-filling processes, see Saitoh et al. [33]. Climatic input data for BBGC over 45

years (1961–2005) were obtained through correction of data from the nearest meteorological

station.

Kahoku experimental watershed (KHW). The KHW is located in a warm temperate

region (33.137 deg N, 130.710 deg E; Fig 1A). The tree plantation was established in 1956. The

mean annual temperature is 15.1 deg C (from 2000 to 2003) and the mean annual precipitation

is 2106 mm (from 2001 to 2003). The leaf area index as measured with a LAI-2000 plant can-

opy analyzer (Li-Cor, Inc., Lincoln, NE) ranges from 3.6 to 5.2 m2 m-2. Further information is

available from the FFPRI FluxNet Database website [34]. The monitoring data used in this

study were daily datasets of climate (2000–2003) and NEE (2001–2003, stand age of 46–48

years). Because Japanese cypress grows in part of the watershed, we extracted flux mainly from

the Japanese cedar stand based on wind direction (from the right side of the site), as described

by Shimizu et al. [35]. Then, we conducted gap-filling through the mutual imputation method

(NORM software) using in-situ measurements of meteorological factors (solar radiation, net

radiation, air temperature, VPD, and wind speed; [35, 36]) and generated daily NEE for the
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Japanese cedar stand. As in the TKC, NEE in the KHW was separated into GPP and RE. We

averaged daily GPP to generate monthly data and used these data for parameterization, as the

calculated response of Japanese cedar to climate in the KHW was considered less reliable at the

daily timescale according to the gap-filling procedure described above. In addition to monthly

GPP, RE, and NEE, monthly soil respiration measurements were up-scaled using soil tempera-

ture and the site-specific regression model [37]. Climatic input data for BBGC over 21 years

(1978–1999) were obtained and corrected using data from the nearest meteorological station.

Parameterization

We varied 12 of 44 eco-physiological parameters in BBGC in two steps, while considering the

balance between simplicity and effectiveness of parameterization. STEP-0 uses the parameter

set prepared for evergreen needle-leaf forest in BBGC ver.4.2 (Table 1). In STEP-1 and -2, we

Fig 1. Maps of regional blocks, flux-monitoring sites, and climate in Japan. (A) Locations of the three blocks and two flux-monitoring

sites, and (B) mean annual temperature (MAT) and (C) mean annual precipitation (MAP) in the 1996–2000 period. Red, yellow, and green

in map (A) indicate the southwestern (SW), central (CT), and northeastern (NE) blocks, respectively. Maps (B) and (C) were constructed

using historical data from MIROC5 (Model for Interdisciplinary Research On Climate Version Five).

https://doi.org/10.1371/journal.pone.0247165.g001
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mainly updated the eco-physiological parameters of leaves, which are the basis of the two-leaf

model BBGC and control photosynthesis at the daily timescale. On the other hand, the eco-

physiological parameters of turnover, except for fine roots and the chemical composition of

Table 1. Eco-physiological parameters used in BBGC.

No Eco-physiological parameter Unit STEP-0 STEP-2 Note

1 1 = WOODY 0 = NON-WOODY (flag) 1

2 1 = EVERGREEN 0 = DECIDUOUS (flag) 1

3 1 = C3 PSN 0 = C4 PSN (flag) 1

4 1 = MODEL PHENOLOGY 0 = USER-SPECIFIED PHENOLOGY (flag) 1

5 yearday to start new growth (when phenology flag = 0) (day of year) 0

6 yearday to end litterfall (when phenology flag = 0) (day of year) 0

7 transfer growth period as fraction of growing season (prop.) 0.3

8 litterfall as fraction of growing season (prop.) 0.3

9 annual leaf turnover fraction (year-1) 0.25

10 annual fine root turnover fraction (year-1) 0.25 0.69 STEP-1, Noguchi et al. 2007

11 annual live wood turnover fraction (year-1) 0.7

12 annual whole-plant mortality fraction (year-1) 0.005

13 annual fire mortality fraction (year-1) 0.005 0 STEP-1, statistics on forest fire in Japan

14 (ALLOCATION) new fine root C : new leaf C (ratio) 1

15 (ALLOCATION) new stem C : new leaf C (ratio) 2.2

16 (ALLOCATION) new live wood C : new total wood C (ratio) 0.1

17 (ALLOCATION) new croot C : new stem C (ratio) 0.3

18 (ALLOCATION) current growth proportion (prop.) 0.5

19 C:N of leaves (gC gN-1) 42 37 STEP-1, median in PTDB (N = 1731)

20 C:N of leaf litter, after retranslocation (gC gN-1) 93 83 STEP-1, scaling by C:N of leaves

21 C:N of fine roots (gC gN-1) 42 70 STEP-1, median in PTDB (N = 39)

22 C:N of live wood (gC gN-1) 50 55 STEP-1, scaling by C:N of dead wood

23 C:N of dead wood (gC gN-1) 729 801 STEP-1, median in PTDB (N = 69)

24 leaf litter labile proportion (DIM) 0.32

25 leaf litter cellulose proportion (DIM) 0.44

26 leaf litter lignin proportion (DIM) 0.24

27 fine root labile proportion (DIM) 0.3

28 fine root cellulose proportion (DIM) 0.45

29 fine root lignin proportion (DIM) 0.25

30 dead wood cellulose proportion (DIM) 0.76

31 dead wood lignin proportion (DIM) 0.24

32 canopy water interception coefficient (LAI-1 day-1) 0.041

33 canopy light extinction coefficient (DIM) 0.5

34 all-sided to projected leaf area ratio (DIM) 2.6

35 canopy average specific leaf area (projected area basis) (m2 kgC-1) 12 10.6 STEP-1, median in PTDB (N = 240)

36 ratio of shaded SLA:sunlit SLA (DIM) 2

37 fraction of leaf N in Rubisco (DIM) 0.04 0.0152 STEP-2, Bayesian optimization

38 maximum stomatal conductance (projected area basis) (m s-1) 0.003 0.0031 STEP-1, median in PTDB (N = 57)

39 cuticular conductance (projected area basis) (m s-1) 0.00001

40 boundary layer conductance (projected area basis) (m s-1) 0.08

41 leaf water potential: start of conductance reduction (MPa) -0.6

42 leaf water potential: complete conductance reduction (MPa) -2.3

43 vapor pressure deficit: start of conductance reduction (Pa) 930 135 STEP-2, Bayesian optimization

44 vapor pressure deficit: complete conductance reduction (Pa) 4100 1825 STEP-2, Bayesian optimization

https://doi.org/10.1371/journal.pone.0247165.t001
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tree organs, which control processes at the monthly or annual timescales, remained unchanged

from STEP-0 in this study, mainly due to sparse data in the PTDB. In addition, parameters

related to C allocation, the mechanism of which remains unclear for Japanese cedar, were also

unchanged.

STEP-1. Nine eco-physiological parameters were varied in STEP-1. The annual fire mor-

tality was changed from 0.005 to 0. We assumed that the risk of forest fire in Japan is quite low

relative to other countries based on the long-term trend of forest fires [38]. In particular, no

fire history has been recorded at the TKC or KHW. Then, the turnover of fine roots was

changed from 0.25 to 0.69 year-1 (value of Konôpka cited in Noguchi et al. [39]), considering

its effect on biomass accumulation [31].

We also changed five parameters related to the C:N ratio, SLA, and Max_sc (Table 1).

These parameters are sensitive to NPP [40] and have relatively rich data in the PTDB. We used

median values in the PTDB, as some parameters were ratios or exhibited log-normal distribu-

tions in the PTDB (S2 Fig in S1 File). The C:N ratios of leaf litter after retranslocation and of

live wood were scaled to those of leaves and dead wood.

STEP-2. Three additional eco-physiological parameters were optimized in STEP-2. We

applied BO using the algorithms employed for Bayesian calibration [16] with slight modifica-

tion. In BO, the likelihood function p (E) was defined for each site, the TKC and KHW, as fol-

lows:

pðE ¼ D � MðyÞÞ ¼
Qn

i¼1
φðDi � MiðyÞ; 0; ð0:2DaveÞ

2
Þ; ð2Þ

where E is the difference between the observed data, D, and output of BBGC, M, based on the

vector of three eco-physiological parameters, θ. The term i is an index of the observed data and

the output of BBGC, n is the number of observational data, φ denotes a Gaussian probability

density function with a given mean and variance, and Dave is the average D for the TKC or

KHW. Then, we combined the p(E) of the TKC and KHW and estimated a vector for the

parameters that provide maximum likelihood. As described below, we constrained the model

using GPP at the TKC and KHW simultaneously and weighted it using two likelihood func-

tions to avoid being affected more strongly by the TKC, for which we have more data than for

the KHW. The Bayesian calibration procedure was described in detail by Van Oijen et al. [16].

GPP in the TKC (daily data in 2006, 365 count) and KHW (monthly data in 2001–2003, 36

count) were used as constraints on BO. In this study, we focused on the improvement of mod-

eled GPP as a C input to the ecosystem, and only validated the modeled RE (also, soil respira-

tion in the KHW) and NEE values through comparisons with calculated RE and observed

NEE, respectively. As RE is related to the decomposition process of organic matter over several

decades and is affected by many eco-physiological parameters for which little information is

available, we found that optimization using RE data complicated the procedure of parameteri-

zation, even when the effective approach of a hierarchal parameterization scheme was used

[41].

We optimized the fraction of leaf N in Rubisco (FLNR) and VPD values for starting and

ending the reduction of stomatal conductance (VPD_rsc_start and VPD_rsc_end, respec-

tively). Although the PTDB contains little or no data for these parameters, we consider these

parameters essential for the improvement of modeled GPP. The prior distribution in BO was

uniform, and the range of FLNR was 25–200% of 0.04 (0.01–0.08), the value in STEP-0; those

of VPD_rsc_start and VPD_rsc_end were 10–100% of 930 Pa (93–930 Pa) and 25–100% of

4100 Pa (1025–4100 Pa), respectively. We set these ranges of VPD_rsc_start and VPD_rsc_end

for BO based on a previous report stating that canopy conductance of Japanese cedar can

decrease when VPD is much lower than 1.0 kPa [42]. In MCMC sampling for BO, three chains
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of 100,000 iterations were calculated, starting from the 25th, 50th, and 75th percentiles of the

prior distribution.

Site data

We prepared site data as an ini file in BBGC. The mesh for calculation contains forest areas

larger than 0.4 km2 (approximately 40% of the total area in the mesh) based on information in

the National Forest Resources Database ([43], compiled at the third mesh order). The mesh

for Hokkaido, the northernmost prefecture of Japan, was excluded in this study because plan-

tations of Japanese cedar are very scarce in that region, except for a small proportion of the

southern area, and because few observational data of NPP and biomass are available for com-

parison with model outputs. We set shortwave albedo to a uniform value of 0.15 in the ini file.

Soil thickness. We prepared a map of the thicknesses of the A and B soil horizons and

used their sum as soil thickness in the ini file in BBGC (S3 Fig in S1 File). The data source is

soil profiles at 2056 points in Japan, obtained from National Forest Soil Carbon Inventory

Project [44] and a legacy dataset compiled by Morisada et al. [45]. We first extracted the maxi-

mum soil thickness within the area represented as a coarse mesh of 15-km resolution with

regional-scale values of soil thickness (N = 671). The map of soil thickness at the third mesh

order with 1-km resolution was estimated through ordinary kriging from regional-scale data

using the Geostatistical Analyst Extension of ArcGIS Pro 10.5 software (ESRI Inc., USA).

Thus, the interpolated map shows the maximum potential soil thickness at the regional scale

(ca. 15 km) in Japanese forests.

Soil water retention curve. We prepared the parameters related to the soil water retention

curve of van Genuchten ([32]; called vG parameters in this study) for each soil type based on

the current forest soil classification system (FSD system) for Japan [46]. The equation of van

Genuchten is as follows:

y cð Þ ¼ ys � yrð Þ
1

1þ ðacÞ
n

� �m

þ yr; ð3Þ

where θ(ψ) is the volumetric soil water content (m3 m-3) as a function of ψ, the soil matric

potential (MPa). θs and θr are the saturated and residual soil water contents in volume, respec-

tively, and α, and n, and m (= 1 − 1/n) are curve-fitting parameters. We first converted the vec-

tor soil map at a scale of 1:200,000 [47] into a raster soil map of the third mesh order

(approximately 1-km resolution) based on the soil type with maximum coverage. The soil type

in the map of the National Land Agency, which differs from that of the FSD system, was con-

verted to align with the FSD system using the criteria proposed by Morisada et al. [45] to allo-

cate the representative vG parameters of the A and B horizons to the map. Representative vG

parameters of the A and B horizons of eight soil types were obtained through fitting of the vG

function to soil water retention curve datasets from previous studies, which were allocated to

13 soil types (S4 Table in S1 File). Then, the vG parameters of the A and B horizons were

weight-averaged based on soil thickness. To express the soil water content of the entire soil

profile at a certain value of soil matric potential, arithmetic and geometric averaging [48] were

used for θs and θr, and for α and n, respectively. The map of effective soil water capacity in the

soil profile, calculated based on soil thickness, θs and θr, is shown in S3 Fig in S1 File.

Deposition and biological fixation of nitrogen. In this study, differences in the input of

N among grids were expressed based on differences in the deposition of N (S3 Fig in S1 File).

We obtained the sum of dry and wet deposition of N in a 15-km grid in 2012 from data simu-

lated using an atmospheric chemical transport model [49], which was used in Nishina et al.

PLOS ONE Productivity of Japanese cedar plantation in changing climate

PLOS ONE | https://doi.org/10.1371/journal.pone.0247165 February 17, 2021 8 / 26

https://doi.org/10.1371/journal.pone.0247165


[50]. Deposition data at the third mesh order with 1-km resolution were interpolated through

ordinary kriging.

On the other hand, no spatial information on the biotic fixation of N was available,

although it occurs in the litter layer of Japanese cedar plantations [51, 52]. Therefore, we

assigned a relatively low constant rate of biotic N fixation across all regions (0.40 gN m-2 year-

1) considering the ranges associated with lichen (0–0.20 gN m-2 year-1), bryophytes (0.07–1.00

gN m-2 year-1), and litter (0.10–0.20 gN m-2 year-1) in temperate forests [53].

Spin-up and normal run procedures

In spin-up runs for the TKC and KHW sites, we used the eco-physiological parameters of

STEP-0, set the atmospheric CO2 concentration to the value for the first year of climate data,

and fixed the N deposition rate to 0.1 gN m-2 year-1. To determine the initial conditions of the

normal runs for the TKC and KHW, we cut 100% of the biomass C in existing forest generated

during the spin-up run, removed above-ground biomass C, and increased leaf C by 0.1 kgC m-

2. In the normal runs for the TKC and KHW sites, we set the N deposition rate to 1.1 gN m-2

year-1. For the TKC, climate data for 39 years before 2000 (1961–1999) were used in the spin-

up run and those for 46 years (1961–2006) were used in the normal run. For the KHW, climate

data for 21 years before 2000 (1978–1999) were used in the spin-up run, those for 26 years

(1978–2003) were used in the normal run, and climate data for the 1978–1999 period were

applied to the young stand (1956–1977).

For the initial conditions of the normal run at the national scale, we set the cutting (and

removal) ratio of biomass C in the existing forest to 90%. The cutting ratio has been controlled

in previous studies to explore the effect of forest disturbance on simulated flux [9, 29]. This

ratio was determined practically in this study based on preliminary analysis, and a cutting

ratio lower than 100% improved the stability of the calculation through increased leaf biomass

at the initial growth stage, especially in severely cold regions, although the percentage of such

regions in the total mesh area is quite small. We confirmed that changing the cutting ratio of

biomass C in existing forest scarcely affected the modeled NPP and increased rate of vegetation

biomass, although the baseline level of vegetation biomass increased (see section of Result,

Recorded and modeled NPP and biomass C relative to stand age). Other forest management

options, such as thinning, were not considered in the normal run because they were too spa-

tially diverse to capture with 1-km resolution and were outside of the objectives of this study.

Climate scenarios

We used climate scenarios that were statistically downscaled, i.e., Inverse Distance Weighted

method, by NARO [27] (Nishimori et al., 2019; NAROv2.7r). The original dataset is the prod-

uct of phase 5 of the Coupled Model Intercomparison Project (CMIP5). These scenarios were

generated using five global climate models (GCMs; Table 2) under two representative concen-

tration pathways, RCP2.6 and RCP8.5, following the conventions of the Intergovernmental

Panel on Climate Change [54]. RCP2.6 is a representative scenario based on low emissions of

greenhouse gasses (GHGs) that aims to keep global warming below 2 degrees C above pre-

industrial temperatures [54]. Meanwhile, RCP8.5 is based on very high GHG emissions, higher

than those in scenarios without additional efforts to constrain GHG emissions (baseline sce-

narios). The downscaled dataset contains climate scenarios based on historical trends (1981–

2005) and future predictions (2006–2100) [27]. The atmospheric CO2 concentration for each

RCP is shared among GCMs and was obtained from the RCP Database [55, 56]. The atmo-

spheric CO2 concentration in 2000 was 368.9 ppm and those in 2100 under RCP2.6 and

RCP8.5 are 420.9 and 935.9 ppm, respectively.
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In BBGC, some climate input data are based on daytime-average values rather than daily-

average values. Therefore, we used daily maximum and minimum air temperatures (Tmax

and Tmin, deg C) and precipitation (mm day-1) in the climate scenarios in this study, and

employed MT-CLIM module ver.4.3 [57, 58] to generate the remaining input data for BBGC,

i.e., daily mean air temperature (deg C), daytime VPD (Pa), solar radiation (W m-2), and day

length (sec). In our exploratory analysis, the spatiotemporal trend of daytime VPD from the

MT-CLIM module was similar to that of daily VPD estimated from daily relative humidity in

the climate scenarios of MIROC5 (Model for Interdisciplinary Research On Climate Version

Five), with both VPDs increasing in summer, especially in the western part of Japan.

Here, we mainly summarize the characteristics of the temperature increases according to

five GCMs for the target area (see section Target stand age and area for prediction). In this

study, we considered the outputs for 1996–2000 as the historical trend (H_2000) and those for

2096–2100 as future predictions (F_2100). The mean annual temperature (MAT) for forested

areas from the five GCMs for H_2000 was 11.3 deg C, with high values in the southwestern

region (Table 3, Fig 1B) and little variation among the GCMs. The increases in MAT (ΔMAT)

from H_2000 to F_2100 were 1.8 and 5.3 deg C for RCP2.6 and RCP8.5, respectively, averaged

over the five GCMs (Table 3). The ΔMAT from MIROC5, which is well-documented in this

study, was the second highest for RCP2.6 and fourth highest for RCP8.5 (Fig 2). The mean

annual precipitation (MAP) from the five GCMs for H_2000 was 2127 mm year-1 (Table 3, Fig

1C) and increased along with MAT in future scenarios. The mean ΔMAP in MIROC5 was rel-

atively low for RCP2.6 and high for RCP8.5 relative to those of the other GCMs (Table 3). The

increasing trends for daytime VPD from the five GCMs, calculated using MT-CLIM, were

Table 2. The five GCMs used for climate prediction in this study.

GCM Institute Country

HadGEM2-ES Met Office Hadley Centre UK

MRI-CGCM3 Meteorological Research Institute Japan

CSIRO-Mk3-6-

0

Commonwealth Scientific and Industrial Research Organisation Australia

MIROC5 The university of Tokyo, National Institute for Environmental Studies and Japan

Agency for Marine-Earth Science and Technology

Japan

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric

Administration

United

States

https://doi.org/10.1371/journal.pone.0247165.t002

Table 3. MAT and MAP and their changes in future scenarios.

MAT in H_2000 ΔMAT in F_2100 MAP in H_2000 ΔMAP in F_2100

GCM Block RCP2.6 RCP8.5 RCP2.6 RCP8.5

(deg C) (mm year-1)

5GCMs SW 13.8 ± 2.4 1.8 ± 0.7 4.9 ± 1.0 2280 ± 625 337 ± 312 438 ± 292

CT 10.9 ± 3.2 1.8 ± 0.6 5.3 ± 1.0 2315 ± 639 259 ± 255 310 ± 194

NE 9.1 ± 2.3 1.9 ± 0.7 5.6 ± 1.2 1764 ± 434 271 ± 162 354 ± 230

Total 11.3 ± 3.3 1.8 ± 0.7 5.3 ± 1.1 2127 ± 628 288 ± 254 367 ± 248

MIROC5 SW 13.6 ± 2.4 2.5 ± 0.2 4.3 ± 0.2 2241 ± 585 9 ± 87 713 ± 271

CT 10.8 ± 3.2 2.4 ± 0.1 4.7 ± 0.2 2343 ± 619 50 ± 106 459 ± 159

NE 9.1 ± 2.2 2.1 ± 0.2 4.9 ± 0.1 1831 ± 424 229 ± 127 502 ± 157

Total 11.2 ± 3.2 2.3 ± 0.3 4.7 ± 0.3 2145 ± 594 94 ± 143 557 ± 231

Mean ± s.d.; SW, CT, and NE indicate the southwestern, central, and northeastern blocks, respectively.

https://doi.org/10.1371/journal.pone.0247165.t003
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similar to those for MAT, and are shown in S5 Table in S1 File along with the trends for solar

radiation.

Target stand age and area for prediction

We estimated the average NPP for 36–40-year-old stands to reduce yearly fluctuations caused

by climate data, as the age of 40 years is commonly used as a site index in Japan. In the calcula-

tion for H_2000 (1996–2000 for 36–40-year-old stands), climate data for 1981–2000 were used

twice to simulate a 40-year-old stand, whereas in the calculation for F_2100 (2096–2100 for

36–40-year-old stands), climate data for 2061–2100 were used once, except in HadGEM2-ES,

which contains climate data for 2060–2099. The ΔNPP of each point of mesh was calculated as

follows:

DNPP ¼ NPPF 2100 � NPPH 2000; ð4Þ

where NPPF_2100 and NPPH_2000 are mean NPP for F_2100 and H_2000, respectively.In total,

196,928 points of third mesh order were used for prediction (BBGC_full), covering all of Japan

except Hokkaido. We divided this area into three blocks (Fig 1A)—namely, the southwestern

(SW; 33% of total forest area, covering the Kyushu, Okinawa, Chugoku, and Shikoku Japanese

administrative districts), central (CT; 35%, Kinki, Tokai, and Hokuriku districts), and north-

eastern (NE, 32%, Kanto and Tohoku districts) blocks. In addition, we used a dataset of 1967

points (BBGC_sample) that were systematically sampled from BBGC_full to analyze the differ-

ences between relatively warm (May to October) and cool (November to April) seasons, those

among the five GCMs, and the effects of climate factors on GPP and NPP. We confirmed that

the probabilistic distribution of NPP in BBGC_sample was approximately the same as that in

BBGC_full (S6 Fig in S1 File), indicating that the use of BBGC_sample had little impact on the

results and conclusions of this study.

Fig 2. Trends in ΔMAT according to five GCMs. Comparison between H_2000 and F_2100.

https://doi.org/10.1371/journal.pone.0247165.g002

PLOS ONE Productivity of Japanese cedar plantation in changing climate

PLOS ONE | https://doi.org/10.1371/journal.pone.0247165 February 17, 2021 11 / 26

https://doi.org/10.1371/journal.pone.0247165.g002
https://doi.org/10.1371/journal.pone.0247165


Statistics and validation

The normalized root mean square error (NRMSE) for the model output based on eco-physio-

logical parameters in STEP-0, -1, and -2 was calculated as follows:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn
i¼1
ðDi � MiÞ

2
q

ðDmax � DminÞ
; ð5Þ

where, as in Eq (2), D and M are the observed value and modeled output from BBGC, respec-

tively. The term i is an index of the observed data and the output of BBGC, and n is the number

of observations. Dmax and Dmin are the maximum and minimum observed values, respectively,

across the TKC or KHW datasets.

The NPP of planted forests, not only for Japanese cedar but in general, can be affected by

growth stage [59]. Therefore, we validated the stand age used for estimating NPP, i.e., 36–40

years, by extending the stand age from 40 to 60 years in H_2000 using climate data from

MIROC5 for 1981–2000 three times. We compared the trend in mean NPP with age between

the model output and observations. We extracted observed NPP values from the PTDB [15] by

filtering for a stand age of 31–50 years. We also analyzed the increases in biomass C with age

and extracted wood volume data from the National Forest Inventory (NFI) for 2009–2013 by

filtering for a stand age of 30–60 years without thinning history. Then, we converted the vol-

ume to biomass C using a biomass expansion factor (BEF; [60]). In addition, as one step in the

validation of the estimated range of NPP, we compared the NPP from H_2000 in STEP-2

between cedar-dominated and non-cedar-dominated mesh points based on data in the

National Forest Resources Database [43] (see S7 Fig in S1 File), although the target of this

study is the total forested area in Japan. This comparison was undertaken based on the idea

that cedar-dominated areas are currently under environmental conditions that favor the

growth of Japanese cedar plantations relative to those of non-cedar-dominated areas.

In this study, we did not conduct uncertainty analysis, which would require the probabilis-

tic density of all parameters but instead analyzed the sensitivity of modeled NPP to selected

eco-physiological and site parameters. The result of sensitivity analysis is described in support-

ing information files (S8 Text in S1 File).

Results

Simulated flux before and after parameterization

The modeled fluxes, including GPP and others, improved after two steps of parameterization.

The parameters before and after optimization are summarized in Table 1. Three parameters in

BO—namely, FLNR, VPD_rsc_start, and VPD_rsc_end—converged (S9 Fig in S1 File). The

NRMSE values of modeled GPP were 0.25 and 0.53 in STEP-0 for the TKC and KHW, respec-

tively, which increased slightly in STEP-1 relative to STEP-0 and then decreased in STEP-2 to

lower than half the STEP-0 value (Table 4, Figs 3A and 4A). The other model outputs, namely

RE, soil respiration, and NEE, which is the only flux with observational data, also improved in

STEP-2 (Table 4, Fig 3B and 3C, and Fig 4B–4D).

The modeled GPP in the TKC exhibited a sharp decrease followed by an increase in the

daily time step during summer in STEP-0, and these variations were removed in STEP-2 (Fig

3A). The modeled RE in the TKC was underestimated in summer, even in STEP-2 (Fig 3B). As

for the TKC, the modeled GPP and RE for the KHW exhibited sharp changes with variations

in monthly climatic conditions in STEP-0 (Fig 4A and 4B). The effects of parameterization in

STEP-1 on GPP and RE in the KHW were small, whereas modeled soil respiration improved.
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The modeled GPP and RE values became closer to estimates in the KHW in STEP-2, although

they were slightly overestimated in summer.

NPP and ΔNPP

Estimated historical trends in NPP. The annual NPP from the five GCMs for H_2000

was 0.77 ± 0.10 kgC m-2 year-1 (mean ± standard deviation [s.d.]; BBGC_sample) with the

highest values in the SW block (Table 5). The annual NPP from MIROC5 for H_2000 was

0.76 ± 0.10 kgC m-2 year-1, and the trends in regional blocks were quite similar to those gener-

ated in the five GCMs (Table 5, Fig 5A). The range of annual NPP from MIROC5 at STEP-2

Fig 3. Comparison of simulated flux at the TKC before and after parameterization. (A) Gross primary production (GPP), (B) ecosystem

respiration (RE), and (C) net ecosystem exchange (NEE). Gray solid, gray dashed, and red lines are modeled values based on eco-physiological

parameters from STEP-0 (parameter set for evergreen needle-leaf forest), and those modified in STEP-1 and STEP-2, respectively.

https://doi.org/10.1371/journal.pone.0247165.g003

Table 4. Normalized RMSE for modeled flux for the TKC and KHW sites.

TKC KHW

GPP RE NEE GPP RE NEE Soil resp.

STEP-0 0.25 0.38 0.43 0.53 0.50 0.57 0.87

STEP-1 0.27 0.40 0.41 0.57 0.46 0.52 0.42

STEP-2 0.11 0.34 0.28 0.23 0.22 0.23 0.25

N = 365 for the TKC, N = 36 for the KHW.

https://doi.org/10.1371/journal.pone.0247165.t004
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was significantly higher in currently cedar-dominated mesh points (0.80 ± 0.06 kgC m-2 year-

1, 26% of total area) than in non-cedar-dominated (0.75 ± 0.11 kgC m-2 year-1, 74% of total

area) forests (p<0.001; Fig 6).

Fig 4. Comparison of simulated flux at the KHW before and after parameterization. (A) Gross primary production (GPP), (B) ecosystem

respiration (RE), (C) net ecosystem exchange (NEE), and (D) soil respiration. Gray solid, gray dashed, and red lines are modeled values based on eco-

physiological parameters from STEP-0 (parameter set for evergreen needle-leaf forest) and those modified in STEP-1 and STEP-2, respectively.

https://doi.org/10.1371/journal.pone.0247165.g004

Table 5. NPP, ΔNPP, and proportion of NPP-decline area.

NPP in H_2000 ΔNPP in F_2100 NPP-decline area

GCM Block RCP2.6 RCP8.5 RCP2.6 RCP8.5

(kgC m-2 year-1) (%)

5GCMs SW 0.81 ± 0.06 0.01 ± 0.05 0.10 ± 0.08 37 16

CT 0.77 ± 0.12 0.05 ± 0.08 0.15 ± 0.13 23 8

NE 0.72 ± 0.09 0.07 ± 0.06 0.17 ± 0.09 10 2

Total 0.77 ± 0.10 0.04 ± 0.07 0.14 ± 0.11 24 9

MIROC5 SW 0.81 ± 0.06 0.01 ± 0.04 0.13 ± 0.04 49 0

CT 0.76 ± 0.12 0.06 ± 0.09 0.17 ± 0.12 25 0

NE 0.71 ± 0.09 0.10 ± 0.06 0.19 ± 0.09 4 0

Total 0.76 ± 0.10 0.06 ± 0.08 0.16 ± 0.09 27 0

Mean ± s.d.; SW, CT, and NE indicate the southwestern, central, and northeastern blocks, respectively.

https://doi.org/10.1371/journal.pone.0247165.t005
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The seasonal NPP estimates from the five GCMs for H_2000, in daily terms, were 3.21±
0.47 and 0.98 ± 0.50 gC m-2 day-1 during the warm and cool seasons, respectively, and the

mean values in three regional blocks, SW, CT, and NE, were 3.05, 3.24, and 3.35 gC m-2 day-1

(mean from five GCMs) for the warm season and 1.40, 0.93, and 0.59 gC m-2 day-1 for the cool

Fig 5. Estimated NPP and ΔNPP of Japanese cedar. (A) NPP for H_2000 from MIROC5, (B) ΔNPP from H_2000 to F_2100 from MIROC5 under

RCP2.6, (C) ΔNPP from H_2000 to F_2100 from GFDL-CM3 under RCP2.6, and (D) the NPP-decline area extracted from maps (B) and (C). The blue

area of map (D) is based on ΔNPP< −0.02 kgC m-2 year-1 as indicated in map (B), the yellow area is based on ΔNPP< −0.075 kgC m-2 year-1 as

indicated in map (C), and the red area indicates the overlap area of these two conditions.

https://doi.org/10.1371/journal.pone.0247165.g005
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season, respectively. These seasonal trends in NPP from MIROC5 were similar to those

obtained from the five GCMs.

Estimated ΔNPP under the RCP2.6 and RCP8.5 scenarios. The changes in NPP (ΔNPP)

according to the five GCMs were 0.04 ± 0.07 and 0.14 ± 0.11 kgC m-2 year-1 (mean ± s.d.;

BBGC_sample) under the RCP2.6 and RCP8.5 scenarios, respectively, and the ΔNPPs were

Fig 6. Distribution of modeled NPP in cedar-dominated and non-cedar-dominated areas.

https://doi.org/10.1371/journal.pone.0247165.g006

Fig 7. Trends in ΔNPP according to five GCMs. Comparison between H_2000 and F_2100. The outliers of ΔNPP are

not shown in the figure, as the resulting wide ranges obscure the differences among GCMs.

https://doi.org/10.1371/journal.pone.0247165.g007
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lower in the SW region than in the CT and NE regions (Table 5). Decreases in NPP (negative

ΔNPP) in RCP2.6 were predicted more frequently with MIROC5 (27% of total area) and

GFDL-CM3 (67%, Fig 7), and the NPP-decline area was distributed primarily in the western

part of Japan (Fig 5B–5D). Negative ΔNPP under RCP8.5 was predicted solely with

GFDL-CM3 (Fig 7).

The mean ΔNPP from the five GCMs under RCP2.6 was negative and positive in the warm

and cool seasons, respectively, and was especially low in the warm season in the SW block

(Table 6). The mean ΔNPP from the five GCMs under RCP8.5 was much higher than that

under RCP2.6 during the cool season.

Recorded and modeled NPP and biomass C relative to stand age

A total of 48 records of NPP for 31–50 year-old stands, aged 40.3 years on average, were

extracted from among 116 records for 5–70 year-old stands in the PTDB. The NPP for 31–

50-year-old stands was 0.78 ± 0.24 kgC m-2 year-1 and exhibited a decreasing trend with stand

age (p<0.05; Fig 8A). Meanwhile, the mean value of modeled NPP in STEP-2, based on the

historical trend estimated in MIROC5, ranged from 0.75 to 0.78 kgC m-2 year-1 for every

5-year bin from 31 to 50 years of age, and its change with stand age was unclear (Fig 8B).

Table 6. Seasonality of ΔNPP in F_2100.

ΔNPP in RCP2.6 ΔNPP in RCP8.5

GCM Block Warm Cool Warm Cool

(gC m-2 day-1)

5GCMs SW -0.18 ± 0.32 0.23 ± 0.14 -0.02 ± 0.52 0.56 ± 0.25

CT 0.02 ± 0.49 0.28 ± 0.14 -0.10 ± 0.82 0.91 ± 0.23

NE 0.14 ± 0.39 0.26 ± 0.12 0.00 ± 0.60 0.91 ± 0.18

Total -0.01 ± 0.43 0.26 ± 0.13 -0.04 ± 0.66 0.79 ± 0.27

Mean ± s.d.; SW, CT, and NE indicate the southwestern, central, and northeastern blocks, respectively. Warm and Cool indicate the warm (May to October) and cool

(November to April) seasons, respectively.

https://doi.org/10.1371/journal.pone.0247165.t006

Fig 8. Changes in observed and modeled NPP with stand age. (A) Observed NPP. Open circles indicate records in the PTDB, and the solid line

represents the regression with stand age. (B) Modeled NPP. The solid lines show the mean and standard deviation in the total area for every 5-year bin

from 31 to 50 years. SW, CT, and NE indicate mean values of the southwestern, central, and northeastern blocks, respectively.

https://doi.org/10.1371/journal.pone.0247165.g008
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In total, 1094 records of wood volume for 30–60-year-old stands were extracted from the

NFI. The temporal trends in stand biomass C, which was converted from wood volume based

on a BEF, were determined for every 10-year period as the coefficient of a single regression

with stand age; these values were 0.279, 0.303, and −0.01 kgC m-2 year-1 for stand ages of 30–

40, 40–50, and 50–60 years, respectively (Fig 9A). The differences in stand biomass C among

regional blocks were unclear in this dataset, except that higher biomass was observed in the

SW region relative to the CT and NE regions at age 30–40 years (p<0.001). Meanwhile, the

mean increments of modeled stand biomass C were 0.388, 0.355, and 0.350 kgC m-2 year-1 for

stand ages of 30–40, 40–50, and 50–60 years, respectively, indicating a relatively monotonic

increase in stand biomass (Fig 9B). The modeled stand biomass C was generally higher in the

SW block compared to the CT and NE blocks.

Discussion

Validity and limitations of estimating NPP through two-step

parameterization

The parameterization conducted in this study improved the estimation of the physiological

responses of Japanese cedar plantations growing under humid climatic conditions in East

Asia. We confirmed that changes in eco-physiological parameters in STEP-1, which were

mainly based on PTDB data, including the C:N ratio of leaves, SLA, and turnover of fine roots,

rarely contributed to improving the simulated seasonality of GPP in daily or monthly outputs

for the TKC and KHW. Meanwhile, changes in FLNR and the VPD-stomatal relationship due

to BO in STEP-2 sharply improved simulated GPP at those sites. As a result, our estimation of

annual NPP in the TKC in 2006 approached 0.79 kgC m-2 year-1, which is the biometric esti-

mate over 4 years (2005–2009) as reported by Yashiro et al. [61], rising from 0.65 kgC m-2

year-1 in STEP-0 to 0.73 kgC m-2 year-1 in STEP-2. The VPD-stomatal relationship may be the

key factor for simulating seasonality rather than FLNR, which instead altered the overall range

of NPP [40]. The range of the VPD-stomatal relationship in STEP-2 was 135–1824 Pa, which

Fig 9. Changes in estimated and modeled biomass C with stand age. (A) Estimated biomass C based on wood volume in the NFI. The solid line

represents the regression of biomass C with age for 10-year bins. (B) Modeled biomass C. The black solid line indicates the mean and standard deviation of

biomass C in the total area at 10-year intervals. The gray dotted line indicates mean biomass C based on a cutting ratio of 99% in existing forests. SW, CT,

and NE indicate mean values of the southwestern, central, and northeastern blocks, respectively.

https://doi.org/10.1371/journal.pone.0247165.g009
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included the entire ranges of mean daytime-VPD in the warm seasons of 302–1257 Pa for

H_2000 and 428–1497 Pa for F_2100 from MIROC5 under RCP8.5. This range is quite low

compared to that presented in BBGC for Japanese cypress (610–4100 Pa; [9]), which exhibits

more water-saving characteristics than Japanese cedar when the soil water supply is limited

[62], making the modeled stomatal behavior of Japanese cedar more sensitive to increases in

VPD within the climatic range of Japan. The observed range of the VPD-stomatal relationship

at the canopy level ([42, 63–65] supports adjustment to a substantially lower range of VPD

compared to that in STEP-0 (930–4100 Pa). We optimized these parameters by simultaneously

improving modeled GPP at two sites under different climatic conditions and timescales, the

TKC and KHW, and showed that the weighting of the likelihood function in BO was effective.

The modeled NPP results for H_2000 were considered valid from the perspective of their

geographical distribution. The mean NPP for H_2000 for stands aged 36–40 years was similar

to that for stands aged 31–50 years in the PTDB (Fig 8A and 8B). The NPP and stand biomass

C for 36–40-year-old stands for H_2000 were higher in the SW and lower in the NE region

(Figs 5A, 8B and 9B). This result was consistent with statistical trends showing that the growth

rate in terms of height of Japanese cedar is high in the southern and Pacific Ocean coastal

regions of Japan, especially during the initial stage of growth [18]. Ito [10] estimated NPP in

various biomes in East Asia using a C cycle model and obtained high values for evergreen nee-

dle-leaf forests in the southern and coastal regions of Japan. Hashimoto et al. [66] inversely

estimated NPP in forested areas of Japan, not only for Japanese cedar forests, using a soil C

stock dataset and the RothC model, and obtained higher values in southwestern regions com-

pared to northeastern regions. Mitsuda [5] estimated NPP in Japanese cedar plantations on

Kyushu Island (covering approximately 40% of the SW block) using the 3-PG model and

obtained high values in the southern area, in accordance with this study. Regardless of the spa-

tial validity of estimated NPP, it is important to note that we might not have sufficiently simu-

lated the age dependency of NPP. Although the observed NPP values in the PTDB are not

successional data for a single stand, they exhibited a decreasing trend with stand age from 31

to 50 years (Fig 8A), whereas the average NPP values for H_2000 and F_2100 at 5-year inter-

vals exhibited a relatively monotonous trend over that period (Fig 8B). The estimated biomass

C from NFI exhibited an increasing trend with stand age for at least up to 50 years, which

probably includes the negative effect of harvesting at higher stand ages (Fig 9A). Meanwhile,

the modeled biomass C in this study increased monotonically from 30 to 60 years of stand age

(Fig 9B). In summary, we could not validate the modeled high growth rate of old Japanese

cedar in stands >50 years of age, and it would be inappropriate to apply the model parameter-

ized in this study to stands much older or younger than 40 years. The age dependency of NPP

is a sensitive factor that complicates the modeling and assessment of climate impacts on

planted forests. In this study, the weak dependency of NPP on stand age enabled comparison

of NPP at a fixed age, namely 36–40 years, between current and future climatic conditions.

Difference in estimates of ΔNPP between the RCP2.6 and RCP8.5 scenarios

The mean ΔNPP for F_2100 was generally lower under the RCP2.6 scenario than under

RCP8.5. This difference was likely due to mitigation of the decrease in modeled GPP during

warm seasons related to the high CO2 concentration in RCP8.5. The modeled relationship

between GPP and Tday (mean air temperature in daytime) during the cool season and that

between NPP and Tday exhibited similar trends of temperature dependency for both H_2000

and F_2100 (based on MIROC5; Fig 10C and 10D). On the other hand, the GPP-Tday and

NPP-Tday relationships during the warm season shifted upward from the historical climate to

RCP2.6 and further to RCP8.5 (Fig 10A and 10B). In an additional test of the RCP8.5 climate
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scenario with the CO2 concentration reduced to the level of RCP2.6, the modeled GPP and

NPP for F_2100 were sharply reduced, and the percentage of the total area with negative

ΔNPP increased from 0% under the original RCP8.5 conditions to 45%. Similar results have

been reported in previous studies of coniferous forests in East Asia, mainly in China. When

the effect of elevated CO2 was considered, increased NPP was predicted more frequently

under RCP8.5 than under RCP2.6 for tree species such as Pinus tabulaeformis [67] and Abies
fabri [68], although if that effect was neglected, the risk of decreased productivity became high

under RCP8.5, as noted for Larix olgensis [69] and A. fabri [68]. A positive effect of elevated

CO2 on GPP could be detected at the global scale, even under the current climatic conditions

[70]. Down-regulation of photosynthesis under elevated CO2 conditions, leading to an

observed rate lower than that estimated by Farquhar’s model, has not been confirmed for

mature stands of Japanese cedar. However, Hiraoka et al. [71] reported that the photosynthetic

rate of 1-year-old cuttings of Japanese cedar increased under elevated CO2 conditions, whereas

Fig 10. Relationships of GPP and NPP with daytime-mean air temperature. Tday, daytime-mean air temperature. (A) GPP in the warm season, (B) NPP

in the warm season, (C) GPP in the cool season, and (D) NPP in the cool season.

https://doi.org/10.1371/journal.pone.0247165.g010
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the maximum carboxylation rate decreased. Thus, the increase in NPP under highly elevated

CO2 conditions may be lower than that predicted in this study. To account for this down-regu-

lation in future modeling of photosynthesis, reduction of Max_sc through scaling of CO2 con-

centration ([72, 73]) may be an effective strategy, although the sensitivity analysis in this study

indicated that reducing Max_sc did not necessarily decrease modeled NPP under the RCP8.5

scenarios (S8 Text in S1 File).

Geographic characteristics of the modeled decrease in NPP in Japanese

cedar plantations

Here, we focus on the area of decreased NPP (NPP-decline area) under the RCP2.6 scenario,

considering the potential risk of decreased productivity of Japanese cedar plantations. The

NPP-decline area in this study was concentrated in the SW region (Fig 5D), in accordance

with previous studies reporting high vulnerability of Japanese cedar in western Japan to a

slowly warming climate [5, 22]. The geographic distribution of negative annual ΔNPP was

derived from the decrease of NPP in the warm season, rather than its increase in the cool sea-

son (Table 6). The area that is sensitive to increasing temperature, evaluated based on the ratio

of ΔNPP to ΔMAT, was characterized mainly by MAT in the historical dataset. Negative values

of ΔNPP/ΔMAT were predicted more frequently by two GCMs, MIROC5 and GFDL-CM3, in

this study, and were dominant when MAT for H_2000 exceeded approximately 13 deg C (Fig

11), whereas their relationship with MAP was unclear. Risk assessment of the NPP-decline

area at the continental scale showed that the risk tended to be high in the southern area, where

the level of NPP in the current climate is high [74–76].

In summary, we first evaluated the vulnerability of Japanese cedar plantations to a changing

climate by modeling stand productivity at the national scale in Japan. Despite geographic vari-

ation in ΔNPP, the mean values of ΔNPP under RCP2.6 and RCP8.5 were positive for all but

one GCM, and the overall vulnerability to decreasing NPP was predicted to be relatively low.

These results may help with recommending the best management options for planted forests

in other regions with warm and humid climates. However, the consequences of decreasing

NPP in the warm season were not fully examined in this study, such as the possible linkage

Fig 11. Distribution of the ΔNPP-to-ΔMAT ratio in relation to MAT and MAP under the current climate. Results from (A) MIROC5 and (B)

GFDL-CM3, based on the RCP2.6 scenario. R represents the ΔNPP-to-ΔMAT ratio. Red (R< −0.015) and yellow (−0.015� R<0) indicate decreases

in NPP with increased temperature, whereas green (0� R< 0.015), light blue (0.015� R< 0.03), and blue (R� 0.03) indicate increases in NPP.

https://doi.org/10.1371/journal.pone.0247165.g011
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between reduced non-structural C and mortality [28]. Monitoring of planted forests should be

enhanced in southwestern Japan. The part of this region with high MAT under the current cli-

mate may require the development of new varieties of Japanese cedar or a shift toward other

tree species such as Japanese cypress to properly address the vulnerability of planted forests to

warming summers in the future.
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and Prof. Raisa Mäkipää and colleagues of the Natural Resources Institute, Finland.

Author Contributions

Conceptualization: Jumpei Toriyama, Shoji Hashimoto.

Data curation: Yoko Osone, Naoyuki Yamashita, Tatsuya Tsurita, Takanori Shimizu, Taku

M. Saitoh.

Formal analysis: Jumpei Toriyama, Yoko Osone.

Methodology: Jumpei Toriyama, Shoji Hashimoto, Taku M. Saitoh.

Project administration: Shoji Hashimoto.

Resources: Yoko Osone, Naoyuki Yamashita, Tatsuya Tsurita, Takanori Shimizu, Taku M.

Saitoh, Shinji Sawano, Shigehiro Ishizuka.

PLOS ONE Productivity of Japanese cedar plantation in changing climate

PLOS ONE | https://doi.org/10.1371/journal.pone.0247165 February 17, 2021 22 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247165.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247165.s002
http://gmt.soest.hawaii.edu/
https://doi.org/10.1371/journal.pone.0247165


Software: Jumpei Toriyama.

Supervision: Shoji Hashimoto, Aleksi Lehtonen.

Validation: Yoko Osone, Naoyuki Yamashita.

Writing – original draft: Jumpei Toriyama.

Writing – review & editing: Jumpei Toriyama, Shoji Hashimoto, Yoko Osone, Naoyuki

Yamashita, Tatsuya Tsurita, Takanori Shimizu, Taku M. Saitoh, Shinji Sawano, Aleksi Leh-

tonen, Shigehiro Ishizuka.

References
1. FAO. Global Forest Resources Assessment 2020: Main report. Rome. [accessed on 14th Oct., 2020].

Available from: https://doi.org/10.4060/ca9825en.

2. Van Oijen M, Balkovic J, Beer C, Cameron D, Ciais P, Cramer W, et al. Impact of droughts on the car-

bon cycle in European vegetation: a probabilistic risk analysis using six vegetation models. Biogeos-

ciences. 2014; 11(22): 6357–6375. https://doi.org/10.5194/bg-11-6357-2014

3. Bellassen V, Le Maire G, Dhote JF, Ciais P, Viovy N. Modelling forest management within a global veg-

etation model—Part 1: Model structure and general behaviour. Ecol. Mod. 2010; 221(20): 2458–2474.

4. Jönsson AM, Lagergren F, Smith B. Forest management facing climate change-an ecosystem model

analysis of adaptation strategies. Mitig. Adapt. Strat. Glob. Chan. 2015; 20(2): 201–220.

5. Mitsuda Y. Evaluating the effects of climate change on the potential site productivity of Sugi (Cryptome-

ria japonica) planted forests in Kyushu Island, Japan. J. For. Plan. 2018; 22(2): 47–53.

6. Pietsch SA, Hasenauer H, Thornton PE. BGC-model parameters for tree species growing in central

European forests. For. Ecol. Manag. 2005; 211: 264–295.

7. Cienciala E, Tatarinov FA. Application of BIOME-BGC model to managed forests. 2. Comparison with

long-term observations of stand production for major tree species. For. Ecol. Manag. 2006; 237: 252–

266.

8. Ueyama M, Ichii K, Hirata R, Takagi K, Asanuma J, Machimura T, et al. Simulating carbon and water

cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data. Biogeosciences.

2010; 7(3): 959–977.

9. Ueyama M, Kai A, Ichii K, Hamotani K, Kosugi Y, Monji N. The sensitivity of carbon sequestration to har-

vesting and climate conditions in a temperate cypress forest: observations and modeling. Ecol. Mod.

2011; 222(17): 3216–3225.

10. Ito A. The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and vali-

dated using AsiaFlux data. Agric. For. Met. 2008; 148(5): 738–747.

11. Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY–a global database of plant

traits. Glob. Chan. Biol. 2011; 17(9): 2905–2935.

12. Kattge J, Bönisch G, Dı́az S, Lavorel S, Prentice IC, Leadley P, et al. TRY plant trait database–

enhanced coverage and open access. Glob. Chan. Biol. 2020; 26(1): 119–188. https://doi.org/10.1111/

gcb.14904 PMID: 31891233

13. Hickler T, Vohland K, Feehan J, Miller P A, Smith B, Costa L, et al. Projecting the future distribution of

European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation

model. Glob. Ecol. Biogeo. 2012; 21(1): 50–63.

14. Anderegg WR, Konings AG, Trugman AT, Yu K, Bowling DR, Gabbitas R, et al. Hydraulic diversity of

forests regulates ecosystem resilience during drought. Nature. 2018; 561(7724): 538–541. https://doi.

org/10.1038/s41586-018-0539-7 PMID: 30232452

15. Osone Y, Hashimoto S, Kenzo T, Araki MG, Inoue Y, Shichi K, et al. Plant trait database for Cryptomeria

japonica and Chamaecyparis obtusa (SugiHinoki DB): Their physiology, morphology, anatomy and bio-

chemistry. Eco. Res. 2020; 35(1): 274–275.

16. Van Oijen M, Rougier J, Smith R. Bayesian calibration of process-based forest models: bridging the gap

between models and data. Tree Physiol. 2005; 25(7): 915–927. https://doi.org/10.1093/treephys/25.7.

915 PMID: 15870058

17. Minunno F, Peltoniemi M, Härkönen S, Kalliokoski T, Makinen H, Mäkelä A. Bayesian calibration of a
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