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E-bike, characterized as a low-carbon and health-beneficial active travel

mode, is gradually becoming popular in China. Although built environment

factors are considered to be key parameters that can facilitate or hinder active

transportation, such as cycling or walking, few studies have explored the

impact of built environment on e-bikes. To fill this gap, this studywas the first to

explore the relationship between e-bike usage and built environment factors

based on population level travel survey in central Jinan, China. Both macro

and micro levels of built environment were measured using multi-source

data. We employed ordinary least squares (OLS) and geographically weighted

regression (GWR) models to explore the aggregation patterns of e-bike trips.

Besides, the local Moran’s I was employed to classify the aggregation patterns

of e-bike trips into four types. The results from OLS model showed that eye-

level greenery, building floor area, road density and public service POI were

positive significantly related to e-bike trips, while open sky index and NDVI had

negative association with e-bike trips. The usage of GWRmodel providedmore

subtle results, which revealed significant spatial heterogeneity on the impacts

of di�erent built environment parameters. Road density and public service POI

posed positive e�ects on e-bike travel while NDVI and open sky index were

found mainly pose negative impacts on e-bike travel. Moreover, we found

similar coe�cient distribution patterns of eye-level greenery, building floor

area and distance to bus stop. Therefore, tailored planning interventions and

policies can be developed to facilitate e-bike travel and promote individual’s

health level.
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Introduction

The prevalence of e-bike and its
advantages

For the past few years, the built environment which is

suitable for active transportation have attracted interests from

various of fields including urban design, public health and

transportation. Global economic development has been driven

by the fossil energy consumption which improved human living

conditions but caused air pollution and global warming and

a series of environmental problems (1). Energy-saving, low-

carbon, healthy lifestyle have become the common will of the

government and citizens (2). Governments have implemented

policies including improving energy efficiency, developing fossil

energy substitution technologies, and using biocarbon sink

technologies to reduce carbon emissions (3). In addition, it

is a key intervention to maintain physical activity level and

reduce chronic disease by encouraging residents to adopt active

transportation (i.e., walking and cycling, e-bike) rather than

apply motorized vehicles (4). Therefore, it is vital to understand

the characteristics of active transportation and its driving factors

for planning department and policy makers (5).

As an emerging active transportation mode, the advantages

of e-bike are embodied in several ways. First, compared to

traditional cycling, e-bike is time efficient (6) and aging-friendly

which can help users to overcome obstacles of long distance

and climbing (7). Meanwhile, e-bike travel also combines the

advantages of promoting personal physical fitness and well-

being (8). Specifically, e-bike travel can benefit those who

are unwilling to engage in physical activity (i.e., overweight,

disabled, and elderly) by helping them achieve moderate

vigorous of physical activity (9, 10), which is known to support

individual’s social interaction (11) and mental health (8). Some

studies have shown that e-bike travel improves metabolism (12),

cardiovascular health (13) and allows riders to have lower level of

perceived exercise and higher level of enjoyment (14). Moreover,

e-bike is more economically efficient with lower purchase price,

less operating and maintenance cost than automobile, thus

is becoming a competitive alternative (15). In addition, some

studies have shown that using an e-bike can reduce CO2

emission by about 460 kg per year, which is an impressive social

benefit (16).

The numerous benefits of e-bikes have made them popular

with residents in many countries. It is expected that more than

40 million e-bikes will be sold worldwide in 2023 generating

approximately 20 billion dollars in revenue (17). In some low-

density Western countries such as Italy, Germany and Canada,

residents ride e-bikes primarily for leisure and exercise (18).

These countries often have a unique cycling culture, with

sophisticated cycling facilities and fewer safety barriers. In

the last few years, several countries, e.g., Belgium, Norway,

Netherlands, have started to subsidize the purchase of e-bikes to

support e-bike assisted commuting (19). Furthermore, majority

cities in Asia are still in the rapid development stage. The

high-density urban environment and high-intensity economic

pressure have raised the great demand for e-bikes. According

to statistics, the sales of e-bikes in countries including China,

Vietnam and Japan are rising year by year, occupying more than

half of the global market share (20). China, in particular, is a

global leader in the manufacture of e-bikes as well as in the

annual and total number of e-bikes sales. By the end of 2019,

China had over 300 million e-bikes and the market size reached

trillions (21). Rising gasoline price, declining e-bike technology

cost and deteriorating road congestion and parking problem are

the main reasons for the tremendous demands of e-bike (22). As

housing price continually rises and the imbalance between job-

housing relationship increases, residents’ commuting distance

has increased, thus e-bike is gradually regarded as a comfortable

and efficient way for daily transportation (23).

Relationship between built environment
and e-bike usage

Built environment is usually defined as man-made buildings

and places which involve physical facilities as well as

abstract elements such as human spatial perception (24). Built

environment is measured in various ways. The macro-level built

environment was first characterized by 3-Ds element (3Ds),

namely density, design and diversity (25). Later studies added

distance to public transportation and destination accessibility to

form the 5Ds assessment framework (26). In addition, micro-

level factors such as open sky, buildings, and greenery visibility

perceived by residents were also included in the studies related

to built environment (27).

Active travel behavior, as a fundamental travel mode of

daily life, has been proven to have strong correlation with built

environment elements. For example, proximity to commercial

facility and low noise level were prove to be benefit for residents’

walking and cycling (28). Pronounced building density and

mixed land use had a positive influence on promoting active

travel instead of automobile travel (29). Moreover, more

residents would choose to travel by bicycle in the areas with high

road density, proximity to green space and abundant bicycle

parking facilities (30).

Currently, few studies have been conducted by scholars

on e-bikes in relation to the built environment. Some studies

showed that e-bike is an alternative vehicle in many Chinese

cities (31). An empirical study revealed a non-linear association

between built environment characteristics and e-bike holdings

(32). E-bike holding has negative correlation to residence density

while is positively related to distance to public transportation

(32). The e-bike usage in China was different among various

urban scales. Longer commuting distance in metropolis made
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e-bike less competitive that public transportation, while e-bike

travel was found to be more attractive in middle-size cities (33).

In addition, some studies showed that the travel patterns of

residents in the rural area differ from those of urban residents.

Certain road level (i.e., major trunk road or city road without

bike lane) have positive effects in facilitating e-bike usage for

rural residents (34).

Multi-source urban big data to assess
built environments

Urban information collection plays a vital role in urban

studies and travel behavior research. In the past, traditional

urban research has long been constrained by field observation

characterized as time-consumption, inefficiency, and small

simple size (35). With the rapid development of big data, studies

on built environment and travel behavior broke through the

limitations of traditional data by applying emerging technologies

which can obtain real-time and accurate data to quantify

complex built environment factors. New urban data, such

as social media data (36), heatmap (37), street view image

(38), point of interest (POI) (39) and building footprint data

(40), provide urban researchers with fine spatial and temporal

granularity. However, the plenty advantages of urban big data

cannot completely replace traditional data in some research.

Urban big data and traditional data are complementary and the

integration of the two is believed to be an inevitable trend (41).

Currently, scholars are actively exploring methodologies and

specific frameworks for urban research that combine traditional

data with big data for the integration of data with various sources

in city studies (42, 43).

Research gap and our study

Despite many studies exploring the relationship between

traditional active transportation (i.e., walking, cycling) and

the built environment, e-bike related studies were rarely

emphasized (44, 45). Previous studies on e-bike travel mainly

focused on the personal perception and travel preference of

e-bike users (22, 46). Since e-bike is becoming a vital active

travel mode in developing countries, clarifying the association

between built environment and e-bike usage will enrich active

transportation research and assist urban planners in developing

more appropriate planning interventions.

In order to eliminate the research gap, e-bike usage was

measured using 2019 residential travel characteristics survey in

Jinan, China. We applied ordinary least squares (OLS) model,

geographically weighted regression (GWR) and Moran’s I to

reveal the spatial distribution pattern of e-bike usage and the

relationship between built environment factors and e-bike usage.

This study makes contribution to the existing research from

three aspects: (1) Usingmulti-source data, i.e., street view images

and point-of-interest (POI) data to assess macro and micro

built environment factors and expand 5D built environment

framework. (2) Revealing the global and local effects of built

environment on e-bike travel using OLS and GWR models. (3)

To our knowledge, this study is among the first articles that

attempts to reveal the mechanism of e-bike travel.

Materials and methods

Study area and spatial unit

Jinan, the capital of Shandong Province, is a mega-city

with a long history. In the past 70 years, Jinan has developed

rapidly with the built-up area expanding to 841.2 km2 and

the resident population growing to 9.336 million. Currently,

Jinan has 12 county-level administrative districts (47). However,

rapid urbanization has brought many problems to Jinan. The

increasing number of urban motor vehicles aggravates the traffic

pressure and exacerbates air pollution which has become amajor

source of urban environmental degradation. In 2020, Jinan

ranked as the most congested city in China and the 11th most

polluted city in terms of air pollution (48, 49). The drawbacks

of motor vehicles have led to a surge in the number of e-bikes

in recent years. According to the statistics, about 30.56% of

Jinan residents choose e-bikes as their daily travel mode and

there are more than 3.6 million e-bikes in Jinan and the number

still grows (50). The growing demand for e-bikes places higher

requirements on Jinan’s future urban construction. Therefore,

to unveil the relationship between urban built environment and

e-bike travel can help to plan and build a better city.

The study area includes the central urban area of Jinan

(116◦51
′
36

′′
-117◦12

′
25

′′
E, 36◦32

′
51

′′
-36◦46

′
5
′′
N) enclosed by

the Jiguang Expressway, the Jingtai Expressway and the Jinan

Bypass Expressway, with an area of 535.96 km2 (Figure 1).

Our study area is located at the central area of Jinan’s

master plan, and it serves as the core of Jinan’s economic,

political and cultural center. In the main urban area of

Jinan, e-bikes as a flexible mode of travel play as a vital

part in people’s daily life. This study intends to unveil the

relationship between built environment and e-bike usage in

Jinan city.

With the increasing attention on active travel in various

countries, the government is gradually promoting the

construction of 15-minute city (51), where 500–800m is

considered proximity to neighborhood residents’ activity and

is therefore widely applied in walking- or cycling-related

studies (52). In the study area, a 600 × 600m rectangular

grid was generated as the basic analytical unit which can

facilitate the integration of urban built environment statistics

with e-bike usage data (Table 1), and help to eliminate

the effect of uneven administrative division (53). Then,
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FIGURE 1

Location of the study area.

the data related to e-bike travel behavior and urban built

environment were processed and imported into the mapping

and analysis software ArcGIS (version 10.6) for geocoding,

among which the grids that did not contain e-bike travel

data were removed, leaving a total of 770 grids in the

study area.
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TABLE 1 Definitions of the dependent and independent variables.

Variables (unit) Definition

Dependent variable

Number of E-bike trips (N) The total amount of e-bike trips (destination or origination) in each grid

Independent variable

Micro scale built environment

Eye-level greenery The average ratio of greenery of all SVIs in each grid

Open sky index The average ratio of open sky of all SVIs in each grid

Macro scale built environment

Building floor area (m2) The total building floor areas in each grid

Land-use mix (≥0) The ratio of different land-use types in each grid

Road density (m) The total road length (m) in each grid

Commercial POI (N) The number of corresponding POIs in each grid (acquired from http://map.baidu.com)

Public service POI (N)

Distance to bus stop (m) The distance from the nearest bus stop in each grid

NDVI The average NDVI value of each grid

Data source and variables

Dependant variable

In this study, e-bike travel behavior data were obtained from

the Jinan Resident’s Travel Survey of 2019 (JNRTS 2019), which

was conducted to study the travel behavior of Jinan citizens.

In order to ensure the completeness and representativeness

of the sample, the JNRTS 2019 was conducted in July 2019

by trained interviewers followed a proportional to population

size (PPS) method to obtain the sample. Respondents were

requested to offer one-day elaborate travel records. Taking e-

bike travel as an example, respondents were asked to record

personal travel message such as the start and end times, initial

and final locations. In total, the survey recruited 44,084 adults

from 698 communities in central Jinan. All locations of e-bike

trips were geocoded and relocated in corresponding fishnets

adopting ArcGIS 10.6. At last, the number of e-bike trips within

a gird was used as the dependent variable.

Macro-level built environment features

The independent variables in this study, macro-level built

environment factors, were assessed according to 5Ds framework,

including density, design, diversity, destination accessibility and

distance to public transportation (26). In addition, numerous

studies have shown that urban greenery has a significant impact

on active travel (54).

Density is measured based on the total building floor areas

in every grid. Diversity is calculated by using land-use mix of five

fundamental point of interest (POI) categories (i.e., commercial,

residential, public service, tourism and education) in each grid

(55). Land-use mix is calculated as follows:

Ej =
−

∑

i

(

Aij ln
(

Aij
))

ln
(

Nj
)

Where Aij indicates the percentage of POIs of category i in grid

j; Nj is the number of POI types in grid j.

Design is measured based on road density, namely the

total road length (m) in each grid. We applied the number of

POIs in each grid as destination accessibility. Distance to public

transportation is calculated by the shortest physical distance to

bus stop (56).

Finally, we employed normalized difference vegetation index

(NDVI), a commonly used parameter for vegetation assessment,

as indicator of urban greenery (57). NDVI is calculated by

Landsat-8 remote-sensing image acquired in June 2018, the

calculation formula is shown as follows:

NDVI =
NIR− Red

NIR+ Red

Where Red and NIR denote spectral reflectance measurements

extracted from red and near infrared areas, respectively. The

values of NDVI are between 0 to 1, a high NDVI value suggest a

high level of vegetation.

Micro-level built environment features

We collected the pedestrian’s eye-level streetscape features

via street view image (SVI) as the micro-scale built environment

characteristics (58). Sampling points were obtained every 50

meters along the urban roads by Open Street Map (OSM). Then

four SVIs (1,024∗1,024 pixels) with a 90◦ field of view were

collected for each sampling point through Baidu Maps’ API
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(https://lbsyun.baidu.com/). The heading parameters 0◦, 90◦,

180◦, and 270◦ of the four pictures collected at each sampling

site representing north, east, south, and west, respectively. In this

study, 519,388 street view images were retrieved from 129,847

sampling sites in Jinan. We then performed a Pyramid Scene

Parsing Network (PSPNet) with a Cityscapes model to classify

the foreground objects in the image into 19 categories, calculate

the pixel percentage of every streetscape feature in the image

and finally obtain the average value of each streetscape feature

at each sample point. Since the vegetation (eye-level greenery)

and open sky index are widely used in active-transportation

related studies (59–61), we selected them as micro-level built

environment variables, which were measured by calculating the

average value in each grid (Figure 2).

Statistical analysis

In the research, global Moran’s I and local Moran’s I

were employed to characterize the global and local aggregation

pattern of e-bike usage. We first tested the variance inflation

factor (VIF) between the independent variables. All variables

with VIF >4 were excluded from the subsequent analysis.

Thus, education and residential POI were excluded. OLS and

GWR model were used to better quantify the built environment

elements-e-bike usage association. In addition, we combined

the results of the GWR model with Local Indicators of Spatial

Association (LISA) to further explore the local aggregation

characteristics of e-bike trips (Figure 3).

Spatial autocorrelation

Spatial autocorrelation is an essential indicator to examine

whether the attribute value of a factor is significantly associated

with its value of non-boring unit (62). Global Moran’s I indicates

the overall distribution of data within the study area, while

local Moran’s I assesses the similarities and differences between

neighboring units (63). Global and local Moran’s I are calculated

as follows:

Global Moran′s I =
n

∑n
i=1

∑n
j=1 ωij (xi − x)

(

xj − x
)

∑n
i=1

∑n
j=1 ωij

∑n
i=1 (xi − x)2

Local Moran
′
s I =

xi − x

S2

n
∑

j=1

ωij
(

xj − x
)

S2 =

∑n
j=1,j6=i ωij

(

xj − x
)

(n− 1)
− x2

where xi and xj denote the total e-bike trips of grid i and j,

respectively; n denotes the total count of girds; x is the mean

e-bike trips of n grids; ωij is the spatial weight matrix. The value

of Moran’s I is distributed between −1 and 1. When Moran’s I

index is above 0, it indicates that the attribute values of all girds

have positive spatial correlation. While Moran’s I index below

0 indicates that the attribute values of all girds have negative

spatial correlation.

Local Indicators of Spatial Association (LISA) is a method

based on local Moran’s I proposed by Anselin, and this method

can reveal the possible spatial heterogeneity (64). We applied

LISA to distinguish the studies into four types i.e., high-high

(H-H), low-low (L-L), high-low (H-L) and low-high (L-H). The

H-H type represents high value clustering and the L-L type

represents low value clustering. The units of H-L type denote

high values surrounded by low values, while the L-H units

denote low values surrounded by high values.

Regression analysis

In this study, OLS and GWR models were conducted to

quantify the relationship between built environment and e-bike

travel. The OLS model is a regression model commonly used

to analyze linear relationships between variables (65). The OLS

model is calculated as follows:

y = Xβ + ε

where y is the e-bike trips, X is the matrix of the independent

variable, β is a vector of the coefficient, and ε is a vector of

random error term (66).

The GWR model is a further extension of the OLS model,

and this model can explore the spatial variation patterns of

influencing factors in different geographical locations (67). The

spatial relationship among multiple built environment variables

can be effectively processed using the GWR model to better

explain the variables affecting e-bike travel. The GWR model is

expressed as follows:

yi = β0 (ui, vi)+
∑

k=1

βk (ui, vi) xik+εi i = 1, . . . ,n

where (ui, vi) denotes the coordinates of unit i; β0 (ui, vi)

denotes the intercept value; and βk (ui, vi) is the set of parameter

values at unit i. Different from the spatially fixed coefficient of

OLS model, GWR model allows the parameter estimates to vary

with units and therefore may capture local effects (68).

Results

Descriptive statistics

The descriptive statistics of e-bike ridership and built

environment are shown in Table 2. The average value of e-

bike usage in each grid is 43.30 (SD = 53.980), indicating that

there was an average of ∼43 e-bike trips occurred in each unit.

Besides the count span of e-bike usage between spatial units is

substantial, ranging from 1 to 394.
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FIGURE 2

Assessing micro-level built environment from Baidu street view image via machine learning Technique (PSPNet).

FIGURE 3

Technology roadmap.

For the micro-built environment, the standard deviation

(SD) of both open sky index (Mean = 0.254, SD = 0.081)

and eye-level greenery (Mean = 0.147, SD = 0.081) were the

same. Open sky index had a greater average value than eye-level

greenery, which indicated that the proportion of open sky was

larger than that of greenery in most spatial units. In terms of
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TABLE 2 Statistics for all variables within the Jinan study area,

sampled in 2019 (fishnet = 600 × 600m, N = 770).

Variables (unit) Min. Max. Mean SD

Dependent variable

Number of E-bike trips (N) 1 394 43.300 53.980

Independent variable

Micro scale built environment

Eye-level greenery 0 0.552 0.147 0.081

Open sky index 0 0.440 0.254 0.081

Macro scale built environment

Building floor area (m2) 0 197,202.304 63,536.748 43,409.640

Land-use mix (≥0) 0 1.000 0.696 0.344

Road density (m) 0 17,255.150 3,997.850 2,402.737

Commercial POI (N) 0 189 18.030 25.651

Public service POI (N) 0 227 22.740 30.252

Distance to bus stop (m) 0 1,230 56.620 136.592

NDVI 0.061 0.338 0.164 0.047

N, number; Min., minimum; Max., maximum; SD, standard deviation; POI, point of

interest; NDVI, normalized difference vegetation index.

macro-built environment, the study area had a relatively high

building density (Mean = 63,536.748, SD = 43,409.640) and a

highly mixed land use level (Mean = 0.696, SD = 0.344). In

addition, the study area owned a well-connected transportation

system with a high road density (Mean = 3,997.850, SD =

2,402.737) and convenient proximity of public transit (Mean

= 56.620, SD = 136.592). Moreover, the mean value of public

service POI (Mean= 22.740, SD= 30.252) was higher than that

of commercial POI (Mean= 18.030, SD= 25.651).

Spatial distribution pattern of e-bike
travel volume

The results of global Moran’s I were presented in Figure 4A.

There was a significant spatial autocorrelation (Moran’s I =

0.579 and p < 0.001) in the distribution of e-bike usage in the

study area.

Figure 4B presented the results of local Moran’s I of e-

bike trips. The results of LISA specifically reflected the local

spatial correlation of e-bike travel volume. H-H clusters were

concentrated in the central part of study area, which is a densely

populated area with plenty of shopping areas. H-H areas were

considered as the core development area of Jinan. Meanwhile,

L-L clusters were distributed at the edge of the study area, which

generally characterized by poor infrastructure configuration,

complex terrain features, and relatively low population density.

We also noticed an aggregated trend in the H-H and L-L

units, respectively. In addition, L-H units were distributed in a

fragmented form at the edge of the H-H units, while H-L units

occurred randomly within the study area.

Regression results of OLS model

The association between built environment and e-bike travel

was estimated by the OLS model (Table 3). The adjusted R2

of OLS model is 0.428, which indicated that our model could

explain 42.8% of the variation in e-bike trips in all grids.

The VIF of the explanatory factor was <4, so there was no

multicollinearity problem. The results showed that the four

explanatory variables, i.e., eye-level greenery, building floor area,

road density, and public service POI significantly promoted the

e-bike trips, while the open sky index and NDVI significantly

decreased e-bike trips. The relationships between land-use mix,

commercial POI, distance to bus stop and e-bike trips were

insignificant. However, the results did not indicate that these

variables were not associated with e-bike trips, as the OLS model

only calculates the overall effect of the study area.

Regression results of GWR model

The results of Moran’s I revealed that there was significant

spatial autocorrelation of e-bike usage, and the spatial

heterogeneity of drive factors could not be revealed by OLS

model. Therefore, we used the GWR model to further explore

the association between built environment and e-bike usage.

We applied MGWR software (version 2.2.1) for GWR model

estimation (Table 4). The results demonstrated that the AICc of

the GWR model was 1,559.603, which was about 12.1% smaller

than the AICc of the OLS model. In addition, the adjusted R2 of

the GWR model improved from 0.428 to 0.646, indicating that

the GWR model had a better explanation of e-bike variation.

Therefore, it could be illustrated that the fitting results of the

GWRmodel were better than those of the OLS model.

The positive parameter estimates denoted the independent

variable had positive impact on e-bike travel, and vice versa.

The statistical results of GWR model were presented in Table 4,

the coefficients of all explanatory variables had a wide range

interval, which implied that the impact of built environment

factors on e-bike travel was diverse in different spatial units.

The mean values of the coefficients of the land-use mix and

commercial POI variables in the GWR model (−0.032 and

−0.056) differed significantly from their coefficient values in

the OLS model (0.009 and 0.054), suggesting that the two

factors had a stronger positive driving influence on e-bike

usage in certain units. In addition, the open sky index had

the largest standard deviation (STD = 0.362), which implied

a large spatial variation in explaining the degree of association

between the open sky index and e-bike trips. Moreover, majority

units of road density and public service POI had positive
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FIGURE 4

Spatial distribution pattern. (A) Moran scatterplot. (B) Local Moran’s I clusters of e-bike trips.

local estimation parameters (1st Quartile>0); while the open

sky index and NDVI had a higher number of negative local

estimation parameters (3rd Quartile<0).

The above statistical data analysis formulated a preliminary

knowledge of the results of GWR model. ArcGIS was used

to map the variable coefficient data of GWR model to realize

the spatial visualization of the local coefficient values, which is

convenient for us to deeply study the factors affecting e-bike

travel from a spatial perspective. The spatial distribution of the

local coefficients of 9 variables was presented in Figure 5, and the

following conclusions can be drawn.

As shown in Figures 5B,I, open sky index and NDVI

variables had significantly negative effects on e-bike usage in

all grids. The positive values of the open sky index coefficient

were aggregated in the southwestern part of the study area,

where there were rolling hills and undulating terrain. In contrast

to the open sky index, the positive values of NDVI coefficient

were not densely distributed but fragmented in the eastern part

of the study area. The lowest values of both coefficients were

concentrated in the middle of the study area where belonged

to the old city of Jinan with high building density and a large

number of tourist attractions.

As shown in Figure 5G, the public service POI variable

had globally a significant positive effect on e-bike trips. The

coefficients of public service POI variable demonstrated a

vertical band distribution, with an obvious demarcation line

between positive and negative values. The positive coefficients in

the central-eastern and western indicated that the public service

POI variable laid a positive influence on e-bike usage in these

regions; the negative coefficients of public service POI were

concentrated in the eastern periphery of the study area, which

TABLE 3 Results of ordinary least squares (OLS) model of built

environment and e-bike (fishnet = 600 × 600m, N = 770).

Variable Coef. p Std. error VIF

Micro-scale built environment

Eye-level greenery 0.106 0.001** 0.031 1.264

Open sky index −0.137 0.000*** 0.030 1.189

Macro-scale built environment

Building floor area 0.148 0.000*** 0.038 1.955

Land-use mix 0.009 0.711 0.033 1.424

Road density 0.133 0.000*** 0.034 1.542

Commercial POI 0.054 0.229 0.045 2.707

Public service POI 0.329 0.000*** 0.045 2.731

Distance to bus stop 0.027 0.399 0.032 1.396

NDVI −0.149 0.000*** 0.036 1.786

Adjusted R2 0.428

Residual sum of squares 435.517

Log-likelihood −873.188

AICc 1,768.724

The numbers in parentheses represent p-values. ** and *** give the significance at the 5%

and 1% levels respectively.

was a developing area in Jinan, with an incomplete public service

support facility.

As shown in Figures 5A,C,H, partially identical patterns in

the coefficient distributions of the three variables of eye-level

greenery, building floor area, and distance to bus stop were

present. It was found that all three variables had both positive

and negative effects on e-bike usage, and the proportions of
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TABLE 4 Results of geographically weighted regression (GWR) model of built environment and e-bike (fishnet = 600 × 600m, N = 770).

Variables Min 1st quartile Mean 3rd quartile Max STD

Micro-scale built environment

Vegetation −1.088 −0.016 0.049 0.177 0.410 0.216

Sky −2.070 −0.230 −0.204 −0.005 0.170 0.362

Macro-scale built environment

Building floor area −1.045 −0.003 0.089 0.235 0.547 0.271

Land-use mix −1.195 −0.075 −0.032 0.066 0.481 0.196

Road density −0.175 0.049 0.112 0.162 0.423 0.103

Commercial POI −0.404 −0.157 −0.056 0.059 0.230 0.139

Public service POI −0.131 0.111 0.271 0.405 0.905 0.250

Distance to bus stop −1.034 −0.034 0.027 0.099 0.770 0.203

NDVI −1.553 −0.328 −0.212 −0.030 0.074 0.270

Adjusted R2 0.646

Residual sum of squares 226.044

Log-likelihood −620.704

AICc 1,559.603

units with positive and negative values were similar. In addition,

the distribution of coefficients for all three variables were

found to be concentric circles, expanding outward from the

core area of maximum negative value in the middle with the

coefficients progressively larger. The distribution of the positive

units of the three variables differs. In the northwestern and

northeastern part, eye-level greenery positively contributed to

e-bike usage, while in the southeastern part, e-bike usage was

positive associated with building floor area. The maximum

positive value of distance to bus stop variable met the eastern

side of the negative core and the distribution was demonstrated

in east-west direction which was stripe-like.

The coefficients of land-use mix, road density and

commercial POI were distributed differently as shown in

Figures 5D–F. The coefficients of land-use mix were distributed

in a binomial pattern, and the coefficients of the core area

had the lowest negative values, and the positive values were

distributed in the central and eastern part of the study area.

In the central part, negative coefficients of road density were

distributed from west to east, and the distribution pattern was

same as the direction and location of the most important traffic

artery in Jinan (Jingshi Road). The positive-coefficient units of

commercial POI overlapped with several important commercial

areas of Jinan, indicating that commercial facilities had a strong

attraction and could promote e-bikes usage to some extent.

E-bike travel aggregation characteristics

In Sections Spatial distribution pattern of e-bike travel

volume and Regression results of GWR model, we investigated

the local spatial effects of e-bike trips and the spatial distribution

of the coefficients of each built environment variable by

estimating local Moran’s I and GWR model, respectively. We

found a clear spatial aggregation of e-bike trips. To further

investigate the connection between this phenomenon and the

built environment, we calculated the mean coefficient values

of each explanatory variable of the four types of spatial units

(i.e., H-H, H-L, L-H, L-L) from Figure 3B to explore the

built environment characteristics corresponding to four spatial

types (63).

Figure 6 depicted the results. The positive and negative

of the ordinate mean coefficient represented the influence

of built environment factors on e-bike travel; the positive

value represented the promotion effect, and the negative value

represented the prohibitive effect. The average coefficient value

of the built environment factor indicated the influence degree of

this factor on e-bike travel. The larger absolute value denoted

the greater influence degree. The closer the absolute value to

0 indicated faint influence of this factor on e-bike travel. H-

H cluster and L-H cluster had similar numerical distribution

pattern, and the same pattern was found between L-L and

H-L clusters. In addition, H-H and L-H clusters formed the

units with large e-bike trips, while L-L cluster and H-L cluster

represented the units with few e-bike trips. In the areas with large

e-bike trips, the average coefficients of public service POI, open

sky and NDVI had the largest absolute values, which indicated

that these three factors had the strongest impact on e-bike trips,

while other factors had relatively weak impact on e-bike trips.

In the areas with few e-bike travel volume, the average absolute

values of the coefficients of all types of built environment factors

were close, and there was no significant difference among the

coefficient values of all variables.

This section might serve as a reference for urban planners in

decision making. For example, when creating an e-bike friendly

area, priority can be given to build improved public services,
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FIGURE 5

Spatial pattern of coe�cients in di�erent models. (A) Eye-level greenery. (B) Open sky index. (C) Building floor area. (D) Land-use mix. (E) Road

density. (F) Commercial POI. (G) Public service POI. (H) Distance to bus stop. (I) NDVI.

reduce sky visibility to achieve the goal of promoting e-bikes

usage. A profound understanding of the built environment

influence can help the government to improve money efficiency

and lay a solid foundation for building a cycling-friendly city.

Discussion

Major findings

As a new mode of active travel, e-bikes are widely accepted

and used worldwide and are even considered to be able to

replace motor vehicles in China (20). The healthful and low-

carbon advantages of e-bikes are in line with the common

consensus on low-carbon and healthy cities. Understanding

the association between the urban built environment elements

and e-bike travel is critical for urban planners. Although there

are plentiful academic studies on the correlation between the

urban built environment and various modes of transportation,

few study focuses on the built environment effects on e-

bike travel, especially from a global and local level. Moreover,

previous empirical studies on built environment usually

selected macro-level factors, ignoring the micro-level factors

which involve residents’ perception. This study addresses the

abovementioned gap by unveiling the spatial relationship

between built environment and e-bike travel of Jinan, and our

study yields two major findings.

First, the relationship varies between different built

environment variables and e-bike travel. The results of the

OLS model indicate that road density is positively associated

with e-bike usage. A well-connected street network increases

the destination accessibility, thus encouraging e-bike usage.

Pronounced diversity and proximity to bus stops reduce trip

distance and offer a variety of possible transportation options

for the residents (26, 69). In addition, various categories of
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FIGURE 6

Average of built environment coe�cient (ELG, Eye-level greenery; OSI, Open sky index; BFA, Building floor area; LUX, Land-use mix; RD, Road

density; C-POI, Commercial POI; P-POI, Public service POI; DBS, Distance to bus stop).

destination accessibility have various correlations to e-bike

trips. Public service POI has a significant positive relationship

with e-bike trips, while commercial POI yields a negative

relationship. Our finding is opposite of previous walking-

related empirical studies, which prove public service POI

has a significant negative impact on pedestrian volume and

commercial POI has a positive impact (58, 70). The possible

explanation is that the parking facilities for e-bikes are not well

configured in most of the commercial establishments in Jinan.

In addition, commercial areas attract a large number of people

and are prone to block traffic, thus inhibiting e-bike trips. At the

micro level, open sky has some inhibitory effect on e-bike usage.

The eye-level greenery shows a positive correlation with e-bike

usage while the NDVI variable shows a negative correlation

with it. The results indicate a mismatch between the human

street greenery perception and the bird’s view greenery obtained

through remote sensing satellites, which is consistent with

previous study (61).

Second, there is significant spatial heterogeneity in the

relationship between various built environment factors and

e-bike usage. The distribution diagram of the GWR model

coefficient values (Figure 5) indicates that the coefficients of

most variables, except for public service POI, show a negative

clustering at the center of the study area. We believe one reason

for this phenomenon is that the planning of the old urban area is

mainly centered on the preservation of historic sites, streets, and

buildings, which has resulted in insufficient space to allocate e-

bike related support facilities, including charging posts, parking

areas and carriageways.Moreover, there is narrow spatial scale of

residential areas in old downtown, thus e-bike travel can easily

conflict with other modes of transportation (71, 72). The other

reason to explain the finding is that large commercial complexes

and scenic spots are not suitable for e-bike travel (73). Unlike

small and medium-sized commercial facilities, large commercial

facilities are more friendly for walking and motorized access

because of the dense crowds and complex traffic conditions,

while the high speed of e-bikes poses a greater safety risk in

these areas. In addition, insufficiency in e-bike parking facilities

in large commercial complexes and scenic spots act as a drag

for e-bike riding (32). The old downtown of Jinan has a

well-developed public transportation network which motivates

residents to carry out their daily travel activities by walking and

public transportation rather than using e-bikes (74).

Planning implications

Jinan, as well as many other Chinese cities, is expanding

in the rapid-urbanization context, which is a challenge for

promoting e-bike commuting. This study indicates that when
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planning and building new urban areas, planners can achieve the

purpose of regulating e-bike flows through the flexible settings

of local built environment. In addition, interventions in the

built environment can also alleviate traffic congestion in old

urban areas to some extent. For example, in the areas with

intensive e-bike travel congestion, increasing the sky openness

by controlling the height of buildings and the number of trees

can reduce the e-bike usages. On the contrast, in the areas

without intensive travel congestion, increasing the greenery and

constructing public service facilities along the roads can attract

more e-bikes pass through these areas. Moreover, e-bike facility

policies must also be integrated with vehicle traffic management

policies, for example, setting speed limits, subsidizing the use

of low-pollution vehicles, and constructing related supporting

facilities. E-bike facility policies are also closely related to social

equity and environmental justice. Chinese cities urgently need

to develop long-term policies aimed at building cycling-friendly

cities before they are permanently dominated by motorized

forms of travel.

This study provides an effective decision support framework

for policymakers to identify the most influential built

environment factors associated with e-bike travel so as to

build a healthy and low-carbon city (75). Based on this

framework, tailored policy and planning interventions may

enable residents to have a better e-bike travel experience in

their local urban environment. In summary, planners and

policymakers should take into fully account the positive or

negative effects of different built environment elements on

the e-bike usage and provide tailored planning strategy when

carrying out specific e-bike related planning.

Limitations

Despite of the theoretical and practical implications for

future urban planning and public policy formulation, limitations

of our study should also be acknowledged. First, OLS and GWR

models are linear regression models, which involve only linear

interpolation and have some limitations (37). Therefore, the

relationship between urban built environment and e-bike usage

should be further explored by model improvement. Second, the

spatial scale effect and modifiable areal unit problem (MAUP)

is the most important issues in urban planning and geography

(76). Due to the difference in travel distance per unit time

for choosing different travel modes, the effect of choosing

different grid sizes as the basic unit of study may be sensitive

to the results (53). In future research, the scale effect of built

environment on e-bike usage could be further explored by

transforming the grid size in the spatial dimension. Third,

due to the limitations of data and technology, this paper only

considered eye-level greenery and open sky as representatives of

micro-level built environment variables. Future research hopes

to further explore the relationship between more micro built

environment elements and e-bike usage. Finally, this study did

not consider the longitudinal variation of e-bike usage, future

studies may work on revealing the effects of built environment

on e-bike travel in different time periods.

Conclusion

This study is the first to reveal the relationship between

the built environment and e-bike travel in Jinan. Specifically,

we designed a framework of built environment variables at

both macro and micro levels using multiple sources of data to

better quantify the built environment and we applied the OLS

and GWR models to compare the coefficients of each variable

globally and locally. The characteristics of built environment

corresponding to different aggregation pattern of e-bike trips are

analyzed using the GWR model and local Moran’s I. The results

of our study indicate key factors that need to be considered

in the planning stage to reduce congestion pressure on urban

traffic. For example, public services facilities and reasonable road

network density can encourage e-bike traveling, while open sky

and NDVI have an inverse impact on e-bike use. However, the

impacts may vary across city level and further research is needed

to identify the specific impacts across different areas. With more

evidence, it would be easier to generalize findings from one

region to others and inform built environment planning in

China and other developing countries.
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