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Abstract: A review of some papers published in the last fifty years that focus on the 

semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection 

of various environmental pollutants is presented. 
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1. Background 

Semiconducting metal oxide sensors are one of the most widely studied groups of chemiresistive 

gas sensors. These sensors are designed to react with one class of gases whereby the SMO undergoes 

reduction and oxidation. This process causes the SMO sensors to exchange electrons with the target 

gas at a certain characteristic rate, thereby affecting the sensor’s resistance and yielding a certain 

signal. The reaction of SMO materials with gases and the result of the conductometric changes were 

introduced in the early 1950's by Brattein et al. [1] and Heiland [2]. The direct applications of the 

SMO sensors as catalysts and electric conductive detectors toward various gases were then introduced 

by Bielanski et al. [3] and Seiyama et al. [4]. 

During the past few decades, SMO gas sensors have become a prime technology in several 

domestic, commercial, and industrial gas sensing systems. Three different types of solid state gas 

sensors are widely available nowadays [5,6]. These sensors are based on electrochemical behavior, 

catalytic combustion, or resistance modulation of SMO [6-14]. Among the available gas sensing 

methods, the SMO gas sensor devices have several unique advantages such as low cost, small size, 
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measurement simplicity, durability, ease of fabrication, and low detection limits (< ppm levels). In 

addition, most SMO based sensors tend to be long-lived and somewhat resistant to poisoning. For 

these reasons, they have rapidly grown in popularity, becoming the most widely used gas sensors 

available these days.  

Several materials are fabricated to enhance the sensing characteristics of the SMO gas sensors. 

Various SMO mixed with different dopants, catalysts, adhesives, binders, volatile fillers, and 

electrodes all have been studied [15-46]. In addition to the variations in the composition of the SMO 

materials, their film deposition methods provide another variable for sensor design. These deposition 

methods include pyrolysis, oxidation of metallic films, reactive sputtering, chemical vapor deposition 

(CVD), laser ablation, and electron-beam evaporation techniques [47-60]. This review article will 

focus on the principle and use of SMO sensors for several applications, for gas detection, and 

environmental monitoring. The article will also discuss several environmental influence factors that 

might affect a SMO sensor’s performance in terms of sensitivity, selectivity, and response time. 

 

2. Working Principle of SMO Gas Sensors 

 

Despite the simplicity of SMO measurements for use as gas sensors, the detection mechanism is 

complex and not yet fully understood. This complexity is due to the various parameters that affect the 

function of the solid state gas sensors. These include the adsorption ability, electrophysical and 

chemical properties, catalytic activity, thermodynamic stability, as well as the adsorption/desorption 

properties of the surface [5,61-69]. However, it is believed that gas sensing by SMO devices involve 

two major key functions as receptor and transducer functions [70,71]. The former involves the 

recognition of a target gas through a gas-solid interface which induces an electronic change of the 

oxide surface, while the latter is based on the transduction of the surface phenomenon into an electrical 

resistance change of the sensor [70]. When a sensor is heated to a high temperature in the absence of 

oxygen, free electrons easily flow through the grain boundaries of the SMO film. In an oxygen 

atmosphere, oxygen is adsorbed onto the SMO surface, forming a potential barrier at the grain 

boundaries. The interaction of atmospheric oxygen with the SMO surface forms charged oxygen 

species, which trap electrons from the bulk of the material. The layer of charged oxygen at the surface 

repels other electrons from interacting with the bulk of the film, creating a region depleted of electrons 

which results in an increased potential barrier at the grain boundaries. This impedes the flow of 

electrons and thus increases the resistance. When the sensor is exposed to an atmosphere containing a 

reducing gas, the SMO surface adsorbs the gas molecules and lowers the potential barrier, allowing the 

electrons to flow easily and thus reducing the electrical resistance. In this manner, the sensors act as 

variable resistors whose value is a function of gas concentration.  

Metal oxides exhibit various electro-physical features, ranging from insulators to wide band-gap 

semiconductors [72-84]. The non-transition metal oxides contain elements with one oxidation state 

because they require a large amount of energy to make other oxidation states that would bind to the 

oxygen ion ligand [72]. In contrast, because of the various oxidation states that might form on 

transition metal oxides compared to non-transition metal oxides, the surface properties and the types of 

chemisorptions that occur on the surface are important and have been widely studied [72,73,75]. This 

variation in the oxidation states causes significant changes in the surface chemistry response toward 
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oxygen and other target gaseous molecules [5]. Despite the fact that transition metals of dn oxides with 

n > 0 exhibit high potentials to perform oxidation and reduction processes, it has been noted that only 

transition metals with d0 configuration displayed real gas sensor application. For example, TiO2, V2O5, 

WO3 have d0 configurations and are the most widely used transition elements in sensor technology, 

along with non-transition elements with a d10 configuration like ZnO and SnO2 based materials. The 

above choice of metal oxides were found to have a filled valence band of predominantly oxygen 2p 

character with band gap ranges between 3–4 eV [77-84]. 

Since the mode of adsorption and/or reaction occur on a sensor’s surface, several researchers have 

reported that the conductivity response is highly affected by the presence of an efficient catalyst that 

enhances the surface reactivity toward the target gaseous molecules [61,62,68,75,85-87]. In specifics, 

catalytic reactions involving surface oxygen can change both the surface potential along with its defect 

level and thus control the electro-physical properties of the nanocrystalline modified metal oxide. 

Therefore, tuning the surface characteristics with specific catalysts has resulted in major advances in 

sensor technology where both reactivity and selectivity in a material’s responses were improved [88]. 

Both “spill over” and Fermi energy control mechanisms were applied to explain how catalysts affect 

the sensing strategy. In the “spill over” mechanism, the catalysts will dissociate the molecule and then 

the atoms will spill over the surface while in the Fermi energy mechanism the adsorbed oxygen will 

remove electrons from the catalyst and then the catalyst will effectively dislodge from the surface 

catalyst film.  

 

3. Testing Setup, Film Deposition and Delivery System 

 

Despite the fact that the testing setups of SMO sensors tend to differ, their overall principle remains 

the same. Figure 1 shows a general schematic of a SMO gas sensor device.  

Figure 1. A general schematic for SMO gas sensor devices. 
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As illustrated in Figure 1, the sensor array mainly consists of a target gas, a multi-component gas 

mixer, a mass flow controller unit, a testing chamber, a power supplier and heaters, and an 

electrometer for resistance measurement. LabVIEW based software is mainly used to control all 

testing parameters and measurements during the experiment. The testing chamber consists of SMO 

sensor platforms with the ability to control and measure each sensor’s temperature and resistance. The 

SMO films are deposited on the sensing element as thin or thick film substrates. Thin film deposits are 

made via ultra high vacuum (UHV) or electron beam evaporation techniques, while thick films are 

deposited using spin coating methods or via direct deposition of the corresponding SMO suspension. 

The sensor platform is bonded into a standard header and then placed in a test chamber and annealed  

at 400 ºC using a temperature controller prior to gas exposure where the testing experiments of the 

SMO to the target gaseous molecules begin.  

 

4. Applications in Environmental Monitoring and Gas Detection 

 

4.1. Nitrogen oxide gases (NOx) 

 

Different carbon nanotube (CNT) films produced by a chemical vapor deposition (CVD) technique 

were tested as resistive NO2 sensors for environmental applications [89]. It was found that the CNT 

networks provide good response to low NO2 concentrations and excellent selectivity in the presence of 

interfering gases like NH3, H2, octane, and toluene. The pretreatment period, sensor response, and 

recovery times were all found to be temperature dependent. Moreover, the results suggest that CNT 

network sensitivity upon exposure to different gases can be conveniently tuned by suitably choosing 

the airbrushed CNT materials, and by simultaneously controlling both the CNT deposition rate and 

CNT transport properties. As a result, CNT films offer fascinating opportunities for their use as sensor 

materials [89]. 

The sensitivity of the CNT sensors was found to depend on the deposition methods. For example, 

using a pulsed laser ablation (PLA) method, where the graphite contains Ni and Co catalysts, the 

resistance of the CNT (single and multi walled CNTs) gas sensor decreased with an increase of 

ambient NO gas or NO2 gas concentration. It was also found that the temporal rate of change in the 

resistance was proportional to the concentration of the target gas and it can be useful for rapid 

estimation of the target gas concentration [90]. CNT films modified with SMO materials have been 

recently used to detect low concentrations of NOx gases at low temperature. For example, CNTs 

deposited with platinum or palladium nanoclusters (deposited via radio frequency plasma enhanced 

CVD) serve as very promising chemical nanosensors with high sensitivity, reversibility, and a very 

low limit of ppb detection of NO2 [91]. Moreover, it has been reported that CNTs mixed with 

hexagonal-WO3 composites were able to detect as low as 100 ppb of NO2, without having to heat the 

sensor substrates during operation. The detected concentration level is very close to the ambient air 

quality standard for nitrogen dioxide, which demonstrates the environmental applicability of the new 

gas sensors [92]. 

Tungsten oxide based materials have received a great deal of attention in the fabrication of SMO 

gas sensor devices. For example, several SMOs based on WO3 sensors [93-98] and WO3 modified with 

various metal composites [99-108] have been used for potential NOx sensors. The reactivity of WO3 
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based sensors was found to be highly dependent on the deposition process and testing protocol [93-98]. 

For instance, films of nanostructured WO3 with high surface roughness were obtained using a modified 

thermal evaporation technique [93]. It was found that the sensors exhibit high responses, selectivity 

and short response times that are enhanced by decreasing the working temperature down to a minimum 

of 100 °C. At this temperature, high sensitivity was reached for NO2 with a detection limit lower  

than 100 ppb that caused a high variation in the film electrical resistance. Furthermore, the low 

responses obtained towards high concentrations of NH3 (10 ppm) and CO (400 ppm) suggest 

promising selective properties [93].  

Recently, Yang et al. reported various synthetic methods for preparing efficient WO3 sensing 

elements for high temperature potentiometric NOx sensors [98]. Methods include deposition on  

Yttria-stabilized zirconia (YSZ) attached to two Pt and Pd wires (Sensor A), WO3 mixed with  

a-terpineol (Sensor B), a hydrogen peroxide/WO3 solution (sensor C), and WO3 deposition on YSZ 

followed by UV radiation and ozone treatment (Sensor D). The experimental results showed that the Pt 

electrode (Sensor A) had the lowest NOx signal compared to the other devices containing WO3 

whereas, the WO3/YSZ sensing electrode fabricated by the UV-ozone treatment method (sensor D) 

had better mechanical stability, higher sensitivity, and better response/recovery times than devices 

fabricated from commercial WO3 powder [98]. Moreover, several studies have emphasized that grain 

size reduction in metal oxide films is one of the key factors that enhance sensitivity and improve the 

selectivity of these films towards different gases [94-97]. The sensitivity of the WO3 sensing films 

deposited with interruptions by radio frequency (r.f.) sputtering onto silicon micro-machined substrates 

were higher than that obtained for the WO3 thin films deposited with basic technology due to the 

decrease of grain size in the WO3 films [95,96]. The sensors also show good selectivity to reducing 

gases. So, the results obtained showed that a decrease in grain size of the WO3-based sensing layer 

results in an increased sensitivity and selectivity to oxidizing gases [95,96]. 

WO3-based mixed oxides have also been investigated for their sensing characteristics. Modified 

materials include WO3-Ti [99-101], WO3-Pd, Pt, or Au [102-106], WO3-In2O3 [107], and  

WO3-Bi2O3 [108] which were used to fabricate selective and sensitive NOx gas sensors. For instance, 

sensors prepared based on semiconducting thin films of Ti, W, and Mo mixed oxides showed that the 

thin films had good sensing performances and the sensors were able to detect concentrations below the 

limit for environmental monitoring (CO, NO2) and breath analyzers (ethanol) [101]. Also, the 

sensitivity and selectivity of the deposited W–Ti–O mixed oxides thin films prepared using different 

Ti/W targets sputtered using an r.f. magnetron sputtering plant depend on the number and thickness of 

the Ti/W multilayers [99,100].  

It was shown that the sensitivity, the minimum level of NOx gas detection and the selectivity can be 

significantly improved by adding thin layers of noble metals such as palladium (Pd), platinum (Pt), and 

gold (Au) on the surface of the WO3 thin films operating at low sensor temperatures [102-106]. For 

example, pure and Au-doped WO3 powders prepared by a colloidal chemical method showed response 

values for NOx that depend on the operating temperature and the sensor’s decomposition. The 

maximum gas response of the 1.5 wt.% Au-doped WO3 sensor was obtained at 200 °C while  

the 0.25, 0.5 and 1.0 wt.% Au-doped WO3 sensors gave the maximum gas response at 150 °C. Finally, 

physical vapor deposited Au-gates showed response to NO2 with positive flat-band-voltage shifts 

[107]. Response times were shorter than recovery times and were inversely related to gas 
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concentration. At low NO2 concentrations, signal magnitude was limited by response time, whereas, at 

higher concentrations, the signal tended to saturate and the responses rapidly approached a steady state 

[107].  

Platinum electrodes covered with Pt containing zeolite Y (PtY) and WO3 as the two electrode 

materials were examined [108]. Catalytic activity measurements and temperature programmed 

desorption showed that WO3 was almost inactive toward NOx equilibration and no chemisorbed NOx 

species was released from the WO3 surface. However, PtY had much higher activity towards NOx 

equilibration. Due to this difference, compact solid-state potentiometric sensors were fabricated using 

PtY/Pt as the reference and WO3 as the sensing electrode. The use of a PtY filter made it possible to 

measure total NOx in the sub-ppm level and the interferences from CO, propane, NH3, H2O and CO2 

were minimized [108].  

The role of Bi2O3 and indium additions to WO3 in the improvement of NO-sensitive properties of 

WO3 thick films, as well as the structure and gas-sensitive electrical properties of mixed WO3-Bi2O3 

thick films were also examined [109,110]. It was found that the gas-sensitive properties of the  

WO3-Bi2O3 mixed thick films strongly depend on the Bi2O3 content. As the Bi2O3 content increases, 

the NO sensitivity of the WO3-Bi2O3 thick films gradually deteriorates and eventually disappears. But, 

the WO3-Bi2O3 mixed thick films with Bi2O3 contents between 3–5 wt.% displayed a fairly good 

ability to detect NO in air in the range of 5–1,000 ppm at 350 °C [109]. Finally, indium-doped WO3 

sensors were found to be more sensitive to NO2 when tested at 200 °C and more sensitive to CO when 

tested at 300 °C. The sensors showed the highest responsiveness to NO2 when the indium content was 

set at 3.0 wt. % [110]. Other studies have revealed that the gas sensors based on indium oxide 

nanowires and In2O3 thin films grown by the metal organic CVD technique showed good selectivity to 

NO2 with little interference from other gases [111-114].  

Investigators have also studied other SMO films such as SnO2 [103,115-126], ZnO [127-134],  

Te-oxide [135,136], Mo [137], gold [107], Pt [108], copper [138], and indium oxides [111,112]. Tin 

oxide thin films deposited onto different substrates such as Pyrex glass, Corning 7059 glass, and fused 

quartz showed a resistance change in the presence of 500 ppm of NO2 toxic gas at a working 

temperature of 350 °C and a sensitivity threshold of about 5 ppm at the same temperature [139]. An 

example of the electrical response of sprayed tin oxide thin films toward various concentrations of NO2 

gas measured at 350 °C is presented in Figure 2. As shown in Figure 2, the device detects low 

concentration <10 ppm of NO2 with a clear gradual increase in the resistance as the concentration of 

the target gas increases [139]. 

In addition, the structural properties of polycrystalline Indium Tin Oxide (ITO) thin films were 

optimized in order to improve the stability of these nitrogen oxide detectors in the presence of high gas 

concentrations (1,000–2,000 ppm in air). It was found that ITO thin films exhibit high sensitivity 

toward NO2 and NO. Furthermore, they also exhibited good selectivity of these gases with respect to 

CO and CH4. It was also found that four zones for oxygen ion adsorption and desorption were able to 

be distinguished by a plot of conductivity activation energy vs. temperature which also established that 

nitrogen oxide desorption occurs at the same temperature (about 570 K) where O2
− desorption is 

supposed to take place [115]. 
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Figure 2. Electrical response of sprayed SnO2 thin films vs. NO2 concentration at 350 C 

working temperature . (Reprinted from reference [139] with permission from Elsevier). 

 
 

ZnO sputtered thin films which were integrated with micro-arrays and deposited on Si [127] and  

Al [128] substrates were studied. The electrical response of the films to changes in concentration of 

NO2 along with other gases like H2, Liquified Petroleum Gas (LPG), H2S, CO were examined. ZnO 

films showed strong responses to even low concentrations of NO2 (1 ppm) and higher sensitivity at 

lower temperatures [127]. The gas sensing results on ZnO-Al films showed that the response increased 

with an increase in Al concentration up to 5 wt.% Al. It also showed that the response increased 

gradually with increasing NO2 concentration, and reached saturation at 100 ppm of NO2. At an 

operating temperature of 100 °C, the response towards lower NO2 concentrations is low irrespective of 

the Al concentration. While at 200 °C, the gas response was higher than that of 100 °C and reached 

saturation at around 150 ppm of NO2. At an operating temperature of 300 °C, the sensor was able to 

detect more than 150 ppm of NO2 [128].  

Finally, TeO2 thin films were prepared by a reactive r.f. sputtering method and the NO2 gas sensing 

characteristics of these films were investigated [135,136]. The sensors were subjected to various 

concentrations of NO2 gas in the range of 1–120 ppm. The results showed the best sensitivity to NO2 at 

room temperature and the response decreased with an increase in working temperature. The response 

was found to be highest for films with a thickness of 300 nm, compared to those of 100 nm thickness. 

The response time was found to decrease with increasing gas concentration and it was about 6 min  

for 1 ppm to about 1.2 min for 120 ppm NO2 concentration. The recovery times, however, were longer 

than eight min for each gas concentration [135].  

 

4.2. Sulfur dioxide detection 

 

Sulfur dioxide is one of the typical air pollutants that must to be detected and then reduced in the 

environment by suitable methods. Many studies on the development of SO2 sensors have appeared, 

including liquid and solid electrolytes [140-146], as well as polymeric sensing films [147-153]. In 

contrast, only a few reports have been written on SMO sensing films for selective SO2 detection. 



Sensors 2009, 9              
 

8165

Sensors based on SnO2 [154], SnO2 doped Pd [155], WO3 doped with various metals [156-158] and 

Vanadium oxide modified with TiO2 [158] were deposited and their sensing properties were measured 

and modified to reach a selective and sensitive detection level of SO2 gas. For example,  

Berger et al. [154] have reported the interaction mechanisms on the gas/sensor interface during the 

initial detection of sulfur dioxide were analyzed using results from the physico-chemical 

characterization of the SO2/SnO2 interaction. Surface acidity and the effects of SnO2 hydration were 

studied in order to show the effects of SO2 treatment. The results showed an increase in the density of 

the Lewis acidic sites after treating the samples with SO2. This increase was found to be dependent on 

temperature, with the highest value being obtained for a treatment temperature of 500 °C. This 

increase in density is assumed to be the reason for the sensor’s increased sensitivity at high 

temperatures. It was also found that the irreversible formation of sulfate on the sensor surface is the 

cause of the irreversibility of the device’s response after SO2 is first detected [154].  

SnO2-based gas sensors containing 0.05, 0.1, 1, and 3 mol% Pd, as a catalytic additive, were 

fabricated using thick film technology and their response to CO gas was tested within a temperature 

range of 300 °C to 600 °C with either NO or SO2 being introduced as an interfering gas. The testing 

results showed that when SO2 was introduced, the response of the sensors toward CO increased up to a 

temperature of 450 °C after which it started to decrease when the temperature was raised to 500 °C, 

and further to 600 °C [155].  

The potential of different WO3 based semiconductor metal oxides as SO2 sensors have been 

investigated [156-158]. Several attempts were made to improve the SO2 sensing properties of WO3 and 

SnO2 by the addition of a small amount of noble metals. Adding 1.0 wt.% of the metal to the WO3 

powder was carried out by a conventional solution based method by employing HAuCl4·4H2O, 

AgNO3, Cu(NO3)2·3H2O, H2PtCl6·6H2O, PdCl2 and RhCl3·3H2O Each sensor material was mixed with 

a small amount of water and the resulting paste was applied to the surface of an alumina tube which 

had a pair of Pt wires serving as electrodes. It was then preheated to 950 °C for 10 hours in air prior to 

sensitivity measurements [156]. After the synthesis of the sensors, the sensitivity of the sensors  

from 200–800 ppm SO2 was measured in a flow apparatus in the temperature range of 100–800 °C. 

According to the experimental results, all the semiconductor metal oxides exhibited complex 

temperature- and time-dependant response curves for SnO2. However, among the oxides tested, WO3 

exhibited the highest SO2 sensitivity at 400 °C, accompanied by a resistance increase, but its resistance 

to SO2 decreased at temperatures higher than 500 °C. Among the metals added to improve the SO2 

sensitivity of WO3, the addition of 1.0 wt.% Ag was most effective for improving the sensitivity at 

450 °C but also resulted in a decrease in sensor resistance upon exposure to SO2. When it came to 

cross selectivity, it was found that the resistance of WO3 increased upon exposure to both NO and 

NO2, and the NO2 sensitivity was superior to NO as well as SO2. In the case of 1.0 wt.% Ag/WO3, the 

results were similar but the interference from NO and NO2 was found to be more significant [156].  

Active layers of pure and Pt doped WO3 were deposited using r.f. magnetron sputtering on micro-

hotplate substrates and then their sensing properties to sulfur compounds (SO2 and H2S) were also 

investigated [157]. An integrated sensor containing an array of four microsensor elements was 

fabricated using microelectronic fabrication technology. The results showed that the sensors have high 

and reversible responses to the presence of H2S and SO2 diluted in CO2, in the absence of oxygen. Pure 
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WO3 sensors were very sensitive to H2S, but not so for SO2. However the doped sensors showed the 

opposite behavior [157].  

Recently, Liang et al. have modified a compact tubular sensor based on NASICON (sodium super 

ionic conductor) and a V2O5-doped TiO2 sensing electrode for the detection of SO2 [146]. The 

NASICON material was prepared from ZrO(NO3)2, NaNO3, (NH4)2HPO4 and Si(C2H5O)4 by a sol-gel 

process. Nanometer-sized titanium dioxide was also prepared by a sol-gel method with Ti(OC4H9)4 as 

a precursor, C2H5OH as a solvent, and CH3COOH as a chelating reagent. NASICON was used as the 

basic material in the sensor and V2O5-doped TiO2 for the sensing electrode. The proportions of V2O5 to 

TiO2 were 0, 2, 5, 10 and 20 wt%. The sensors were exposed to sample gases containing different 

concentrations of SO2, NO, NO2, CH4, CO, NH3 and CO2 and their responses were measured. The 

results showed that the best sensing properties toward SO2 were shown by the sensor which had a thick 

film of NASICON and 5 wt% V2O5-doped TiO2 electrode sintered at 600 °C. The detection response 

time for 1–50 ppm SO2 was about 25–10 seconds while the recovery time was about 30–40 seconds. 

The sensor also showed excellent selectivity to SO2 against disturbing gases, and the operating 

temperature of the sensor was 300 °C [146]. 

 

4.3. H2S detection 

 

SMO based sensors to detect H2S gas have received more attention than SO2 gases due to its toxic 

effects on human health. The threshold limit for H2S is 10 ppm. With concentrations above 250 ppm, 

H2S has a major effect on the human body, causing death. Since H2S occurs naturally in crude 

petroleum, natural gas, volcanic gases, as well as hot springs; and is generated by several industrial 

activities like bacterial decomposition of organic waste, food processing, cooking ovens, kraft paper 

mills, and petroleum refineries, the in situ monitoring of H2S is very important, especially in the 

industrial sector.  

In recent years, studies on H2S detection and monitoring using SMO sensors have increased. The 

following SMO based sensors were successfully modified to selectively detect H2S: WO3 and  

WO3-based materials [159-165], SnO2 [166-171], ZnO [172,173], copper oxide [170,174,175], 

platinum and palladium oxides [176,177], indium oxides [177,178], silver based  

materials [169,179,180], titanium oxide [181] and cadmium oxide sensors [182].  

WO3 based SMO sensors have received great attention for H2S detection. For example, WO3 films 

made by a r.f. deposition method employed in gas sensing showed that as-deposited films were  

sub-stoichiometric with various O/W ratios. The interaction with H2S was studied at 475 K, where the 

sensitivity of the film to the H2S gas is highest. The gas sensor's change in conductivity is most likely 

caused by the formation of a steady-state concentration of surface oxygen vacancies when the sensor is 

exposed to a given partial pressure of H2S in air [160]. Moreover, the H2S response properties of the 

WO3 thin film sensors were studied both in dry and wet synthetic air with different levels of  

humidity [161]. It has been noted that sputtered WO3 thin-film sensors give a large variation between 

the H2S response properties of sensors in the same sensor array where some sensors were found to be 

sensitive to H2S in the ppb range without gold doping, but with a slight increase in the conductance of 

the sensors in humid environments which interfere to some extent with the H2S sensing [161].  
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Unlike WO3 thin films, tungsten oxide nanostructures exhibit better sensing characteristics to H2S 

in the concentration range of 1–1,000 ppm over the temperature range of 40–250 °C. The best results 

were obtained with the WO2.72 nanowires at 250 °C where the response was not affected significantly 

up to 60% relative humidity (RH) [163,165]. A typical gas sensing profile of the above device toward 

the H2S detection at various temperatures and concentrations is shown in Figure 3. As shown in  

Figure 3, the highest response was observed at 250 °C with a possible detection limit under similar 

conditions that could reach the ppb range (<1 ppm) [165].  

Figure 3. (a) Gas sensing characteristics of tungsten oxide nanoparticles to 1,000 ppm 

H2S, and (b) variations in response with concentration of H2S at 250 C. (Reprinted from 

reference [165] with permission from Elsevier). 

 
 

Recent studies showed that the amount of the dopant influences the sensitivity and the optimum 

operating temperature [159,164]. Among various dopants of gold, platinum, or palladium, it was found 

that the spillover effect of Pt dopant is larger than the gold dopant. In specific, under 1 ppm H2S and at 

an operating temperature of 220 °C, the individual sensitivities of the Pt and the Au-Pt doped WO3 gas 

sensors are 23 and 5.5, respectively. The results show that the Pt doped WO3 gas sensor exhibits 

acceptable response and recovery times, as well as a high sensitivity toward H2S [159,164]. 

Sols of crystalline SnO2 with various crystallite grain sizes ranging between 6 and 16 nm were 

prepared by subjecting stannic acid gel to hydrothermal treatments under various conditions. Thin film 

sensor devices with different film thicknesses between 200 and 900 nm were fabricated to investigate 

sensing properties toward H2S gas. It was found that the sensor response to H2S was significantly 

enhanced with decreasing film thickness and with increasing grain size up to 16 nm. The response was 
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surprisingly large, exceeding 104 at 150 °C, for the device deposited with a 200 nm hickness 

[166,167].  

An Ag doped nanocrystalline SnO2 gas sensing material presents better sensitivity compared to pure 

SnO2, due to the distribution of Ag2O particles in grain boundaries of nanocrystalline SnO2 and the 

formation of p–n heterojunctions [168]. The H2S measurement results indicate that the developed of 

the H2S sensor's working temperature is about 70 °C, which is much less than commercially available 

sensors and recently developed SMO sensors [168]. Moreover, Cu-SnO2 composites show strong 

sensitivity toward H2S detection which reaches <10 ppm of H2S at a temperature of 100 °C [170,171]. 

Other sensors containing copper, iron, cadmium, and indium oxides were found to be selective toward 

H2S detection in ppm concentration levels [170,171,174-178,182]. Finally, both ZnO and tellerium 

oxide films were found to be highly sensitive to H2S gases at very low concentration levels [172,183]. 

For example, tellurium thin films prepared by thermal evaporation on alumina substrates at a 

temperature of 373 K were found to be sensitive towards 0.1 ppm of H2S at room temperature where 

hydrogen sulphide reduced the amount of adsorbed oxygen on the Te film surface leading to an 

increase in resistance [183]. Similarly, ZnO sensors fabricated from ZnO nanorods were found to be a 

suitable candidate for practical materials detecting low concentrations of H2S and C2H5OH where the 

sensors responded to 0.05 ppm H2S at room temperature [172]. 

 

4.4. NH3 and amine sensors 

 

Detecting trace levels of ammonia is important since it is used extensively in many areas like food 

processing, fertilizers, chemical technology, medical diagnosis, and environmental protection. Some of 

the well known materials for ammonia sensors are WO3 [8,184], copper based materials [8,185],  

ZnO [186], SnO2 [187], iron oxide [188], Cr2O3 [189]. WO3 thin films were prepared via a sol-gel 

technique using WCl6 as a precursor and then tested for its sensing properties toward trimethylamine 

(TMA) gas at a low operating temperature of 70 °C. WO3 films were deposited between interdigital 

gold electrodes on the outer wall of a ceramic tube. The gas sensitivities to TMA, C2H5OH gas, 

gasoline, CH4, CO, and water vapor were measured. The sensitivity of the sensor was carried out in a 

range of temperatures and different TMA concentrations. For 100 and 500 ppm of TMA, the optimum 

operating temperature was found to be 70 °C. Even for 700 and 1,000 ppm concentrations of TMA, the 

sensitivity is highest at 70 °C [184].  

Pure ZnO and RuO2-doped ZnO were prepared by a screen printing technique on an alumina 

substrate in a desired pattern and their gas sensing performances were studied. The thick film samples 

were made by dipping pure ZnO thick films into an aqueous solution (0.01 M) of ruthenium chloride 

for different time intervals: 5, 15, 30, 45 and 60 minutes [186]. The responses to 1,000 ppm NH3 of 

pure ZnO sensors fired at 500–700 °C were measured at operating temperatures between 100–350 °C. 

The response value increased with increasing operating temperature, and the sensor fired at 650 °C 

was the most sensitive. Variations in gas response to 1,000 ppm NH3 of ZnO films doped with 

different amounts of RuO2 and different operating temperatures were also measured [186]. In addition, 

ZnO thin films activated by chromic acid dipped for different time intervals and then fired at 500 °C 

for 24 hours in ambient air where CrO3 is not thermally stable above 197 °C and thus oxygen was lost, 

forming Cr2O3 which is a stable compound [189].  
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Cr2O3-activated sensors showed a good response to NH3 even at room temperature and were highly 

selective towards NH3 gas (300 ppm) even in the presence of other toxic gases of higher 

concentrations. The sensor also showed very rapid response and recovery times to NH3 gas [189]. In 

contrast, Cr2O3 thick films modified by 0.59 mass % Fe2O3 proved to be the most sensitive to not only 

NH3 gas but also LPG, C2H5OH and Cl2 gases [188]. The operating temperatures for NH3, C2H5OH, 

LPG, and Cl2 were found to be 250 °C, 300 °C, 400 °C, and 450 °C, respectively. It showed good 

selectivity to a particular gas at a particular temperature against other reducing gases. The sensor also 

showed very rapid response and recovery rates to reducing gases [188].  

Gas sensitive sol-gel SiO2-SnOx-AgOy films were fabricated where silver nitrate (AgNO3), 

0.01  l.%, was added to tetraethoxysilane [(C2H5O)4Si] solutions mixed with stannic chloride 

(SnCl4·H2O), in a 5:1 ratio, in order to prepare an alcohol precursor. The 150-nm thick films were 

deposited by spin-coating on a silicon substrate. These obtained films were dried at 120 °C for 2 hours 

and then annealed at higher temperatures (from 350–600 °C) in air. The gas-sensitive properties of the 

films were tested to NH3 inputs which varied in the concentration range of 10–250 ppm in air. The 

films were shown to consist of Ag2O3, Ag4SiO4, Ag2SiO3, SnO, Sn3O4 and SnO2. It was confirmed that 

the response and recovery times depend on the Sn/Ag ratio. Further, an AFM study showed that the 

only films which were porous had a minimum Sn to Ag ratio of 0.5 and were annealed at 600 °C for 

eight hours, thus showing the best sensing characteristics. The films also showed good sensitivity to 

ammonia gas even at low temperatures (>50 °C) [190].  

Finally, a different preparation technique for copper (I) bromide and their effects on its properties 

were investigated [185]. The two different techniques of preparation used were (1) magnetron 

sputtering (sensor A) and (2) electrochemical (sensor B1) or chemical (sensor B2) oxidation of copper 

in the presence of bromide ions. The detection of ammonia on CuBr sensors can be described as a  

two-step mechanism, involving the formation of a chemisorption layer during the ammonia treatment 

and dipolar effects due to physisorbed ammonia molecules during ammonia detection. All these results 

confirm that CuBr based sensors are of great interest for ammonia detection [185].  

 

4.5. Hydrogen sensors 

 

Hydrogen is a promising potential alternative fuel for automobiles and can be converted into 

electricity in fuel cells. It also is already used in medicine and space exploration as well as in the 

production of industrial chemicals and food products. Hydrogen sensors are needed because an 

explosive mixture can form if hydrogen leaks into air from storage tanks or valves. A nanostructured 

SnO2 thin film was fabricated by a spin coating together with a subsequent calcination process. Silver 

(Ag) and platinum (Pt) have been added as doping material in SnO2 to achieve better sensitivity and 

selectivity for H2 detection. The results of the tests showed that nanocrystalline SnO2 sensing films 

produced a fast response time of about two seconds and a quick recovery time of about 10 seconds 

with good sensitivity to hydrogen at 100 °C [191]. Porous SnO2 particles made using a Sol-gel method 

had higher sensitivity to H2 gas because of their high surface area [192]. A linear relationship between 

sensitivity and H2 concentration was observed on all sensors at an H2 concentration lower than 1,500 

ppm. The results imply that there are potential applications for these high surface area SnO2 porous 

materials as highly sensitive sensors for the measurement of reducing gases at very low  
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concentrations [192]. Moreover, a single wall carbon nanotube (SWCNT) reinforced nanocrystalline 

tin dioxide gas sensor was developed to achieve better gas sensing performance, in terms of sensitivity, 

response and recovery times, as well as a reduction in power consumption (low working temperature). 

Both the pure nano SnO2 sensor and the SWCNT/SnO2 sensor were tested in detecting various 

hydrogen concentrations [193]. The results showed that the SWCNT/SnO2 sensor's sensitivity for 

hydrogen detection was three times greater when compared to that of the pure SnO2 sensor over a 

hydrogen concentration range from 300 ppm to 1,500 ppm tested at a temperature of 250 °C [193]. 

Tungsten oxides supporting palladium or platinum catalysts were used as hydrogen-sensitive media. 

Their colors changed from pale green to blue when hydrogen reduces them to tungsten bronze [194]. 

Two different coatings of the WO3 were developed. In the first method, palladium-supported tungsten 

oxide powder was dispersed by dissolving tungsten oxide into a PdCl2 solution followed by annealing 

at 300 °C for 3 hours in air. The second sensor was developed using a Sol-Gel protocol in which, 

tungsten oxide sols are formed from the sodium tungstate aqueous solutions of various concentrations 

containing hydrogen tetrachloropalladate (II) acid (or chloroplatinic acid). The solution is acidified 

when it passes through a proton exchange resin [194]. The response time was greatly improved when 

the thin hydrogen-sensitive film was prepared by the sol–gel process where the sensor can measure the 

distribution along the fiber line, unlike the traditional hydrogen sensors that measure at a certain spatial 

point [194].  

 

4.6. Ozone sensors 

 

Ozone is one of the naturally occurring gases available in the atmosphere. However, a high level of 

ozone gas in the atmosphere is harmful to humans’ respiratory system, causing inflammation and 

congestion of the respiratory tract [195]. This harmful level can result from the interaction between 

sunlight and various chemicals emitted into the environment by industrial means. Therefore, several 

materials based on WO3 [196-203] and SnO2 [204,205] have been fabricated to detect the ozone level 

in the atmosphere.  

Novel sensors based on tungsten trioxide (WO3) semiconductors have been found to hold much 

promise as a cheaper alternative for ozone monitoring. For example, WO3 thin films deposited by 

reactive magnetron r.f. sputtering into silicon substrates have been investigated for ozone  

detection [196,197,200,202]. A clear enhancement of the sensor response to ozone was noticed when 

the grain size of the WO3 film decreases [202]. Recent studies have reported that the sensitivity of 

WO3 sensors strongly depends on working temperature, where at 573 K the sensor responses are the 

greatest [206]. The electrical properties of WO3 sputtered films depend upon the oxygen concentration 

during the deposition and during the resistivity versus temperature measurements. The activation 

energies are 0.19, 0.28 and 0.42 eV in the range of 300–723 K which indicates that the conduction 

mechanisms depend on oxygen concentration [196]. Further study on similar materials indicates that 

the adsorption efficiency in a mixture of air/ozone is strongly dependent on temperature as well [197]. 

Thus, the variation of the sensor’s sensitivity with temperature is directly linked to the temperature 

dependence of the adsorption efficiency and the film morphology which strongly depends on the 

oxygen concentration during the deposition process [200].  
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WO3 based mixed oxide materials have also been investigated for ozone monitoring [199,201,203]. 

For example, the performances of three sensing layers — bare WO3, palladium, and gold activated 

surface WO3 — towards ethanol (C2H6O) and ozone (O3) were compared. Au has been found to be a 

good sensing activator for WO3 thin films. The sensitivities of Au/WO3 sensors to ethanol and ozone 

are in the 2/1 ratio; therefore, at 300 °C they can provide a stable, sensitive element for ethanol  

gas [199]. On the contrary, Pd/WO3 sensors are practically insensitive in this temperature range to the 

tested gases and could be used as selective elements against ozone [199]. Moreover, a small quantity 

of cobalt nanograins deposited on the surface of WO3 sensors produces a significant change in its 

conductance from n to p-type [203]. An increase in conductance of the WO3 sensors under ozone is 

thus observed.  

Modified Co/W sensors have been tested under ozone before and after an annealing process under 

dry air at a temperature of 673 K for 1.5 hours [203]. The obtained response shape and mechanisms of 

ozone detection by Co/WO3 sensors suggest complex phenomena which depend on the strength of the 

metal substrate interaction and consequently could be induced by the formation of oxide species on the 

metal nanoparticles. To understand the changes that occur upon ozone exposure, a dynamic model 

based on the Wolkenstein adsorption theory has been developed [201]. The model suggested that the 

ozone detection mechanism of WO3-based gas sensors in dry air is essentially due to the adsorption of 

species O2, O2
−, O and O− at the surface of the grains. Both the simulation results and the experimental 

ones show good correlations [201].  

A computerized Modular Ozone Sensor System (MOSS) based on various metal oxides (In2O3, 

SnO2) has been presented for evaluating the sensitivity and reliability of different sensor/transducer 

combinations. A material’s sensitivity to ozone and its cross-sensitivity to other gases in ambient 

condition and to humidity were evaluated. It has been discovered that indium based materials had the 

largest sensor sensitivity as well as the smallest cross-sensitivities for ozone detection [204]. SnO2 

films with a thickness of 30–200 nm deposited by spray pyrolysis shows a response to ozone that is 

quantitative and rapid and sufficient for use in ozone control and monitoring applications [205]. Sensor 

performance showed a large change in resistance upon exposure to ozone with maximum values for 

relative signals observed at an operating temperature ranges between 200–350 °C, (Rozone /Rair), in the 

range of 102–104 for ozone concentrations of ~1 ppm in air at 35%–45% relative humidity (RH) [205]. 

 

4.7. Volatile organic compound sensors 

 

Volatile organic compounds (VOCs) are very dangerous for both the environment and human 

beings. For humans, these compounds can cause many acute or chronic problems like eye irritation, 

throat and lung problems, as well as cancer. Therefore, during the past decade, several studies have 

been reported on modifying thin and thick film SMO sensors for atmospheric gaseous pollutants like 

VOCs. Several sensors have been fabricated during the last decade to selectively detect various VOC 

components like ethanol, acetone, hydrocarbon, and LPG. Some of these SMO sensors contain single 

metal or mixed metal oxides like SnO2 and SnO2-based materials [207-220], WO3 and WO3-based 

materials [221-224], titanium based oxides [225-227], zinc based oxides [214,224,228], iron based 

oxides [229,230], cobalt based oxides [231], cerium oxide sensor [232], and copper based  

materials [233]. 
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When comparing the sensitivity of the SnO2 films, the ethanol gas sensitivity can be increased 

tremendously with an addition of a basic metal oxide such as La2O3 to SnO2. Ethanol gas undergoes 

dehydrogenation and dehydration over the SnO2-based elements loaded with a basic oxide (e.g., 

La2O3) and an acidic oxide (e.g., WO3), respectively [208]. As a result, SnO2 coated with a La2O3 layer 

using a 0.5 M La (NO3)3 aqueous solution showed an increase in response to acetone (~3.6 times) and 

ethanol (~5.5 times) with no variations in the responses toward propanol, CO, and H2 gases [211]. 

Moreover, tin oxide films doped with 2.0 wt.% CeO2 were found to dramatically improve sensitivity 

and selectivity to C2H5OH, in the presence of CO, LPG and CH4. The results show that ethanol 

selectivity is enhanced by factors of about 5.2, 5.3, and 48.2 with respect to CO, methane, and LPG, 

respectively. The enhancement in ethanol selectivity strongly depends on the temperature where the 

maximum selectivity is observed at 300 °C. At higher temperatures, its selectivity to ethanol sharply 

declines and the sensor becomes more selective to CO in the presence of ethanol and LPG [220].  

Recently, the effect of CdO doping on the gas-sensing properties of SnO2-based sensors has been 

reported. Doping with CdO causes a remarkable improvement in sensitivities of SnO2 to C2H5OH and 

H2 with best sensitivity observed at 300 °C for the 10 mol% Cd-doped SnO2 film. The detection limit 

of this deposit is up to several ppm C2H5OH in air, making it applicable as a breath alcohol  

analyzer [210].  

It has been noted that the mode of deposition of thin tin based oxide films highly influenced their 

physical, electrical, and chemical properties [207,209,212-214,234]. For example, SnO2–In2O3 

nanocomposites fabricated with a coprecipitation method achieved superb response to ethanol by 

tuning the content of indium [209]. In addition, sensors prepared by mixing the SnO2 paste with a Pt 

paste before firing, showed sensitivity to ethanol that was five times higher than one of the sensors 

prepared by a r.f. magnetron sputtering method. The 3% Pt-doped samples have an extremely high 

sensitivity to ethanol vapors and their responses are linear in the ppb range with a detection limit  

below 1 ppb at an operation temperature of 300 °C [212].  

Finally, several tin oxide based films have been modified to detect other VOCs like vapors of LPG, 

acetylene, and aldehyde with high sensitivity and selectivity. A SnO2–NiO composite material 

provides a stable and sensitive film for detecting low concentrations of HCHO [215]. Despite the fact 

that the response and recovery time of the film sensor decreases rapidly with an increase in the HCHO 

concentration; at relatively low concentrations, the micro-gas sensor can detect 0.06 ppm HCHO and 

shows high selectivity in the presence of interference gases, such as acetone, alcohol, -pinene and 

toluene, which makes it promising for the detection of indoor HCHO [215]. Qi et al. have reported  

that 6 wt% Sm2O3-doped SnO2 displays a superior response for C2H2 that is 16.8 times larger than that 

of pure SnO2 at an operating temperature of 180 °C. This sensor also shows high sensitivity under 

various humid conditions which make it a good candidate for fabricating C2H2 sensors [216]. SnO2 

based sensors have been modified to detect LPG [217,219]. For example, it has been reported that 

SnO2 sputtered with Pt, Ag, Ni, and Pb using a r.f. technique show good detection toward LPGs. 

Among all of these devices, the SnO2–Pt-dotted island structure exhibits enhanced the response for 

LPG at a relatively low operating temperature of 260 °C. The presence of Pt islands on the SnO2 film 

results in enhanced sensing characteristics with a fast response speed (about 100 s) and a fast recovery 

time (about 120 s) [217]. Moreover, the gas sensitivity of the SnO2 gas sensor toward LPG was 
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improved by Al doping, which is further improved by Ni doping due to a significant reduction in the 

grain size of the composite material [219].  

TiO2 and W/TiO2 thin films with increasing W content deposited via a spin-coating method 

presented high ethanol sensing performances [222]. Doping with W resulted in an increased response 

with respect to pure TiO2 where, spin-coated W/TiO2 thin films showed a very high ethanol response 

compared with those already presented for TiO2 [235]. In addition, Nb-Pt co-doped TiO2 and the 

hybrid single wall carbon nanotubes (SWCNTs)/Nb-Pt co-doped TiO2 thin films prepared by the  

sol-gel spin-coating process have been tested for ethanol detection [225]. The results revealed that the 

responses to ethanol of the Nb–Pt co-doped TiO2 sensors with SWCNTs inclusion increase by factors 

of 2–5 depending on the operating temperature and the ethanol concentration, compared to that of the 

sensor without SWCNT inclusion with a maximum sensitivity and stability at 335 °C [225].  

WO3 thick films prepared by a screen-printing method exhibited excellent acetone vapor sensing 

properties with a maximum sensitivity reached at 300◦C along with fast response and recovery times. 

Further, the screen printed WO3 thick films can be reliably used to monitor the concentration of 

acetone vapor over the concentration range of 25–75 ppm [223]. The response and recovery 

characteristics of the WO3 thick films are reproducible and quick. Thus, this study demonstrates the 

possibility of utilizing WO3 thick films as a sensor element for the detection of acetone vapor [223]. 

Interestingly, Cr2−xTixO3 (x = 0–0.5, CTO) powders prepared by a combustion technique [227] showed 

a linear increase in the sensor response to acetone as a function of concentration. The quick response 

and recovery of these materials indicate their potential as excellent candidates for acetone monitoring. 

The exponential decay of the sensor relative response comes to a constant value after 80 hours of 

exposure to 1 ppm of acetone which indicates that the sensor could operate for several hundred hours 

with outstanding performance and continuous usage [227].  

A nanosized ZnO powder was synthesized by using a chemical precipitation method, and loaded 

with different dopants (Ru, Mg, Pd,Y, La,V, and Na) through impregnation. The prepared ZnO powder 

shows excellent gas responses to alcohol and acetaldehyde with no response to ethene. In addition, 

among all the dopants, Ru is the optimal dopant that can increase the sensor’s response to  

C2H5OH [228]. Various metal oxides were modified by doping with lanthanum have been reported as 

selective VOC sensors. For example, the perovskite-type nano-crystalline thin-film of LaFeO3 

obtained by using a sol-gel coating technique proved to be a good ethanol sensor that could be used as 

a detector for a wide range of C2H5OH concentrations between 100–1,000 ppm with excellent  

stability [229]. 

Nominal La1−xMgxFeO3 (x = 0 – 0.7) nano-powders were prepared using a sol–gel method. It has 

been noted that for samples La1−xMgxFeO3, the Mg composition x affects the structure, resistance in 

air, and gas sensing properties to methane gas. The resistance of La1−xMgxFeO3 is smaller than that of 

LaFeO3 with x ≤ 0.1. The La0.9Mg0.1FeO3-based sensor shows a high response to methane gas, low 

operating temperature, and excellent stability in air [230]. However, in the presence of interfering 

gases like methanol and CO, the sensor lacks selectivity. Recently, LaCoO3 perovskite has been 

modified as an active filter for eliminating the sensor’s sensitivity to CO and ethanol [231]. Both CO 

and ethanol are completely removed by the filter at temperatures as low as 190 °C. At 250 °C, the 

sensor’s sensitivity to ethanol dramatically decreased from 158 to 0.44 and that to CO declined  

from 2.2 to 0.9, when an active filter is used. Therefore, only methane reaches the Pt/SnO2 sensor at 
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temperatures higher than 190 °C, for which the sensor shows high sensitivity to methane. As a result, 

the LaCoO3 perovskite filter eliminates the sensor sensitivity to CO and ethanol, making the sensor 

highly selective to methane in the presence of CO and ethanol in air [231]. 

 

4.8. Chemical warfare agents 

 

The identification and quantification of chemical warfare agents (CWAs) in the battlefield and 

public areas is extremely important to eliminate the threat of these chemicals to humans. Various 

spectroscopic techniques have been employed to detect CWAs such as NMR [236-246], Mass 

Spectrometry [247-251], Gas Chromatography-Mass spectroscopy (GC-MS) [252], Fourier Transform 

Infrared (FTIR) spectrometry [ 253-257], Raman spectroscopy [258,259], Atomic emission and Flame 

photometry [260], Ion mobility spectrometry [261-266], and Fourier Transform microwaves [267]. 

However, the high cost and complexity of the sampling and detection procedures make it extremely 

important to develop devices that will provide real time, sensitive, and selective CWA detection with 

low cost. Several studies have shown that surface acoustic wave polymers provide highly selective 

sensors for CWA detection [268-278] but they still lack sensitivity. For the last three decades, 

semiconducting metal oxides (SMOs) such as SnO2, WO3, and ZnO have been extensively studied for 

sensing hydrocarbon and other chemical agents. The major problem with SMO sensor technology is 

that it lacks selectivity. Therefore, various semiconducting metal oxides such as In2O3, TiO2, WO3, 

CuO have been developed for enhancing selectivity to a particular analyte.  

Tin oxide based gas sensors have been used to detect the toxic gases and chemical agent  

simulants [9,15,279-284]. For example, tin oxide nanowires prepared by a vapor-liquid-solid 

deposition method was found to be very sensitive to acetonitrile and dimethyl methyl phosphonate, 

DMMP, the most commonly used simulant molecule for sarin. The modified materials were found to 

be useful to detect concentrations of both simulant CWAs at concentrations lower than the respective 

CWAs Immediately Dangerous to Life or Health (IDLH) values [279]. Lee et al. [281] have previously 

reported that the particle and the pore size, as well as the doping of the sensing materials play 

significant roles in the sensitivity of the SMO particles [281]. In specific, during the detection of 

acetonitrile and dichloromethane on tin oxide thick film sensors, the sensor prepared from a small 

SnO2 precipitated particle (15 nm) was more sensitive than that prepared from the commercial  

SnO2 (40 nm) with a significant enhancement in the sensor’s sensitivity upon doping with NiO or 

Nb2O5. The sensitivity of the SnO2 sensor linearly increased in acetonitrile between 0.02 and 0.2 ppm 

at 350 °C whereas, for other chemical agent simulants, the sensitivity increased linearly between 0.1 

and 0.8 ppm [281]. The recovery of the sensors seemed to be possible for acetonitrile whereas, in the 

cases of DMMP and dichloromethane, the complete recovery of the sensor was not possible because of 

poisoning. However, addition of Sb2O3 or MoO3 dopants enhanced the recovery of the sensors after the 

exposure of DMMP or dichloromethane [281]. The same research group has recently reported that 

three components; namely, Mo, Sb, and Ni (Mo5Sb1·Ni(I)) promoted the SnO2 based sensors for the 

detection of DMMP [280]. In specific, the Mo5Sb1·Ni(I) sensor showed not only an excellent sensor 

response in the detection of a very low concentration of DMMP (ppb level), but also a complete 

recovery. Also, the Mo5Sb1·Ni2(I) sensor developed in this study showed a high sensor response of 

about 70% in the detection of 0.5 ppm DMMP at 350 °C [280]. Finally, it has been reported that 
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adding basic oxides like CaO and MgO to SnO2 or ZnO-based elements exhibit a reasonable sensitivity 

to DMMP down to 44 ppb. The role of basic oxide additives aids the dissociative adsorption of DMMP 

on the oxide surface, thus facilitating the oxidation reaction of the test gas [282]. 

Nano-sized high surface area WO3 powders have shown high sensitivity toward CWA detection, 

especially the DMMP simulant molecule [285-291]. It has been noted that DMMP adsorbs on the high 

surface area TiO2 and WO3 powders through hydrogen bonding of the P=O functional group to the 

hydroxyl groups of the metal oxide surface. At higher reaction temperatures, these hydrogen bonded 

organophosphorous compounds dissociate and form covalently attached species. Above 200 °C, the 

methoxy groups desorb from the surface while the methyl groups remain stable. Above 300 °C, a 

stable phosphate surface complex is formed and causes poisoning effects observed during DMMP gas 

exposure of chemiresistive sensors operating in this temperature range [291]. Moreover, a WO3 based 

chemiresistive sensor has been designed and tested for chlorine detection with high sensitivity (as low 

as 0.05 ppm) and a short response time (< 1 minute) [290]. The modified sensor is small, portable, 

inexpensive, and may have applications as an element in a chemical warfare sensing array [290]. 

Besides developing new semiconducting metal oxides, compositions of binary or polynary SMOs 

have been optimized for improved selectivity of target analytes. For example, Quan reported that 

trinary composition of SnO2-In2O3-TiO2 with some trace dopants (Pd, Al, Si, etc.) enhanced the 

selectivity toward combustion-type CH4 gas at high concentration ( 500 ppm) [292]. More recently, 

SMO hybrid materials with non-conducting inorganic oxides as well as SMO surface modification by 

noble/transition metals or metal oxides have been widely reported for enhancing sensitivity and 

selectivity toward the target chemical agents. For example, surface-modified tin oxide by ruthenium 

and palladium oxides has improved sensitivity to hydrogen at high concentration  

(1,000 ppm) [293,294], tin oxide modified by ruthenium or surface-ruthenated tin oxide has improved 

selectivity to hydrocarbon at high concentration (1,000 ppm) [295], tin oxide modified by CuO has 

high selectivity to H2S at 200 °C [296], surface-modified indium oxide by Rb2CO3 gives a surprisingly 

selective detection of CO [297], CaO or MgO surface-modified tin oxides exhibit promising sensing 

properties to dimethyl methylphosphonate (DMMP) [282]. Therefore, the modified SMO sensors can 

selectively detect target analytes at high concentration, but at low concentration (<10 ppm), SMO 

sensors may lack selectivity for practical CWA applications.  

Recently, several studies have focused on providing sensitive and selective CWA detection. 

Methods including a combination of filtration, concentration, and array based detection have been 

reported [287,298-301]. Materials such as inorganic membranes, zeolites, and other adsorbents are 

used to selectively preconcentrate and prefilter interferent molecules from the gas stream [299-304]. 

An array-based approach increases the information content of the response signal because each 

element of the array produces a different response characteristic to the gas matrix. In this case, a bank 

of sensors is used in which each sensor element produces a different response to the various 

components of the gas stream [13,14]. Variables such as metal oxide composition and morphology, 

impregnation with metal catalysts and operational temperature are a few approaches that are under 

investigation to achieve distinguishable sensor array elements [305-310]. For example, thick films of 

various SMO components prepared via drop-coating techniques followed by annealing using an 

internal heater in the sensor platform have been studied on various real CWAs, CWA simulants, as 

well as interfering gaseous molecules [13]. The study showed that nano-sized materials based on WO3, 
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SnO2, and In2O3 can detect low levels of CWAs in the ppb range within a short time. For example, 

Figure 4 depicts an example of the SnO2 and WO3 thick film sensors for CWA detection at 400 °C. In 

addition, using significant differences occur during either the physical or the chemical adsorption 

processes on the SMO films, one can discriminate between various gases on the same sensor platform 

by applying suitable pattern recognition techniques like linear discriminant analysis (LDA) or principal 

component analysis (PCA) [13,14]. As shown in Figure 4 (right graphs) the WO3 based device, has the 

potential to discriminate between various gases based on variations in molecular structure that affect 

the target-surface reaction protocols and thus lead to differences in the response shape [13].  

Figure 4. SMO sensors’ normalized responses to the gases of interest and corresponding 

LDA. (Reprinted from reference [13] with permission from Elsevier). 

 
 

A simpler and direct protocol has been recently reported by Kanan et al. to selectively discriminate 

DMMP from a gas stream [285,286]. The method established a unique selective and size sensitive 

sensor array for CWA detection using dual a sensor configuration that is coated with porous and 

nonporous WO3 nano-material. By comparing the sensor response on a porous WO3 powder (samples 
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B and C) to the response on a nonporous WO3 powder sensor (sample A), detection selectivity 

between methanol and DMMP was obtained because the access of a gas molecule in the interior pore 

structure of WO3 is size dependent; thus leading to a size dependant magnitude change in the 

resistance of the SMO sensor. Several responses have been recorded for methanol and DMMP along 

with a series of alcohols of different shapes and sizes in order to demonstrate the size selective 

detection [285]. Figure 5 shows a typical sensor response to three consecutive gas pulses of methanol, 

t-butanol, and DMMP on porous and nonporous based sensors [285]. As shown in Figure 5, the 

response of the porous sensor to DMMP is weaker than the response of the nonporous based sensor for 

the same target gas (DMMP). In contrast, the responses of both sensors toward methanol look similar 

because methanol has a small size so it can access the pore of the porous material [285].  

Figure 5. Sensor response to a three pulse sequence of methanol, t-butanol and DMMP for 

samples A and C based sensors. (Reprinted from reference [285] with permission from 

Elsevier). 

 
 

The change in conductivity (ΔC) obtained on each porous WO3 sensor is then ratioed to the 

corresponding ΔC obtained on the nonporous WO3 sensor (ΔCporous/ΔCnonporous) which provided a clear 

distinction between methanol and DMMP, which is larger in size compared to methanol [285]. 

 

5. Concluding Remarks 

 

As discussed in this review, in our opinion, there are several important and potentially existing 

sensor arrays for selective and sensitive detection for each of the studied toxic pollutants. Therefore, 

such systems can have a major impact on human health and safety for domestic use as well as, various 
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industrial and homeland security. Below is a summary of distinguished SMO based sensors for specific 

pollutant detection: 

a. Carbon nanotubes modified with SMO materials like WO3 composites can detect ppb 

concentration levels of nitrogen oxide (NO or NO2) gases at room temperature [90,91]. 

b.  Tin oxide thin films as well as tin oxide and tungsten oxide doped with noble metals like 

platinum and gold provide sensitive SO2 detection but these devices operate at temperatures 

above 350 °C [139,156,157]. 

c. A tin oxide thin film with 200 nm thickness was found to be a highly sensitive sensor toward 

H2S at 150 °C [166,167] 

d. A Cr2O3-based sensor provided sensitive and selective detection for gaseous ammonia at room 

temperature [189]. 

e. SnO2 doped silver or platinum provided a unique sensor for H2 detection [192]. 

f. WO3 films represent good devices for ozone detection where the films thickness, grain size, and 

operating temperatures have to bse adjusted to reach an optimal response [202,206].  

g. SnO2 doped with basic oxides like La2O3 and CdO provide a unique response toward alcohol in 

air making it applicable as alcohol breath detectors [210]. 

h. Several SMO based materials have been used to detect sarin-like stimulants (DMMP) in ppb 

concentration levels but limitations like recovery and selectivity still need to be resolved. Several 

methods were applied to enhance selectivity including filteration, size selective detection, as well 

as pattern recognition techniques [13,280,285,293, 300,304]. 
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