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ABSTRACT

Analysis of CRISPR-induced mutations at targeted
locus can be achieved by polymerase chain reac-
tion amplification followed by parallel massive se-
quencing. We developed a novel algorithm, named as
CRISPRpic, to analyze the sequencing reads for the
CRISPR experiments via counting exact-matching
and pattern-searching. Compare to the other meth-
ods based on sequence alignment, CRISPRpic pro-
vides precise mutation calling and ultrafast anal-
ysis of the sequencing results. Python script
of CRISPRpic is available at https://github.com/
compbio/CRISPRpic.

INTRODUCTION

CRISPR is the most widely used technique for genome edit-
ing in research and industry (1). After the pioneering devel-
opment of the Cas9 endonuclease protein encoded by the
CRISPR locus in Streptococcus Pyogenes as a toolkit for
gene editing in human cells (2–5), various other CRISPR
systems in the prokaryotic genome have been characterized
(6–9).

For successful genome editing, highly efficient CRISPR-
sgRNAs, differing by cell type or target sequence, are re-
quired. The standard method for measuring endonuclease-
induced mutagenesis efficiency is an enzymatic assay using
a mismatch-specific nuclease such as T7E1 endonuclease
I (10) or Surveyor nuclease (11). However, this only pro-
vides indirect evidence of mutagenesis and can often pro-
duce false positive or negative results due to such reasons
as poor sensitivity. Thus, additional labor-intensive experi-
ments such as Sanger sequencing are often required to con-
firm mutant sequences.

The recent development of rapid and inexpensive next
generation sequencing technology (NGS) permits conve-

nient and massively parallel measurement of genome edit-
ing experiments (3). Tools aligning sequencing reads to the
unmodified reference sequence are then used to analyze the
data for the desired mutations (12–16). However, sequence
alignment requires multiple calculations to identify indels
with the highest alignment scores, and frequently produces
false calls depending on the sequence context (17,18). We
provide a simple, novel, highly accurate and rapid solution
to these issues, using the double strand break site generated
by programmable nucleases.

Herein, we describe an algorithm for fast and precise
analysis of CRISPR-induced mutations via prefixed index
counting (CRISPRpic). Use of this algorithm provides mul-
tiple improvements for the detection of variants at CRISPR
target sites. The algorithm also provides user-friendly cus-
tomizable input for other applications, i.e. Cpf1 or any other
mutation analysis of sequencing reads generated by poly-
merase chain reaction (PCR)-amplicons. The simple count-
ing algorithm of CRISPRpic allows for sequencing analysis
in a low performance computing environment. Taken to-
gether, our novel algorithm is a simple and efficient method
to analyze the efficiency of CRISPR-induced mutagene-
sis and increases the feasibility of diverse applications of
CRISPR experiments.

MATERIALS AND METHODS

Detailed algorithm of CRISPRpic

Step 1: Build hash tables for exact matching. CRISPRpic
builds a hash table representing all virtual sequences with
all possible mutations encompassing the target site of DSB
in the reference sequence, which is the expected amplicon.
This target site, or CRISPR mutagenic site, is determined by
the window size (w, default = 3) defined by users. In the de-
fault case, the mutagenic site encompasses the breakpoint
with 3 nt on either side, for a total of 6 nt with a break-
point in the middle (Figure 1A). We consider only muta-
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Figure 1. Sequencing analysis of CRISPR-induced mutations using CRISPRpic. (A) Schematics representing NGS analysis for CRISPR experiments and
CRISPRpic algorithm to analyze them. Two-step algorithm of CRISPRpic or canonical alignment method is shown in yellow or gray box, respectively. (B)
Examples of mutations calling by pattern-searching algorithm. Each example of mutation calling is also shown in a logical decision tree in Supplementary
Figure S1. Reference, sequencing read and virtual DNA sequence are shown in yellow, blue and green, respectively. Orange and navy indicate k-mer indices.
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tions within this mutagenic site as CRISPR-induced muta-
tions. All other mutations, which may be PCR artifacts or
sequencing errors, are not considered mutations induced by
CRISPR for our purposes.

First, all possible deletions encompassing the mutagenic
window are generated. Some deletions, occurring at differ-
ent positions, may appear identical when short common se-
quence motifs (i.e. micro-homology regions) are present in
the reference sequence. In this case, we treat them as sin-
gle deletion events with multiple alignment positions. Sec-
ond, the hash table includes single nucleotide substitutions,
deletions and insertions at all reference sequence positions.
Only substitutions, deletions and insertions within the de-
fined CRISPR mutagenic window are counted as mutations
while all other outside changes are designated ‘unmodified’.

Step 2: Build two sets of k-mer indices for pattern search-
ing. Some amplicons with unknown variants not induced
by the endonuclease cannot be matched exactly to any of
the sequences in the hash table. We employ pattern search-
ing for these unmatched amplicons using a k-mer ‘index’
(default length of k is 8). The program generates a set of k-
mer indices from the middle breakpoint and tiles upstream
in 1 nt increments (Figure 1A). The index order represents
the distance from the breakpoint. For example, the first in-
dex among the upstream set is located to the right of the
breakpoint while the second index refers to the subsequent
nucleotide. Next, we examine the unique representation of
each k-mer index among all k-mer indices. If a k-mer ap-
pears more than once, we skip pattern searching for this k-
mer index given the possibility of a false positive.

If the outside index originated from inside the window
by skipping, classification is challenging. We keep all in-
dices within the mutagenic window to facilitate the analysis.
Thus, we increase the length of the k-mer by 1 nt until all in-
dices within the mutagenic window are unique. For instance,
all three k-mer indices must be unique among all indices in
the upstream set when the size of mutagenic window is 3.
We build the downstream set of k-mer indices in the same
way.

Step 3: Identify and select amplicons. The input data for
CRISPRpic are single reads in FASTQ formats originat-
ing from PCR amplicons. The paired-end reads can be con-
verted to single-end reads by a program called FLASH. We
process only reads meeting the following criteria: they con-
tain either one of two adaptor sequences; both the first and
last 8 nt of the reference sequence are present after removing
adaptor sequences. Based on this processing, we determine
the individual amplicon reads and their fractions of the to-
tal dataset.

Step 4: Classify amplicon read sequences. First, we exam-
ine if all distinctive amplicons are identical to any of the
virtual mutant sequences and the reference sequence in the
hash table. If they match, they will be classified accordingly
in the hash table. Second, all reads not identical to one of the
sequences in hash table will be classified by pattern search-
ing. The classification is determined by the following five
variables in relation to the given mutagenic window size:

1. i index, ordinal number of upstream k-mer index, which
was first found in the amplicon

2. i shift-count, number of upstream k-mer skipped
3. j index, ordinal number of downstream k-mer index,

which was first found in the amplicon
4. j shift-count, number of downstream k-mer skipped
5. n, the length of remaining sequence between two k-mers

in the amplicon

The ordinal number of each index indicates the distance
from the breakpoint. For example, the ordinal number of
the first index is zero, representing the right breakpoint
in the reference sequence. CRISPRpic initiates a search
from the upstream k-mer in order until a k-mer is found
in the amplicon. As mentioned above, we skip the non-
unique k-mers in the amplicon. The number of skipped k-
mers are designated as the i-shift count. CRISPRpic repeats
the same procedure for downstream k-mers. When no k-
mers are found in either the upstream or downstream in-
dices for the amplicon, we designate the read as ‘NA’. After
finding upstream and downstream k-mers in the amplicon,
CRISPRpic examines the sequences between the two iden-
tified k-mer in the amplicons.

After identifying the five parameters above, we eliminate
those amplicon sequences having [i index > w and i index
– i shift-count < w] or [j index > w and j index – j shift-
count]. This step is taken because mutation identification is
a challenge in these cases. Otherwise, we classify reads by
rules depicted in the logical flow chart (see below) using the
following three numbers: i ( = i index – i shift-count), j ( =
j index – j shift-count) and n.

Step 5: Classify variants. We describe the parameters used
to identify a variant in Figure 1B and Supplementary Figure
S1. Each case is considered as follows:

i) Classify reads as reference ‘wild-type’ and not
CRISPR-modified when i, j and n equal zero.

Described simply, this is the case when the first k-
mer in both upstream and downstream are found and
there is nothing between these two k-mers in the am-
plicon. This also means that the 16 nt centered at the
breakpoint (i.e. the targeted mutagenic site) are identi-
cal to the reference sequence. These sequences are not
matched to any of the possible mutant sequences due to
unknown variants existing somewhere outside the mu-
tagenic window of the amplicon.

ii) Classify reads as insertions when i and j equal zero, but
n is larger than zero.

This happens when some sequences are inserted
at the breakpoint. In this case, the first upstream
and downstream k-mers are found, but additional se-
quences between the two indices (n > 0) exist in the am-
plicon due to insertion. CRISPRpic does not separately
classify them as insertions with a deletion or insertions
with a substitution when n > 0, as it is unclear whether
they are generated by a different event or accidentally
identical to the reference sequence.

iii) Classify reads as a deletion when n equals zero, but i or
j is not equal to zero.
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This indicates that some sequences were deleted at
the breakpoint. For example, the second upstream and
fourth downstream k-mers will be found when 1 and 3
nt are deleted upstream and downstream of the break-
point, respectively. However, no remaining sequence be-
tween the two k-mers will exist on the amplicon. At last,
there are complicated cases where m > 0 and n > 0,
where m = i + j. Their classification is determined by
the rules in the logic flowchart.

iv) Classify complex variants when they do not fall in the
aforementioned categories on the first analysis pass.

We compare the expected distance (m, |i|+|j|) of two iden-
tified k-mers in the reference sequence with the length of re-
maining sequence (n). There are three possibilities between
m and n; (i) n > m, (ii) n = m and (iii) n < m.

First, amplicons are classified as insertions when n is
larger than m. This occurs when the insertion occurs si-
multaneously with some other event. Second, amplicons
are classified as either substitutions or unmodified when n
equals m. In this case, we examine if the remaining sequence
is identical to the mutagenic site sequence. If they are identi-
cal, amplicons are classified as unmodified, otherwise, they
are classified as substitutions. Third, amplicons are classi-
fied as either complex deletions or unmodified when n is
smaller than m. In this case, we examine the deletion’s lo-
cation relative to the breakpoint. If the deletion occurs out-
side the mutagenic site, they are classified as complex dele-
tions as they have additional variants within n. CRISPRpic
does not distinguish deletions with insertion or deletions
with substitution from complex deletion as it is uncertain
how they were generated. Otherwise, they are classified as
unmodified comparing the sequences of n with sequences
in mutagenic window.

Calculate the frequency of deletions at all positions in the
amplicon. Multiple deletion events at different positions
of the reference sequence result in the same sequence in
the presence of ‘micro-homology’ sequences at the dele-
tion junction. Micro-homology refers to repeated short se-
quence motifs, and can produce multiple alignments to the
reference sequence. We use the count of the deletion se-
quence for each position divided by the total number of
multiple alignments containing the position. For instance,
we observed a deletion sequence 100 times that was de-
rived from five different alignments of deletions. All posi-
tions deleted in all five alignments are counted 100 times as
well. However, the deletion at the most upstream can oc-
cur in only one alignment, so it was counted only 20 times
(100/5).

These deletions associated with micro-homology motifs
tend to be more prevalent than random deletions due to
sequencing artifacts (19). We use the number of redun-
dant indices from each read to calculate the number of
micro-homology motifs (number of nucleotides in micro-
homology = possible alignment -1).

Simulation with virtual sequencing reads. In order to test
CRISPRpic, we analyzed virtual sequencing reads consist-
ing of 1000 reads from unmodified DNA and 1000 reads
containing substitutions, deletions or insertions of various

lengths. We evaluated CRISPRpic using simulation data
from CRISPResso. We downloaded Supplementary Data
4 from https://media.nature.com/original/nature-assets/
nbt/journal/v34/n7/extref/nbt.3583-S12.zip. In addition,
we generated simulation data using a simulator program
called ‘ART’ (20), which was also used in CRISPResso,
with the following reference amplicon sequence; AATG
TCCCCCAATGGGAAGTTCATCTGGCACTGCCC
AGATCGATCGTAGCTGTGACTGACTGATCGATAC
A∧CACGGGCGTACGTACACGTACGTAGCTGAGT
AAGAATGGCTTCAAGAGGCTCGGCTGTGGTT.
∧ indicates the location of the DSB while the underlined
CGG is a PAM site. We generated mut.fa containing a
mutated sequence with AC deletion around DSB. The sim-
ulation data with sequencing error was made by ART with
the following command: art illumina -ss MSv1 -i mut.fa
-amp -o mut seq -p -l 100 -f 1000 –sam. The final FASTQ
files have 1,000 wild-type sequences and 1000 mutant se-
quences respectively. This simulation data is also available
at Github (https://github.com/compbio/CRISPRpic).

As expected, CRISPRpic identified a 50% mutation fre-
quency in the simulation data, which was comparable to
frequencies produced by other software packages. Next, we
generated virtual sequencing reads containing 2 bp repeats.
Mutation calling becomes more challenging when micro-
homology sequence or repetitive sequences are present
within the cleavage site or breakpoint, because sequence
alignment of repetitive sequences is ambiguous, resulting
in biased or false mutation calling. In this simulation,
CRISPRpic again identified precisely 50% mutation fre-
quency, demonstrating that the alignment-free CRISPRpic
algorithm can analyze repetitive sequences appropriately.

Information of computing environment. All analysis was
performed with the following specifications, 2.5 GHz AMD
Opteron 6380, 512 GB 1600Mhz DDR3, Linux 4.4.0–122
generic #146-Ubuntu SMP. CRISPRpic was also tested on
a personal laptop computer with 2.3GHz Intel Core i5,
8 GB 2133 MHz LPDDR3, macOS High Sierra 10.13.4.
CRISPRpic is designed to use one core from the CPU to
analyze the sequencing reads.

Software version used in this study. CRISPRpic was writ-
ten with Python 2.7, and can be run by Python 3.7 as
well. Paired-end sequencing reads were merged using Flash
1.2.11 prior to running CRISPRpic. In order to compare
the analysis results, sequencing reads were also analyzed
using various software with the following parameters un-
less described separately: CRISPRpic with (-w 3 -s 8);
CRISPResso and CRISPResso2, 1.0.8 with (-w 6 -a [am-
plicon sequence] -g [target sequence without PAM] for Sp-
Cas9; -w 10 –cleavage offset 1 -a [amplicon sequence] -g
[target sequence without PMA] for AsCpf1); Cas-Analyzer,
web version (http://www.rgenome.net/cas-analyzer/) with
([checked in the ‘or use both ends’], [1 for minimum fre-
quency], [3 for WT marker]); CRISPR-GA, web version
http://crispr-ga.net/index.php; CRISPR-DAV with all de-
faults.

Manual inspection for comparison between programs.
When manually inspected, the inspector could not de-

https://media.nature.com/original/nature-assets/nbt/journal/v34/n7/extref/nbt.3583-S12.zip
https://github.com/compbio/CRISPRpic
http://www.rgenome.net/cas-analyzer/
http://crispr-ga.net/index.php
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termine clearly a specific variant call in many cases. To
eliminate this ambiguity, we developed the following
rules for assignment: (i) Mutations are only classified as
unmodified, insertion, substitution or deletion; and (ii)
If the sequencing read is assigned to multiple categories,
we prioritize insertions or deletions above wild-type or
substitution. As a test, this manual inspection was done in
a blinded fashion.

RESULTS

Overview of CRISPRpic algorithm

We developed a computational tool, CRISPRpic, that
counts each possible mutation in the sequencing reads with-
out alignments. Identification of Indels by sequence align-
ment CRISPRpic is based on three unique properties of
gene edit experiments: (i) Sequencing reads have fixed ends
originating from PCR primer pairs, (ii) CRISPR/Cas9 in-
duces a double strand break (DSB) at a predictable posi-
tion within the target sequence and (iii) Mutations should
encompass the DSB site (Figure 1A). These features enable
the prediction of a majority of the possible mutation spec-
trum and therefore their efficient identification. The default
input to the program is the list of amplicon sequences, the
guide RNA sequences located within each amplicon, and
the type of endonuclease with a defined breakpoint such as
CRISPR/Cas9 from different bacterial species: SpCas9 or
AsCpf1, etc. Using these parameters, CRISPRpic has the
flexibility to analyze genomic alterations produced by sev-
eral different enzymes covering a variety of DBS positions.
Our pipeline implements the following steps (Figure 1A); (i)
build hash table and set of k-mers, (ii) identify and select
amplicons with their frequencies and (iii) classify amplicons
using hash tables or pattern searching of k-mers. Most mu-
tations were as predicted, however, some unknown variants
were produced by PCR or sequencing errors, and some se-
quencing reads were not identical to the prediction. In or-
der to classify reads with unpredicted variants, we designed
a pattern searching algorithm using distance of the k-mer
indices in the references and sequencing reads (Figure 1A).
Altogether, CRISPRpic is designed to follow a logical deci-
sion tree using either exact-matching or pattern-searching,
allowing for non-ambiguous mutation calling (Figure 1B
and Supplementary Figure S1).

Precise mutation calling by CRISPRpic

In order to evaluate CRISPRpic’s accuracy, we tested
CRISPRpic using virtual and real sequencing data. First,
we analyzed virtual sequencing reads consisting of 1000
reads from unmodified DNA and 1000 reads containing
substitutions, deletions or insertions of various lengths
(Figure 2A). As expected, CRISPRpic identified a 50%
mutation frequency in the simulation data, comparable to
other software packages. Next, we hypothesized that mu-
tation calling may become more challenging when repet-
itive sequences are present within the mutagenic window,
because sequencing alignment of repetitive sequences is am-
biguous. We generated virtual sequencing reads containing
2 bp repeats (Figure 2A). In this simulation, CRISPRpic
again identified precisely 50% mutation frequency whereas

alignment-based software such as CRISPResso and Cas-
analyzer had errors. This result demonstrates that the
alignment-free CRISPRpic algorithm can analyze repeti-
tive sequences precisely. Indeed, CRISPRpic can easily dif-
ferentiate the number of micro-homology bases from the
number of redundant index sequences, which is an im-
portant parameter for predicting the mutation pattern of
programmable nucleases and CRISPR applications (21).
Therefore, CRISPRpic provides an output table containing
information on micro-homology as well as length, counts,
mutation calling and mutation length for each sequencing
read (Figure 3). CRISPRpic also generates graphical sum-
maries representing counts of mutation types, counts of
deletion frame, length of indels and deletion count per nu-
cleotide.

Next, we tested CRISPRpic to analyze 20 million reads of
the human PVT1 locus amplified from human cells treated
with CRISPR/SpCas9 (22) (Figure 2B). CRISPRpic suc-
cessfully classified 94.8% or 5.2% of the reads by exact-
matching or pattern-matching method, respectively. Only
0.003% of reads were not appropriately classified. From this
sequencing data, we sampled the sequencing reads ranged
from the 103 to the 107 reads. As CRISPRpic made all theo-
retically possible deletions in the hash table, we analyzed the
frequencies of the deletion alleles. Theoretically, 1499 types
of deletions can be generated in this amplicon, while 679
deletion types were detected (Figure 2C). The frequency of
each deletion allele varied by sample size and saturated at
a sample size of 107 reads. This analysis suggests that mu-
tant allele-based studies require more than 107 reads (Fig-
ure 2D).

We further analyzed sequencing reads from 10 differ-
ent loci in the human genome targeted by two different
types of CRISPR (23). The actual mutation frequency
is unknown for the sequencing reads generated from ge-
nomic DNA, so we compared the mutation frequency
analyzed by the following six programs: CRISPRpic,
CRISPResso2, CRISPResso, CRISPR-GA, CRISPR-DAV
and Cas-Analyzer (Figure 4). CRISPRpic successfully as-
signed the vast majority of the sequencing reads (>99.99%
of the total reads from 20 targeted loci) to a single pre-
fixed classification. In this analysis, other programs showed
outlying indel frequencies compared to average frequencies
for at least one locus: AAVS1(SpCas9) for CRISPResso,
HPRT1-4 (AsCpf1) for CRISPResso2, DNMT1-4 (Sp-
Cas9) and HPRT1-4 (AsCpf1) for CRISPR-GA, DNMT1-
4 (SpCas9), EMX1-2 (SpCas9), DNMT1-3 (AsCpf1) and
DNMT1-4 (AsCpf1) for Cas-Analyzer.

We inspected the reads classified differently by other
programs. First, we found that alignment-based programs
showed false mutation calling based on the parameters at a
particular locus (Figure 5A). Second, most erroneous cases
of mutation calling by alignment methods occurred when
the micro-homology sequences were present at the border
of deleted sequences. When DSBs are repaired in living cells,
micro-homology-mediated deletions occur more frequently
than they would randomly (19). CRISPRpic algorithm can
correctively classify mutations harboring micro-homology
sequences. Sequence-aligning algorithms randomly choose
only one alignment whereas multiple alignments are pos-
sible due to the micro-homology sequences (Figure 5B).
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Figure 2. Pilot analysis using CRISPRpic for indel identification. (A) Simulation analysis using CRISPRpic. Simulation results using virtual sequencing
reads with or without repetitive sequences around the cleavage site. AC repeats are shown in red. (B) Mutation analysis of sequencing reads from the PVT1
locus targeted by SpCas9. Bar plots showing proportions of mutation callings by exact matching or pattern searching. (C) Distribution of all theoretically
possible deletions at the PVT1 locus by sample size of sequencing reads (n = 10, technical replicates). (D) Summary for coverage and sequencing depth of
detection of deletions.

CRISPRpic works by reproducing the CRISPR-induced
mutagenesis in silico, enabling unbiased mutation calling
when the micro-homology sequences are present at the bor-
der of the mutagenic window. Furthermore, CRISPRpic is
designed following a logical decision tree, thus always pro-
viding a pre-designed mutation classification (Supplemen-
tary Figure S1). Third, we also found that some erroneous
mutation calling occurred for sequencing reads harboring
sequence variants not encompassing the mutagenic window.
CRISPRpic also successfully excludes such variants caused
by PCR or sequencing errors rather than CRISPR-induced
editing (Figure 5C). At last, micro-homology sequences re-

sult in an inaccurate distribution of overall deletion pattern
by aligning algorithms (Figure 5D). CRISPRpic presents
possible deletions in contrast to alignment-based methods
which show a positional bias. Taken together, CRISPRpic
showed more precise analysis of mutation frequency inde-
pendent of sequence context.

Ultrafast analysis of mutations by CRISPRpic

In addition to precise mutation calling, CRISPRpic
required less analysis time compared to alignment-
based methods (Figure 5E). We noted that, except for
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Figure 3. Example of output files of CRISPRpic.

CRISPResso2, other programs took several days to ana-
lyze millions of reads. Because CRISPRpic is designed for
simple counting and k-mer searching rather than multiple
calculations, it therefore does not require high computing
performance. Therefore, CRISPRpic could perform anal-
ysis of 20 million reads in only one minute on a personal
laptop computer. To our best knowledge, CRISPRpic is
the fastest algorithm for analyzing mutations in amplicon
sequencing.

DISCUSSION

Induction of mutations at targeted locus is one of the most
common applications for CRISPR, but their analysis by
sequence alignment has multiple issues, including incom-
plete or erroneous calling of variants and the requirement
for high-performance computing. Although larger numbers
of researchers use alignment-based programs to analyze
CRISPR-induced mutations, a precise and fast method for
analysis has not yet been developed. CRISPRpic is based on
exact-matching and logical decisions, which provides pre-
cise and ultrafast analysis of mutation analysis for CRISPR
experiments.

We noted that there were only two cases where
CRISPRpic could not classify, known as NA, and only one
case where it classified incorrectly. From our analysis of
the amplicon sequencing data across 20 loci, we observed
only one case as the source of NA; all k-mers in either up-
stream or downstream were not found in amplicons. This
happens when a large deletion left less than k nucleotides
at either end or less than k × 2 with some other mutation
events. In our analysis of 20 targets, 15 loci did not have any
NA and only one locus showed NA greater than 0.001%.
CRISPRpic is also designed to classify NA when the i or j

index is larger than w but [i index – i shift-count] or [j in-
dex – j shift-count] is not less than w. This occurs when se-
quencing reads have multiple discontinuous variants in and
out of the mutagenic window within index length. In this
case, it is not clear whether the variants are caused by poor
sequencing quality or one mutagenic event leaving long mu-
tations, but coincidently most of them were identical to the
reference sequence. This did not occur, however, in the 20
targeted sites we analyzed to develop CRISPRpic.

In our manual inspection, we found 35 sequencing reads
out of 8100 input reads (0.43%) counted more than once
from the HPRT1-4 locus-treated SpCas9, which was incor-
rectly identified as a complex deletion although it was a sim-
ple deletion. CRISPRpic called a given set of reads as com-
plex deletions while manual examination showed a simple
deletion. This classification error occurred because the lo-
cus contained AT- or GT-repeat sequences longer than the
k-mer on the upstream sequence. In this case, CRISPRpic
repeatedly skipping several non-unique k-mers due to AT
repeats. This resulted in i not being zero, and subsequent
classification as a complex deletion. For cases such as this,
we recommend users provide a longer k-mer length which
can be simply adjusted as an input command line. How-
ever, this only happened to sequencing reads containing ad-
ditional variants outside the mutagenic window because se-
quencing reads without such variants are classified correctly
first in the exact-matching step.

In summary, CRISPRpic provides fast and precise anal-
ysis of CRISPR-induced mutation analysis independent of
sequence context, allowing for analyzing the high depth
of targeted sequencing data from CRISPR experiments
such as high-throughput profiling of CRISPR sgRNA (24),
mutagenesis-based functional studies of proteins (25) and
regulatory elements in a DNA-centric manner (26). The
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Figure 5. Non-alignment algorithm of CRISPRpic provides precise analysis of CRISPR-induced mutations (A) Comparison of mutation frequencies
for EMX1-2 locus by different parameters of CRISPRpic or Cas-Analyzer. †Cas-analyzer does not distinguish substitutions from unmodified alleles. (B)
Example of classification of deletions harboring micro-homology sequences. Blue or gray box indicates mutagenic window (±3 bp from breakpoint, red
triangle) or micro-homology sequences, respectively. (C) Example of erroneous mutation calling by alignment method. (D) Unbiased analysis of deletion
pattern by CRISPRpic. Two sequencing reads from the AAVS1 locus were extracted from actual output files of CRISPRpic or CRISPResso as an example.
Micro-homology sequences are marked in the gray box. Pink or blue line indicates deletion distribution for each nucleotide position analyzed by CRISPRpic
or CRISPResso, respectively. Dashed line indicates the breakpoint. (E) Bar plots showing processing time for analysis of the PVT1 locus using CRISPRpic
or CRISPResso2.
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advent of single cell analysis of CRISPR-mediated pertur-
bations (27–30) further necessitates the need for highly ef-
ficient and scalable means of analyzing gene edits. Fur-
thermore, CRISPRpic requires only Python to implement.
Thus, CRISPRpic can be easily adapted to other applica-
tions such as indel analysis of cancer genome. From the
analysis conducted in this study, we suggest that 103 to 104

sequencing reads per target locus are required to accurately
evaluate CRISPR efficiency. For allele-based quantitative
analysis, we recommend 106 to 107 total reads depending
on the mutation frequency to capture all possible deletion
types (Figure 2).

Recently, it was reported that CRISR can induce large
deletions over several kilobases (31). In order to survey
mutations within a long range, longer PCR or sequenc-
ing errors can be incorporated, but this may cause false
results by alignment followed by wrong mutation calling.
CRISPRpic is exceptional for distinguishing variants not
induced by CRISPR, making it a standard method for anal-
ysis of CRISPR-induced mutations for any type of ampli-
cons.

Taken together, our method facilitates CRISPR-based
experiments, provides greater accessibility to novice re-
searchers unfamiliar with the complex nuances of CRISPR
modifications in the genome editing field and will in-
crease the analytical throughput of screening for CRISPR-
engineered variants across a broad range of projects.
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