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Cognitive reserve, presynaptic proteins and dementia
in the elderly

WG Honer', AM Barr?, K Sawada', AE Thornton®, MC Morris®, SE Leurgans®’, JA Schneider®”® and DA Bennett®’

Differences in cognitive reserve may contribute to the wide range of likelihood of dementia in people with similar amounts of
age-related neuropathology. The amounts and interactions of presynaptic proteins could be molecular components of cognitive
reserve, contributing resistance to the expression of pathology as cognitive impairment. We carried out a prospective study with
yearly assessments of N—= 253 participants without dementia at study entry. Six distinct presynaptic proteins, and the protein-
protein interaction between synaptosomal-associated protein 25 (SNAP-25) and syntaxin, were measured in post-mortem brains.
We assessed the contributions of Alzheimer’s disease (AD) pathology, cerebral infarcts and presynaptic proteins to odds of
dementia, level of cognitive function and cortical atrophy. Clinical dementia was present in N=97 (38.3%), a pathologic
diagnosis of AD in N=142 (56.1%) and cerebral infarcts in N=77 (30.4%). After accounting for AD pathology and infarcts,
greater amounts of vesicle-associated membrane protein, complexins | and Il and the SNAP-25/syntaxin interaction were
associated with lower odds of dementia (odds ratio = 0.36-0.68, P < 0.001 to P=0.03) and better cognitive function (P<0.001 to
P=0.03). Greater cortical atrophy, a putative dementia biomarker, was not associated with AD pathology, but was associated
with lower complexin-Il (P= 0.01) and lower SNAP-25/syntaxin interaction (P< 0.001). In conclusion, greater amounts of specific
presynaptic proteins and distinct protein—protein interactions may be structural or functional components of cognitive reserve
that reduce the risk of dementia with aging.
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Introduction synaptic terminal integrity could contribute to delayed
progression of cognitive impairment. Animal models of AD
suggest that synaptic dysfunction may occur early, before
loss of terminals in later stages of illness.'”"'®

Direct, in vivo markers for synaptic pathology are not yet

available, although changes in glucose utilization identified

Individual differences in cognitive reserve may explain the
wide variation in the likelihood of dementia, and severity of
cognitive impairment in people with comparable levels of
neuropathology.! Cognitive reserve could be associated
with the level of education and other life experiences;

however, the neural correlates are unclear. Synaptic terminals
might contribute, as these subcellular complexes are vital
for cognitive function in health and disease.? Presynaptic
terminals are enriched for multiple proteins, each providing
specialized contributions to neurotransmission, and to cogni-
tive functioning.>® Dynamic changes in synaptic terminal
number, protein composition and function contribute to
cognitive development during brain growth and maturation.®

As the brain ages, amyloid plaques and neurofibrillary
tangles commonly accumulate, and infarcts may occur.
Both pathologies contribute to the odds of dementia and the
severity of cognitive impairment in an additive manner.'®'2 In
end-stage Alzheimer’'s disease (AD), presynaptic terminals
are lost."® The magnitude of loss of molecules such as the
synaptic vesicle protein synaptophysin correlates with ante-
mortem cognitive dysfunction.’®> However, pan-synaptic
terminal loss does not occur in less severe cases,'* "¢ and

with positron emission tomography could reflect synaptic
dysfunction.’®" In the present study, we assayed multiple
presynaptic proteins and a functionally important, presynaptic
protein—protein interaction®? across cortical regions suscep-
tible to AD pathology. Our purpose was to relate these
presynaptic markers to clinical dementia and severity of
cognitive impairment after accounting for the two most
common pathologic causes of age-related dementia. We also
explored the relationships of AD pathology and the presy-
naptic proteins to post-mortem assessments of cortical
atrophy,® as an analog of in vivo magnetic resonance
imaging. The data were obtained from the Memory and Aging
Project (MAP), a community-based study.2* The prospective
design maximizes the relevance of the findings to the broad
population of the elderly, with the full range of cognitive health
and impairment.
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Materials and methods

Population selection and cognitive evaluation. Elderly
participants in MAP were free of known dementia at
enrollment.?* Each participant signed an informed consent
and an anatomic gift act. The study was approved by the
institutional review board of Rush University Medical Center.
From November 1997 through June 2010, > 1400 individuals
completed the baseline evaluation.

The annual structured evaluation included a medical
history, neurologic examination and testing of cognitive
abilities commonly affected by aging and AD in order to
derive a global cognitive score.?® Test results were reviewed
by a board-certified neuropsychologist. Experienced clini-
cians diagnosed dementia and AD according to the criteria of
the National Institute of Neurologic and Communicative
Disorders and Stroke and the Alzheimer Disease and Related
Disorders Association. Cognitive impairment not meeting the
criteria for dementia was diagnosed as mild cognitive
impairment. Identical follow-up evaluations were performed
annually, blinded to previously collected data, with the overall
follow-up rate of survivors in excess of 90%.

Through June 2010, > 350 participants died and underwent
brain autopsy, with a rate in excess of 80%. Of these, the first
consecutive 253 were included in the study of presynaptic
terminals. In the examination nearest to death, 83 (32.8%) of
participants had no cognitive impairment, 73 (28.9%) had mild
cognitive impairment and 97 (38.3%) had dementia.

Neuropathological assessment. A board-certified
neuropathologist made pathologic diagnoses blinded to age
and clinical data. The pathologic diagnosis of AD was
made following examination of modified Bielschowsky
silver-stained 6 um paraffin-embedded sections to visualize
neuritic plaques and neuronal neurofibrillary tangles in the
cortex (midfrontal, middle temporal, inferior parietal,
entorhinal and hippocampus CA1 sector). The diagnoses
used National Institute on Aging (NIA)-Reagan criteria,
which incorporates Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD), with a Braak score (based on
the distribution and severity of neurofibrillary tangles).?®
Cases with either an intermediate or high likelihood of AD
by Reagan criteria were considered to fulfill criteria for the
pathologic diagnosis of AD. Macroscopic infarcts were
determined by the evaluation of 1 cm coronal slabs of both
cerebral and cerebellar hemispheres and on cross-section of
the brainstem at the pons. After histological confirmation, old,
macroscopic cerebral infarcts were summarized as present
or absent.?” A global AD pathology score was determined by
counting neuritic plaques, diffuse plaques and neurofibrillary
tangles in a 1 mm? area of greatest density in each of the five
cortical regions. A standard distribution was calculated for
each regional count for each type of pathology across all
people, and then summary scores were calculated across
regions, and finally a single global AD pathology score was
calculated as the mean score of the 15 measures.?®
Apolipoprotein E (APOE) genotyping was performed with
PCR assays by Agencourt (Beckman Coulter Genomics,
Brea, CA, USA).
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Presynaptic protein analysis. Monoclonal antibodies were
used to quantify immunoreactivity for six presynaptic proteins
(see Supplementary Table S1).22 Frozen samples of gray
matter were obtained from seven cortical regions susceptible
to AD and contralateral to those used for histology: entorhinal
cortex proper (Brodmann area 28), hippocampus (including
CA1/subiculum), superior frontal cortex (BA6/8), dorsolateral
prefrontal cortex (BA46/9), inferior temporal cortex (BA20),
angular gyrus cortex (BA39) and anterior cingulate cortex
(BA24). Each sample was prepared for an enzyme-linked
immunosorbent assay (ELISA) in serial dilution steps.'®
The protein concentration required to obtain the same fixed
optical density value across all samples was determined from
dilution curve fitting. This value of total homogenate protein
concentration was inversely related to the amount of target
antigen present. Values were log transformed, the mean for
each participant across the seven brain regions was
determined and a standardized score across all participants
was calculated for each synaptic protein. This approach to
provide an overall indicator of presynaptic protein integrity
with minimal measurement error is similar to the approaches
used to quantify global pathology and global cognitive
function.®® The standardized scores were multiplied by
negative 1 to make the results intuitively easier to
understand as being directly, rather than inversely, related
to the amount of target antigen.

Protein—protein interactions between synaptosomal-
associated protein 25 (SNAP-25) and syntaxin were assessed
using a high-throughput immunoprecipitation strategy
implemented with a heterologous capture ELISA.?? Purified
antibody directed against one of the targets (SNAP-25 or
syntaxin) was immobilized on an ELISA plate, serially diluted
brain homogenate samples were incubated on the plate, and
then a second antibody was added to detect the protein-
binding partner (syntaxin or SNAP-25) of the initially captured
target (SNAP-25 or syntaxin respectively). The SNAP-25/
syntaxin and syntaxin/SNAP-25 interactions were highly
correlated (r=0.77; P<0.001) and a single mean value was
calculated for each sample.

Approximately 10 brains (70 samples, 6 antibodies and
2 protein—protein interaction assays) were included in each
assay run. Studies of the n=253 brains were carried out over
6 years. The following quality control procedures were used.
Primary antibodies were produced in-house. Tissue culture
supernatants were subject to titer tests to ensure that
detection antibodies were consistent in potency. Antibodies
that were purified for the protein—protein interaction studies
were used at an optimized, fixed protein concentration.?
All sample assays were performed with duplicate serial
dilution curves on each plate, and responses were assessed
for linearity. Within-run variability was assessed by using a
reference sample on each plate. The within-run coefficient of
variation for the reference sample (at least three measure-
ments) was required to be <10%, and routinely values of
<5% were obtained. Each assay run was repeated on a
separate day, and the mean result for each sample was used.
Run-to-run correlations required to exceed r=0.8, and
correlations were routinely r>0.95. Using a consistent
reference sample on every run allowed adjustment of absolute
values of assay results between runs. We also used the



reference assay results to examine the possibility of decline in
immunoreactivity over time related to sample storage
duration, and did not observe this effect. We were fortunate
to have the same technical staff performing assays over the
duration of the study.

To characterize the subcellular overlap between the
interacting SNARE proteins and excitatory (glutamateric)
and inhibitory (GABAergic) terminals, we used triple immu-
nolabeling and confocal microscopy.?? Hippocampal tissue
from two cases was fixed in 4% paraformaldehyde for at least
72h; sections were cut 10 um thick. Immunostaining used
mouse monoclonal antibodies reactive with SNAP-25, syn-
taxin and vesicle-associated membrane protein (VAMP;
Supplementary Table S1), and rabbit polyclonal antibodies
reactive with the vesicular glutamate-1 and vesicular GABA
transporters (Synaptic Systems, Géttingen, Germany). Detec-
tion used subclass- and species-specific secondary antibodies
labeled with Alexa-488, -555 or -647 (Molecular Probes, Life
Technologies, Grand Island, NY, USA) and a confocal micro-
scope (LSM-5 Pascal, Zeiss, Toronto, ON, Canada). Fields of
view were focused on the dentate granule cell layer, and the
extent of overlapping immunostained pixels was determined.

Statistical analysis. We examined subsets of cases with
definite AD (probable AD clinically, and high likelihood AD by
NIA-Reagan, no gross infarctions or other pathology,
N=20), and with no dementia and no or minimal pathology
(no or low likelihood AD by NIA-Reagan, N=18).
Correlations between global cognitive function and
synaptophysin level were examined, and the difference in
synaptophysin level between cases and controls was
assessed with analysis of variance controlled for age, sex
and education to confirm the well-documented finding of low
synaptophysin in brains from people with moderate-to-
severe dementia relative to normal brains.

For the full sample, all analyses used age, sex and education
as covariates. We first used linear regression to examine the
relationships between presynaptic proteins and global cognitive
function. Subsequent analyses were restricted to the four mea-
sures with statistically significant effects. We used multiple
logistic regression models to examine the associations of
global AD pathology, cerebral infarcts and the presynaptic
measures with the odds of dementia. A parallel set of analyses
used multiple linear regression to investigate the relation of
global AD pathology, infarcts and presynaptic measures to
global cognitive function.

Nonparametric tests of correlation between cortical atrophy
and presynaptic measures utilized Spearman’s rank correla-
tion. Ordinal logistic regression analysis was carried out to
examine presynaptic proteins as predictors for cortical
atrophy, controlled for age, education and sex. Effect sizes
for measures of correlation, and within models for change in
variance, were defined respectively as small (0.10, 0.01),
medium (0.30, 0.086) or large (>0.50, 0.14).2%-%°

Results

Sample characteristics. Descriptive statistics for demographic,
cognitive and pathological variables appear in Table 1. As
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observed in other studies, there were no statistically
significant correlations between levels of the presynaptic
proteins or the SNAP-25/syntaxin interaction, and age,
education or post-mortem interval.'®223" There were no
differences in presynaptic proteins or the SNAP-25/syntaxin
interaction between smokers and nonsmokers, and no
statistically significant correlations between the presynaptic
measures and amount of alcohol consumption per day in the
year before baseline (n=248). A history of breathing
problems in the 3 days before death, or unconsciousness
in the hour before death, did not influence the presynaptic
measures (n= 126 with available information).

Synaptophysin in definite AD versus controls. In this
analysis, global cognitive function was correlated with the
level of synaptophysin (r=0.46, N=38, P=0.004),
representing a medium-to-large effect size. The mean level
of synaptophysin was 29.5% lower in these AD cases
compared with nondemented controls with no or minimal
pathology (95% confidence interval = 3.2-48.8%, P=0.03).
This confirms a well-documented association.

Presynaptic proteins and dementia. Screening analyses
of the presynaptic protein relationships with global cognitive
function in the full sample showed that VAMP, complexin-I,
complexin-ll and the SNAP-25/syntaxin interaction were

Table 1 Demographic, cognitive and pathological variables

Proximate to
death, N= 253

Demographic
Age, years
Female sex, no. (%)
Race white, non-Hispanic, no. (%)
Education, years
APOE e4 allele, no. (%)

Cognitive function
Global cognmon score®
MMSE®
Clinical dementia present

88.2+6.0°
155 (61.3%)
242 (95.7%)
145+2.9
63 (26.1%)

~0.76 £1.10°
21.9+8.8°
97 (38.3%)

Pathological
Post-mortem interval, h
AD pathological diagnosis, no. (%)
NIA high, no. (%)
NIA intermediate, no. (%)
Infarcts, no. (%)

7.0+4.5%
142 (56.1%)
37 (14.6%)
105 (41.5%)
77 (30.4%)

AD pathology score' 0.68+0.63
Cortical atrophy score®
Mild, no. (%) 36 (14.2%)
Mild to moderate, no. (%) 36 (14.2%)
Moderate, no. (%) 94 (37.2%)
Moderate to severe, no. (%) 63 (24 9%)
Severe, no. (%) 24 (9.5%)

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; MMSE, Mini-
Mental State Examination; NIA, National Institute on Aging.

Mean and s.d. unless noted otherwise. *The data were obtained from 252
participants. °The global cognition score is a standardized score derived from
the results of 19 tests of cognitive abilities commonly affected by aging and
AD.?5 Lower scores represent poorer cognitive function. °The data were
obtained from 250 participants. “MMSE scores range from 0 to 30, with lower
scores |nd|cat|ng poorer cognitive function. °The data were obtained from 251
participants. ‘Standardized scores of diffuse and neuritic plaques and
neurofibrillary tangles were used to obtain a global measure of AD pathology
for each subject (see text). °Cortical atrophy was rated independent of age by a
neuropathologist on a 7-point scale from none (0) to severe (6).

w
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Figure 1 Variability and overlap in Alzheimer's disease (AD) pathology within
and between dementia and no-dementia subgroups. The ends of the boxes depict
the 25th and 75th percentiles in each group, and the line across the middle is the
median. The whiskers represent 1.5 times the interquartile range.

associated with cognitive functioning (Supplementary
Table S2). In the total sample, synaptophysin, SNAP-25
and syntaxin levels failed to show such an association.

In both demented and nondemented patrticipants, there
was considerable variation within each of these groups in the
severity of AD pathology (Figure 1). Each unit of AD
pathology, and the presence of infarcts, increased the odds
of dementia (Table 2). In contrast, each unit of VAMP,
complexin-l, complexin-Il and the SNAP-25/syntaxin interac-
tion reduced the odds of dementia. The magnitude
of reduction in the odds of dementia related to each unit of
presynaptic protein (protective effect) was comparable to or
larger than the increase in odds related to cerebral infarcts
(damaging effect). This suggests that the level of specific
presynaptic proteins and protein—protein interactions is highly
clinically relevant. Figure 2 illustrates the effects of percentile
of presynaptic proteins on odds of dementia across the
spectrum of AD pathology for a representative participant
(an 88-year-old woman with 14 years of education).
Statistical interactions between AD pathology and presynaptic
markers were not significant, supporting a model of additive
effects of pathology and presynaptic proteins on odds of
dementia.

Presynaptic proteins and global cognitive
function. Greater AD pathology and infarcts were each
associated with poorer global cognitive function (Table 3).
Age, sex, education and the pathological measures together
explained 28% of the variance in global cognitive function,
leaving considerable remaining variance. Adding the
presynaptic proteins to the model demonstrated significant
effects for each of the four indices, and contributed 1 to 9%
additional variance (small-to-medium effect sizes). Figure 3
uses data from all study samples to illustrate the additive
effects of unit amounts of AD pathology, and unit amounts of
VAMP, complexin-I, complexin-Il and the SNAP-25/syntaxin
interaction on cognitive function. Across the range of AD

Table 2 Logistic regression model of the estimated odds ratios of clinical dementia per unit of AD pathology, cerebral infarcts and per unit of presynaptic measures for

N=249 deceased MAP participants®

Terms Odds ratio (95% ClI) P-value Odds ratio (95% ClI) P-value
AD pathology score® 4.81 (2.82-8.22) <0.001 458 (2.67-7.88) <0.001
Cerebral infarcts® 2.01 (1.04-3.88) 0.02 1.92 (0.99-3.72) 0.02

VAMPH 0.68 (0.44-1.03) 0.03

AD pathology score 4.81 (2.82-8.22) <0.001 5.15 (2.87-9.25) <0.001
Cerebral infarcts 2.01 (1.04-3.88) 0.02 2.36 (1.17-4.80) 0.008
Complexin-1° 0.36 (0.22-0.58) <0.001
AD pathology score 4.81 (2.82-8.22) <0.001 4.66 (2.69-8.09) <0.001
Cerebral infarcts 2.01 (1.04-3.88) 0.02 2.32 (1.17-4.60) 0.007
Complexin-1If 0.52 (0.34-0.81) 0.002
AD pathology score 4.81 (2.82-8.22) <0.001 5.05 (2.85-8.96) <0.001
Cerebral infarcts 2.01 (1.04-3.88) 0.02 1.97 (1.00-3.90) 0.02

Syntaxin/SNAP-25 interaction® 0.44 (0.28-0.68) <0.001

Abbreviations: AD, Alzheimer’s disease; Cl, confidence interval; MAP, Memory and Aging Project; SNAP-25, synaptosomal-associated protein 25; VAMP, vesicle-

associated membrane protein.

3Models are controlled for age, sex and education. ®Score as defined in the text. Range in sample = 0-3.1 units. °Defined as present/absent. Z-score calculated as
described in text. Range in sample = —2.4 to 2.2 units. ®Z-score calculated as described in text. Range in sample = —2.2 to 2.2 units. 'Z-score calculated as described
in text. Range in sample = —2.2 to 2.7 units. 9Z-score calculated as described in text. Range in sample = —2.1 to 2.6 units.
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Figure 2 Probability of dementia illustrated for a female, age 88 years and with 14 years of education, representative of the sample. Percentiles of presynaptic proteins
vesicle-associated membrane protein (VAMP), complexin-I, complexin-Il and the synaptosomal-associated protein 25 (SNAP-25)/syntaxin interaction are shown as colored
lines (green: 90th percentile, limited by the amount of available data, red: 50th percentile, blue: 10th percentile). Probability of dementia increases as Alzheimer’s disease (AD)
pathology increases, but may vary considerably depending on the levels of presynaptic proteins and protein—protein interactions.

Table 3 Linear regression model of associations of global cognitive function z-score with units of AD pathology, cerebral infarcts and units of presynaptic measures

among N =249 deceased MAP participants®

o

Global cognition Global cognition
Model R2 Estimated P-value Model R2 Estimated 8 P-value
coefficient coefficient

AD pathology score® 0.28 -0.73 <0.001 0.30 —0.69 <0.001
Cerebral infarcts® -0.32 0.01 —-0.30 0.02
VAMP® 0.17 0.03
AD pathology score 0.28 -0.73 <0.001 0.37 —0.68 <0.001
Cerebral infarcts —-0.32 0.01 —0.36 0.003
Complexin-I° 0.43 <0.001
AD pathology score 0.28 -0.73 <0.001 0.32 —0.69 <0.001
Cerebral infarcts -0.32 0.01 -0.37 0.004
Complexin-IIf 0.25 <0.001
AD pathology score 0.28 -0.73 <0.001 0.30 —0.70 <0.001
Cerebral infarcts -0.32 0.01 —0.31 0.02
Syntaxin/SNAP-25 interaction? 0.20 0.007

Abbreviations: AD, Alzheimer’s disease; MAP, Memory and Aging Project; SNAP-25, synaptosomal-associated protein 25; VAMP, vesicle-associated membrane

protein.

2Models are controlled for age, sex and education. °Score as defined in the text. Range in sample=0-3.1 units. °Defined as present/absent.
d4Z-score calculated as described in text. Range in sample = —2.4 to 2.2 units. ®Z-score calculated as described in text. Range in sample = —2.2 to 2.2 units. 'Z-
score calculated as described in text. Range in sample = —2.2 to 2.7 units. 9Z-score calculated as described in text. Range in sample = —2.1 to 2.6 units.

pathology, presynaptic protein levels contribute to global
cognitive function. An alternative presentation of this data
(similar in format to Figure 2) appears as Supplementary
Figure S1. Participants at higher percentiles for presynaptic
markers had better cognitive function than those at lower
percentiles, across multiple levels of AD pathology.
No statistical interactions between presynaptic markers and
pathology were observed.

Cortical atrophy and presynaptic proteins. Cortical
atrophy assessed semiquantitatively at post-mortem
examination was not correlated with AD pathology
(Figure 4). However, correlations between cortical atrophy
and levels of complexin-l (rho=0.14, P=0.02), and of
complexin-ll (rho=0.17, P=0.008) had small-to-medium
effect sizes, as did the correlation with SNAP-25/syntaxin
interaction (rho=0.19, P=0.003). Cortical atrophy was not

Translational Psychiatry
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Figure 3 Global cognitive function (z-score, controlled for age, sex and education) illustrated for study participants in relation to levels of presynaptic proteins, protein—
protein interactions and severity of Alzheimer’s disease (AD) pathology. For the full sample, as well as subsamples free of infarcts, or with infarcts present, both levels of
presynaptic proteins and AD pathology contributed to global cognitive function. SNAP-25, synaptosomal-associated protein 25; VAMP, vesicle-associated membrane protein.
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Figure 4 Relationships of cortical atrophy and pathological or synaptic variables. Cases of dementia are shown in red, and nondemented in blue. After controlling for age,
sex and education, complexin-Il levels and the synaptosomal-associated protein 25 (SNAP-25)/syntaxin interaction were associated with the extent of cortical atrophy. In
contrast, Alzheimer’s disease (AD) pathology did not predict cortical atrophy. VAMP, vesicle-associated membrane protein.

related to VAMP levels. When cortical atrophy was modeled
as a function of age, sex, education and individual
presynaptic proteins, the severity of cortical atrophy was
associated with the level of complexin-ll (estimate =0.37,
P=0.01) and of the SNAP-25/syntaxin interaction
(estimate =0.59, P<0.001).

As this protein—protein interaction was quantified in homo-
genates, anatomical localization to specific terminal types was
lost. To provide a neurochemical context, we used confocal
microscopy to examine the relationship between the
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localization of the presynaptic proteins SNAP-25 and
syntaxin, and markers of glutamatergic (excitatory) and
GABAergic (inhibitory) terminals (Supplementary Figure
S2). As expected, SNAP-25 and syntaxin immunoreactive
pixels were highly colocalized (SNAP-25 overlap with
syntaxin, 83%; syntaxin overlap with SNAP-25, 74%).
SNAP-25-labeled pixels overlapped 64% with the vesicular
glutamate transporter, but only 21% with the vesicular
GABA transporter; similarly, syntaxin-containing pixels
overlapped 43% with the vesicular glutamate transporter,



but only 17% with the vesicular GABA transporter. These
findings were consistent in the two cases examined,
but only provide a context for interpretation of the SNARE
interaction findings. More detailed and comprehensive
studies would be needed to fully illuminate the neuro-
chemical implications of the SNARE protein interaction
results.

Discussion

In this community-based sample, both demented and
nondemented individuals had a wide range of AD pathology,
suggesting that additional factors contributed to the clinical
status. Cerebral infarcts were present in 30%, and increased
the odds of dementia. Controlling for both AD pathology and
infarcts, higher levels of three specific presynaptic proteins
(VAMP, complexin-I and complexin-Il) were associated with
better cognitive function and lower odds of dementia. A fourth
measure represents a biological interaction between SNAP-
25 and syntaxin. Although the directly measured levels of
these two proteins were not associated with cognitive
function, the independent assay of their biological interaction
was associated with cognition. These four presynaptic
measures may represent structural or functional markers of
cognitive reserve. Cortical atrophy was associated with
complexin-Il and the SNAP-25/syntaxin interaction, but not
other synaptic or pathological measures.

Assaying multiple presynaptic proteins demonstrated some
specificity for the associations of the synaptic vesicle protein
VAMP, and complexins | and Il with cognition in the elderly.
Relatively selective loss of complexin proteins in AD was
noted previously in a small study,*® and other pathological and
genetic evidence supports a role for these proteins in human
cognitive  function.®®3**  Animal  studies indicate
that early-life experiences can alter complexin levels in
adulthood,®® further supporting a model of presynaptic
markers as molecular correlates of cognitive reserve.

The functionally important biological interaction between
SNAP-25 and syntaxin was related to cognitive function,
despite the absence of direct associations between the levels
of these proteins and cognition. Greater biological interaction
of SNAP-25 and syntaxin is associated with less glutamater-
gic neurotransmission in a transgenic mouse model.® Less
interaction, as seen here, could imply increased glutamate
release with excitotoxicity, a process consistent with hyper-
active neurons observed in an animal model of Alzheimer’s
disease.'® Interactions between SNAP-25 and syntaxin can
be modulated by experimental drugs.®” This aspect of
presynaptic integrity could represent a novel target for
therapeutic interventions to forestall or alleviate cognitive
impairment in the elderly.

We observed associations between autopsy-assessed
cortical atrophy and levels of complexin-ll and the SNAP-25/
syntaxin interaction. Although our assessment of cortical
atrophy was a semiquantitative grading obtained post-
mortem, this finding establishes a foundation for future studies
including magnetic resonance imaging of regional cortical
thickness and surface area in life and post-mortem examina-
tion of pathology and synaptic measures. Synaptic markers of
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the structural component of cognitive reserve could contribute
to the variation in magnetic resonance measures of gray
matter before or in the early phases of cognitive dysfunction
with aging.

Our cases exhibited the most common pathologies found in
the elderly: AD and infarcts.®®3° Cognitive function ranged
from normal to moderately severe dementia. Specific
presynaptic proteins may contribute to cognitive reserve
particularly in the healthy elderly or in the early phases of
cognitive decline. Once end-stage dementia occurs, our
findings and those of others indicate that pan-synaptic loss
occurs. Developing reliable assays of presynaptic proteins in
cerebrospinal fluid could provide an interesting biomarker for
future investigation of the cognitive reserve model, and of the
possibility of early presynaptic pathology.

Although our sample was relatively large, few individuals
were <75 years old. The findings may not generalize to those
with cognitive impairment in the seventh decade of life or
earlier. Finally, our measures were focused on the presynap-
tic compartment, and were from brain homogenates.
Studies at an anatomical or cellular level of resolution and
including postsynaptic markers might be more informative of
mechanism.

In conclusion, multiple measures of synaptic proteins and
interactions were associated with dementia, global cognitive
function and cortical atrophy in a representative sample of
people over 70 years of age. Consistent with a role in cognitive
reserve, greater synaptic integrity appeared to protect
the brain from manifesting cognitive impairment despite the
accumulation of the two most common neuropathologies
responsible for dementia. Presynaptic terminals are
responsive to environmental manipulations and training.*°
Presynaptic integrity could represent a novel target for
therapeutic interventions designed to forestall or alleviate
cognitive impairment in the elderly.
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