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Remote ECG diagnosis has been widely used in the clinical ECG workflow. Especially for

patients with pacemaker, in the limited information of patient’s medical history, doctors

need to determine whether the patient is wearing a pacemaker and also diagnose

other abnormalities. An automatic detection pacing ECG method can help cardiologists

reduce the workload and the rates of misdiagnosis. In this paper, we propose a novel

autoencoder framework that can detect the pacing ECG from the remote ECG. First,

we design a memory module in the traditional autoencoder. The memory module is to

record and query the typical features of the training pacing ECG type. The framework

does not directly feed features of the encoder into the decoder but uses the features

to retrieve the most relevant items in the memory module. In the training process, the

memory items are updated to represent the latent features of the input pacing ECG. In

the detection process, the reconstruction data of the decoder is obtained by the fusion

features in the memory module. Therefore, the reconstructed data of the decoder tends

to be close to the pacing ECG. Meanwhile, we introduce an objective function based

on the idea of metric learning. In the context of pacing ECG detection, comparing the

error of objective function of the input data and reconstructed data can be used as an

indicator of detection. According to the objective function, if the input data does not

belong to pacing ECG, the objective function may get a large error. Furthermore, we

introduce a new database named the pacing ECG database including 800 patients with

a total of 8,000 heartbeats. Experimental results demonstrate that our method achieves

an average F1-score of 0.918. To further validate the generalization of the proposed

method, we also experiment on a widely used MIT-BIH arrhythmia database.

Keywords: electrocardiogram signals, autoencoder, heartbeat arrhythmias detection, metric learning, attention

mechanism

1. INTRODUCTION

The electrocardiogram (ECG) is an important tool in the everyday practice of clinical medicine
(Hannun et al., 2019), especially for patients who are fitted with a pacemaker. The application
of a pacemaker effectively alleviates the condition of patients with heart disease and extends the
survival period of patients. But these patients require regular in-hospital checks of the pacemaker
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and cardiac abnormalities. Therefore, remote cardiac monitoring
for pacemaker patients becomes increasingly important.
To find cardiac abnormalities in time, computer-aided
diagnosis provides real-time ECG analysis without any manual
intervention by physicians.

The pacing ECG detection still confronts many challenges.
First, the procedure of remote ECG diagnosis only contains
ECG signals from the patients, and doctors cannot check
the patient’s medical history in advance. Second, there are
different performances inmorphological features between pacing
ECG and routine ECG for the same disease. And in clinical
ECG data, the ECG morphology of the pacemaker patient is
interfered with by the pacemaker, which brings disturbance
to the ECG abnormality diagnosis. For example, ventricular
pacing is often confused with the left bundle branch block of
routine ECG. Suppose we do not inform the doctor that the
remote ECG data comes from a pacemaker patient. In that
case, the doctor may diagnose certain pacing heart rhythms
as other abnormalities of the routine ECG. To solve the
above problems, we constructed an extensive, novel ECG
database named Pacing ECG Database, which includes 800
samples of ECG data annotated by the clinician. To the
best of our knowledge, this is the first ECG signals database
faced with pacing ECG. The automatic recognition of the
pacemaker provides a solid guide to distinguish abnormal ECG
accurately, which can improve the performance of abnormal
ECG classification.

Motivated by the recent success of autoencoder as a time
series detection tool, several promising autoencoder for ECG
abnormality detection have been proposed. Specifically, it is
generally assumed that the reconstruction error trained by the
traditional autoencoder will be lower for the training data

FIGURE 1 | The ECG abnormality detection via the proposed MAE. A sample of training on the pacing ECG database, the memory module records the latent features

of the corresponding training ECG type. Given an input sample of other types, the MAE queries the most correlation latent features in the memory module for data

reconstruction, resulting in an output significantly different from the input data. But if the input sample belongs to the training type. The MAE can reconstruct very well

according to the memory module.

of the input type. In contrast, reconstruction error becomes
significant for other abnormalities. Therefore, the autoencoder
(AE) is trained by minimizing the reconstruction error in
each class and then utilizes an objective function based on
reconstruction error to classify ECG abnormalities. However,
many works have proved that autoencoder’s generalization
ability can sometimes well express other abnormal samples
that the inputs do not belong to the training type (Zong
et al., 2018; Gong et al., 2019). This is because the decoder is
powerful for decoding some abnormal encodings well, so the
AE sometimes also gets a lower reconstruction error for other
ECG abnormalities.

To improve the drawback of traditional AEs, we propose a
new model of memory-based autoencoder (MAE) for pacing
ECG detection, as illustrated in Figure 1. In the MAE model,
we first utilize a deep autoencoder to extract the typical features
of high-dimensional ECG data. But the decoder of MAE does
not directly reconstruct the data from the encoding. We added a
memory module between the encoder and decoder. The memory
module is to record and query the typical features of the training
pacing ECG type. MAE does not directly feed features of encoder
into the decoder but uses the features to retrieve the most
relevant items in memory module. Those features are aggregated
and delivered to the decoder. Meanwhile, we further utilize a
sparse coding strategy to induce sparsity for the memory module,
which can easily match the memory items to the query of the
feature space.

We are also inspired by metric learning. The goal of metric
learning is to learn a distance metric that puts the same positive
types close together and negative types far away. In this paper, the
MAE is trained by minimizing the error of objective function on
the pacing ECG and then uses the error of objective function as
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an indicator of pacing ECG detection. In the training process, the
features of the pacing ECG are learned and stored by the MAE
model. The purpose is to obtain a lower reconstruction error for
pacing ECG. In the detection process, the reconstruction data of
the decoder is fused with the features in the memory module.
Because the reconstruction data is obtained from the feature
of the pacing ECG in the memory module, the output of the
decoder tends to be close to the pacing ECG. In the results, if the
input data does not belong to pacing ECG, the objective function
may get a significant error. The proposed MAE is not only for
detecting the pacing ECG but also can be applied to solve other
ECG abnormality detection. We also apply the proposed MAE
on the MIT-BIH Arrhythmia Database. The experiments
prove the excellent generalization and effectiveness of
the model.

To summarize, the contributions of this paper are as follows.

(1) A novel autoencoder framework named MAE is proposed
to detect the pacing ECG. The memory module is added
between the encoder and decoder. The memory module is
used to record the features of the training data.

(2) We introduce a new objective function that is based on
metric learning, which can better represent the error among
the different types. Because of the memory module, the
reconstruction tends to be close to the training types. When
the input types are not similar to the training types, the
objective function has a significant score.

(3) We collect a new database named Pacing ECG Database for
evaluation of the MAE framework. The database includes
800 annotated samples and each ECG data is de-identified
according to the privacy policy.

(4) The experiments conducted on Pacing ECG Database,
demonstrate that the proposed MAE reliably improves
the performance of pacing ECG. To further validate the
generalization, the MAE framework is also applied on MIT-
BIHArrhythmiaDatabase and is superior to the state-of-the-
art detectors.

This reminder of the paper is organized as follows. Section 2
presents the related works. Section 3 introduces the proposed
memory-based autoencoder method. The experimental results
and analysis are given in section 4. Finally, section 5 concludes
this paper.

2. RELATED WORK

In recent years, many approaches have been proposed to
automatically process physiological signals in the field of artificial
intelligence (Gao et al., 2018; Wang et al., 2020; Yao et al.,
2020; Zhou and Tan, 2020). For abnormal ECG detection, the
performance is consistently improved in terms of accuracy on
major challenges and benchmarks, such asMIT-BIH (Moody and
Mark, 2001), CPSC_2018 (Liu et al., 2018a). Nevertheless, there
are few solutions for pacing ECG, which pacing ECG is only
regarded as a kind of ECG abnormality in the classification task.
In this paper, we focus on improving the accuracy detection of
pacing ECG.

2.1. ECG Abnormality Classification
Cardiovascular diseases can be divided into cardiomyopathy,
ischemic heart disease, myocardial infarction and so on (Hao
et al., 2021). Many clinicians focused on using computer-
aided diagnosis to detect one of the heart diseases (Baloglu
et al., 2019). For example, Adam et al. (2018) focused on
classifying hypertrophic heart disease, dilated cardiomyopathy,
hypertrophic cardiomyopathy. Many researchers are interested
in studying ECG bundle branch block, which is heart disease
with high mortality. It can be divided into the left bundle branch
block (LBBB) and the right bundle branch block (RBBB) (Zhang
et al., 2012). There is also a part of clinical research that focused
on the use of electrocardiograms to detect specific abnormalities
such as myocardial infarction (Liu et al., 2018b; Baloglu et al.,
2019).

Some approaches have been devoted to improving the
performance of ECG abnormality diagnosis in recent years
(Mondéjar-Guerra et al., 2019; Hao et al., 2021; Wang et al.,
2021). The signal processing is essential for clinical monitoring.
Typically, one kind of methods (Mondéjar-Guerra et al., 2019;
Wang et al., 2021) is to diagnose ECG on features of high-
dimensional space with rich fine features of ECG abnormalities.
In previous studies on ECG abnormality classification, which
focused on preprocessing to segment the raw ECG sequence
to heartbeats (Sodmann and Vollmer, 2020). And then, feature
descriptions of abnormal ECG are calculated the from the
heartbeats (Sangaiah et al., 2020), for example, RR interval
features extraction (Chen et al., 2017), wavelets (Mar et al.,
2011; He et al., 2018), higher-order statistics (HOS) (Osowski
and Tran, 2001). Other methods based on deep learning can
learn useful features from raw ECG data without requiring signal
preprocessing (Fan et al., 2018; Ma et al., 2020). A series of typical
strategies focus on designing network architecture to extract
multiple features to improve ECG abnormality classification
accuracy. However, in practice, these methods need a sufficient
amount of handcraft labels or features.

Recent studies of ECG abnormality classification have
concentrated on deep learning (Hannun et al., 2019; Saadatnejad
et al., 2020; Zhang et al., 2020). A convolutional neural network
(CNN) is an effective method for extracting features due to
its local connectivity and parameter sharing. Hannun et al.
(2019) developed a 34-layer CNN that classifies 12 types
of ECG signals and achieves cardiologist-level performance.
The RNN-based (Wang et al., 2018; Chen et al., 2020)
method, such as the Gated Recurrent Unit (Zhang et al.,
2019), the Long Short Term Memory (Tan et al., 2018;
Saadatnejad et al., 2020), is a type of neural network used
for processing ECG signal. The RNN is used to extract
global features and then classified the ECG abnormalities.
Saadatnejad et al. (2020) proposed a continuous and real-time
patient-specific ECG classification algorithm based on wavelet
transform and multiple LSTM. Other effective methods (Chen
et al., 2020; Wang et al., 2020; Yao et al., 2020) to develop
the architectures combining CNN with RNN for detecting
multi-class ECG abnormalities. But in these works of ECG
diagnosis, the pacing rhythm is only detected as a kind of
ECG abnormality.
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2.2. Autoencoder
The autoencoder belongs to unsupervised tasks of deep learning
and does not need data annotation for training samples. The
autoencoder is composed of three layers, in which the number
of neurons in the input layer is the same as the number of
neurons in the output layer, and the number of neurons in
the middle layer is less than that of the input and output
layer. During the training phase, for each training sample,
a new signal will be generated in the output layer through
the network. The purpose of training is to make the output
signal and the input signal as similar as possible. In the
testing phase of autoencoder, it can be composed of two
parts. The first part is the input layer and the middle layer,
which can use to compress the signal. The second part is
the middle layer and the output layer, which can restore the
compression signal.

With the development of artificial intelligence, it is already
widely applied to many areas such as bioinformatics (Oyetunde
et al., 2018), engineering technology (Samaniego et al., 2020)
and clinical medicine (Chen et al., 2018). Thinsungnoen
et al. (2018) proposed the deep autoencoder (AE) which is
a powerful tool to deal with the high-dimensional data in
the unsupervised task of processing ECG signals. They have
great success in some application domains as well, such as
denoising autoencoders (DAEs) (Dasan and Panneerselvam,
2021), ECG data dimension reduction (Wang et al., 2013).
And a series of work has been conducted in ECG data
classification using an autoencoder model. However, in practice,
the pacemaker can interfere with the ECG signal. It often
leads to the morphological difference between cases with
pacemaker and cases without pacemaker in the same ECG
abnormality. Lack of pacing ECG data has limited many
models design for abnormal ECG classification. Meanwhile, the
existing autoencoder for ECG classification algorithms still has
a misdiagnosis rate. Therefore, we collect a large pacing ECG
database and design a novel autoencoder model to detect the
pacing ECG.

Traditional autoencoders are mainly used for ECG signal

reconstruction. For example, Majumdar et al. (2016) design

a stacked autoencoder (SAE) model which mainly uses
semi-supervised deep learning approach for ECG signal
reconstruction. In the research of industrial anomaly detection,
Hasan et al. (2016) use the reconstruction error of a convolutional
AE to detect the anomalies in video sequences. However, these
methods neglect the generalization capability of the autoencoder
model and lack a mechanism to encourage the autoencoders to
produce larger reconstruction errors for abnormalities.

Recently, existing a novel method introduces the memory-
augmented networks to solve the anomaly detection by
reconstructing the input data (Kim et al., 2018). Gong et al.
(2019) detect the anomalies according to the reconstruction
error of a memory-augmented AE. The memory module can
record features stably. Santoro et al. (2016) use the idea to
handle the one-shot learning problem. These methods show
significant performance gain, especially for anomaly detection.
However, these algorithms only detect one class, which makes
them infeasible for ECG diagnosis.

The previous work focused on the autoencoder conduct to
deal with the issue of data imbalanced or noise reduction.
Inspired by these methods, we propose the MAE model
using an attention-based memory module to record latent
features of corresponding ECG abnormalities. We also propose
a quantitative assessment criterion to cluster each ECG
abnormality type. Then, we verify the performance of our model
on different databases. The proposed MAE model shows drastic
improvements for ECG abnormality diagnosis.

3. METHOD

Previous AE architectures for ECG signal processing focused
on data denoising and data dimensionality reduction. In this
paper, we propose a novel autoencoder architecture containing
a memory module that can record the latent features of the
training type, as shown in Figure 2. And we also introduce a new
objective function that can calculate a similarity score between
the output of the decoder and the input data. As a result, we
define the estimated score of the data as the clustering criteria.
This makes the proposedMAEmodel especially suitable for ECG
abnormality classification.

3.1. Encoder and Decoder
The encoder of MAE model can obtain the features from input
data, which is beneficial for data dimension reduction. The
features can be used as a key to match the relevant features in
the memory module. In our method, the output of the encoder
can be seen as a generator of a feature dictionary. The decoder
is trained to reconstruct the samples by taking the retrieved
memories as input.

In this paper, we consider multi-channel time-series
recordings of ECG. We first define X to represent the domain of
the ECG data samples. Each ECG is a multivariate time-series
where the rows define the channel dimension, and the columns
capture the time dimension. One ECG sample is represented
by the following matrix xi =

{

x1i , x
2
i , ..., x

C
i

}

∈ X
C×T where C

denotes the channels of ECG sequence and T is the number
of sample points per channel. Our MAE architecture is first
composed of an encoder, where Z represents the domain of the
encodings. Let fe(X) → Z denote the encoder. The encoder
aims to provide a low dimensional latent representation domain
Z from the input data domain X. Given a sample xi ∈ X, the
encoder converts it to an encoded representation as zi ∈ Z,
as follows:

zi = fe(xi; θe), (1)

where θe denotes the parameters of the encoder fe.
The second half of the MAE model architecture contains a

decoder, which aims to reconstruct the samples. Let fd(Z) →

X denote the decoder. And the decoder is trained to reversely
mapping a latent representation ẑi ∈ Z to the domainX. It should
be specially explained that the proposed MAE model is different
from the standard AE model. For tradition AE model, the ẑi
should be zi. But in this paper, the latent features zi in the training
phase are stored in the feature dictionary, and in the testing phase
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FIGURE 2 | Illustration of the proposed MAE model. The memory module records latent features and the memory query can obtain the weight of the degree of

similarity between the features of input data and the record features. Note that the output of the memory module is the input of the decoder.

FIGURE 3 | Illustration shows the details architectures of encoder fe and decoder fd in the MAE model.

are regarded as a keyword to query, and ẑi is obtained from the
memory unit, as follows:

x̂i = fd(ẑi; θd), (2)

where θd denotes the parameters of the decoder fd.
The architectures of encoder fe and decoder fd are shown

in Figure 3. The architecture of the encoder contains four
one-dimensional convolutional layers. And each convolutional
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layer is followed by a normalization layer and an activation
layer. The convolution layers with the kernel size of 1 × 15 are
applied to capture the latent features. The fractionally-strided
convolution is used in the decoder, which is often used to enlarge
the size of the image in image processing. The operation of
the fractionally-strided convolution and the normal convolution
is exactly the opposite. In this paper, we use the fractionally-
strided convolution to restore the input ECG signal type from
the low-dimensional latent features.

3.2. Attention-Based Memory Module
The purpose of the memory module is to record the most
representative features in the input pacing data during training.
The above section encoder converts the input data to the internal
feature representation. The memory module can be regarded
as a dictionary D with a querying scheme and is designed as
a matrix D ∈ RN×C containing N real-valued vectors of fixed
dimension and to record the prototypical correlation internal
feature of pacing ECG during training. The output feature map
ẑ of memory unit combines the new input z with the entry in
current memory state k, where k ∈ R1×N is a row vector with
non-negative entries that sum to one. The weight vector k is
computed according to z. The output of latent features ẑ will be
obtained via ẑ = k · D.

Let the row vectormi, ∀i ∈ {1, 2, . . . ,N} denote the i− th row
of D, where {N} denotes the set of integers from 1 to N. Each mi

denotes the item in the dictionary D. The parameter N defines
the maximum capacity of the memory unit. The typical memory
module is developed to query prototypical pacing ECG features,
as illustrated in Figure 2.

To be specific, we first introduce a query strategy that
computes attention weights ki based on the similarity of the
items of the dictionary and the input feature z. Each wight ki is
computed via a softmax operation:

ki =
exp(d(z,mi))

∑N
j=1 exp(d(z,mi))

, (3)

where d(z,mi) denotes a correlation measurement between z and
mi. Following the work, we define function of d(z,mi) as cosine
similarity:

d(z,mi) =
z ·mT

i

‖z‖ · ‖mi‖
, (4)

Then, considering that the low-level features are more cluttered,
some other group of ECG abnormalities may still have the chance
to be reconstructed into the pacing ECG. To alleviate this issue,
we apply a sparse coding strategy to promote the sparsity of
ki. Sparse coding strategy encourages the model to represent a
sample of pacing ECG using fewer but more relevant memory
items, leading to learning more features from the memory unit.
We define the sparse coding following the work Gong et al.
(2019). Considering that all entries in k are non-negative, the
sparse coding strategy is redefined via the continuous ReLU
activation function as

k̂i =
max(ki − α, 0) · ki

∣

∣ki − α
∣

∣ + ǫ
, (5)

where k̂i represents the i − th entry in current memory state k,
the max(ki − α, 0) is also obtained as Relu activation. The α is a
sparse threshold which is set the value in the interval [1/N, 3/N].
And ǫ is a very small positive scalar.

Finally, we normalize the weight vector k̂ by letting k̂i =

ki/
∥

∥

∥
k̂
∥

∥

∥
. Therefore, the output ẑi of memory unit is defined as.

ẑ = k̂ · D =

N
∑

i=1

k̂i ·mi, (6)

3.3. Training and Testing
Given a database X containing N samples, let x̂i denote the
reconstructed sample corresponding each input sample xi. In the
training phase, the L(x, x̂) is used to measure the reconstruction
error:

L(x, x̂) =
1

n

∑
∥

∥xi − x̂i
∥

∥

p
, (7)

where p is set to 1 or 2 in our paper. When p = 1, formula 7 is
the mean absolute error, which can also be regarded as the L1-
loss. When p = 2, formula 7 can be regarded as the mean square
error, which is L2-loss. Due to the ECG abnormality diagnosis
application scenario, we design ablation experiments to find the
optimum value of p.

Due to the memory module of the testing phase, the learned
memory content is fixed. Only the feature in the dictionary
of the training type in the memory module can be retrieved
for reconstruction. Thus the samples of one type can be
reconstructed well. Conversely, the encoding of another ECG
abnormality input will be replaced by the retrieved trained
features, resulting in significant reconstruction error on this
input data.

In the testing phase, we also need to define the rule to classify
ECG abnormalities according to the MAE model. For example,
given an input ECG data xi and the reconstruction error are
used to determine the classification. Pn denoted that the samples
are the class of target domain n. Therefore, we define the set of
samples in the target domain as:

T(xi) =
{

xi ∈ Pn,with
∥

∥xi − fdn (fen (xi; θe); θd)
∥

∥

p
≤ ‖xi

− fdq (feq (xi; θe); θd)
∥

∥

∥

p}

, (8)

where, the fen and fdn represent the operation of encoder and
decoder which the training phase records the latent features
of target class n in the memory module. The feq and the fdq
represent the operation of encoder and decoder in which the
training phase records the latent features of target class q in the
memory module. This equation essentially defines the distance
relationship between samples of the same classes and samples of
different classes.

4. EXPERIMENTS

In this section, we validate the proposed MAE framework for
pacing ECG detection. Meanwhile, to show the applicability
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FIGURE 4 | Examples ECG (from Lead II) in pacing ECG database. (A) An example shows the morphology of the pacing ECG. (B) An example shows that the

morphology of pacing ECG receives other abnormal interference. (C) An example shows that the ECG morphology of the complete left bundle branch block is similar

to pacing ECG. Note that sample (A) has no obvious pacemaker nail in lead II, but the proposed MAE method can distinguish the (C) and pacing type by other lead

information.

of the method, we also conduct experiments on the MIT-BIH
Arrhythmia Database. First, the evaluation metric used in the
experiments will be introduced. The quality and performance
of the proposed MAE framework are evaluated by utilizing
standard metrics: precision, recall, and f1-score. And then, the
experimental database will be described. Finally, we present the
experimental results and analysis. Additionally, the results are
compared with other methods of ECG abnormality detection.

4.1. Evaluation Metric
In this paper, typical classification metrics, including precision,
recall, and F1-score were used for each class. Precision is the
ratio of the number of correct positive predictions to the total
number of positive predictions. Recall is the ratio of the number
of correct positive predictions to the total number of true positive
and false negatives. F1-score is the weighted average of precision
and recall. They are defined as:

Precision(+p) =
TP

TP + FP
, (9)

Recall(Rec) =
TP

TP + FN
, (10)

F1− score =
2× Precision× Recall

Precision+ Recall
, (11)

where TP, TN, FP, and FN represent the numbers of
true positives, true negatives, false positives, and false
negatives, respectively.

4.2. Experiments on Pacing-ECG Detection
4.2.1. The Pacing-ECG Database
The professional database plays a more important role in
automatic ECG diagnosis than the algorithm and employed
techniques. One of the obstacles in the research on fully
automatic analysis in ECG is the insufficient quantity of available
databases (Shen et al., 2020).

In this paper, we collect an extensive, novel ECG database
named Pacing ECG Database. The pacing ECG database can be
used to evaluate the proposed MAE framework. It should be
noted that all extracted data were de-identified according to the
privacy policy. Fully de-identified patient data can be used for
research purposes. The main goal is to detect the morphology of
pacing ECG from various interferences. And some of the samples
may contain other abnormalities in the pacing ECG database.
We aim to distinguish between the sample with a pacemaker
and the sample without a pacemaker under the interference of
these abnormalities.

The pacing ECG database contains 800 recordings of data
annotated by the clinician lasting for 10 s, sampled at 500 Hz.
Each sample acquired by the device is all 12-lead (channel) ECGs,
digitized at 500 samples per second per channel and lasting for 10
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TABLE 1 | The specific data distribution in each database.

Database Number of patients Record Objective

MIT-BIH (Moody and Mark, 2001) 48 N:90595, S:2781,

V:7235, F:802,

Q:8041.

Heartbeat arrhythmia analysis.

CPSC_2018 (Liu et al., 2018a) 6877 Normal:918, AF:1098,

RBBB:1695, STD:825,

PAC:556, PVC:672,

LBBB:207, 1-VAB:704,

STE:202.

Automatic identification of the rhythm abnormalities.

Pacing ECG 800 Pacing ECG:400,

Routine ECG:400.

Pacing ECG detection.

s. The sample ECG sequences in the pacing ECG database are
illustrated in Figure 4. The specific data distribution is shown
in Table 1. We also evaluated the quality of ECG sequences.
According to the standard of work (Shen et al., 2020), as shown
in Table 2, each sample can be divided into good signal quality,
medium signal quality, and poor signal quality. Our pacing ECG
database only retains good quality signals.

4.2.2. Evaluation and Analysis
We carry out experiments on the pacing ECG database to further
evaluate the proposed method for pacing ECG detection. The
samples are split into training and test set with a rate of 3:1.
Following the experimental setting used in these works (Gong
et al., 2019; Hannun et al., 2019), the training set only consists
of samples of the target class. There is no overlap between the
training set and the testing set.

In this experiment, we mainly verify the effectiveness of
our memory module and the encoder and decoder based on
convolutional neural networks. First, we implement the encoder
using 1-D convolution and the decoder using 1-D fractionally-
strided convolution. Each convolutional layer is followed by
batch normalization and a ReLU activation function. The details
of the encoder and decoder are shown in Figure 3. We set the size
of the memory module at 300. We also conduct the comparisons
with some baseline variants of MAE to show the importance of
the significant components, including the autoencoder without
memory module (AE) and different reconstruction errors.

As shown in Table 3, we conduct several ablation studies
to investigate the effectiveness of the major components of the
proposed method, such as MAE and its backbone AE. And

TABLE 2 | Specification for signal quality division (Shen et al., 2020).

Category Symbol Definition

Good A Signal with apparent P-QRS-T morphologies

Signal with slightly baseline drift or transient artfacts

Medium B A good recording contaminated severely in a narrow window

A good recording with one or a few missing signals

A poor recording that may be interpretable with difficulty

Poor C Signal usefulness in clinical applications (maybe caused by

misplaced electrodes, poor skin-electrode contact)

the MAE model with P = 2 gets better diagnosis results. As
observed in Table 3, MAE with P = 2 achieve 91.8% F1-score,
outperforming AE with P = 1 (4.0%, F1-score), AE with P = 2
(3.4% F1-score), MAE with P = 1 (1.7% F1-score). It is also seen
that the proposed MAE achieves competitive results compared
to other state-of-the-art methods. These methods like the Resnet
backbone network architecture of Hannun et al. (2019) and a
combination of RNN+CNN architecture of Yao et al. (2020). The
MAEmodel outperforms themethods of theHannun et al. (2019)
by a margin, with a gain of 1.0% improvements in F1-score.

In Figure 5, we visualize the ECG data reconstruction process
under the memory module. Since the trained memory only
records the latent features of training type, given a routine ECG
sample as input, the MAE trained on pacing ECG type, resulting
in significant reconstruction error in the kind of input data. Note
that the reconstructed pacing ECG of MAE has a similar feature
to the input routine ECG type because the memory module
retrieves the most identical memory features. The ECG data has
periodicity, and the AE model without memory module records
some features that are more similar. Thus other types of samples
sometimes may also be reconstructed well. Figure 6 shows that
the objective function score obtained by MAE immediately
changes when different types of ECG abnormalities samples
appear in the dataset.

4.3. Experiments on MIT-BIH Arrhythmia
Database
The proposed MAE model also can be generally applied
to diagnose other ECG abnormalities. We carry out the

TABLE 3 | The performance of +P, Rec, F1− score of different methods on the

pacing ECG database.

Method
Pacing ECG database

+P Rec F1 − score

Hannun et al., 2019 0.913 0.905 0.908

Oh et al., 2018 0.881 0.921 0.899

AE_l1 0.882 0.874 0.878

AE_l2 0.889 0.880 0.884

MAE_l1 0.906 0.897 0.901

MAE_l2 0.912 0.925 0.918
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FIGURE 5 | Visualization of the reconstruction results of AE and MAE on Pacing ECG. (A) The example model is trained on a type of pacing ECG. The input data is a

routine ECG. Due to the periodicity of the ECG, the reconstruction data from the traditional AE model is also close to the input data. It is a failure case of ECG

reconstruction in terms of error. But the MAE retrieves the training types memory items for reconstruction data and obtains the results significantly different from the

input data types. The significant error between the reconstruction data and the input data means that the input data does not belong to pacing ECG. (B) The example

model is trained on a type of routine ECG. The input data is a pacing ECG. The traditional AE model gets a failure case on the input data. But the MAE model obtains

a higher significant error between reconstructions data and the input data. Therefore, it shows that the input data is a different type from the type of model.

FIGURE 6 | Scores of objective function obtain by MAE. The score changes immediately when some different types ECG samples in the test data.

experiments on the MIT-BIH Arrhythmia database to evaluate
the proposed method.

4.3.1. MIT-BIH Arrhythmia Database
The MIT-BIH Arrhythmia database (Moody and Mark, 2001)
contains 48 half-hour excerpts of two-channel ambulatory
ECG recordings. The recordings are digitized at 360 samples
per second per channel. Each record comprises two signals.
For all the records, the first one is the modified-lead II

(MLII), whereas the second one corresponds to V1, V2,
V4, or V5, depending on the records. Therefore, only
the MLII is provided by all the records. The database
contains two or more expert cardiologists independently
annotated approximately 110,000 beats, all of them, and
the disagreements were resolved. The MIT-BIH heartbeat
types are grouped into five heartbeat classes which are
recommended by the Association for the Advancement of
Medical Instruments (AAMI), as shown in Table 4. Example
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signals for the MIT-BIH Arrhythmia database are shown in
Figure 7.

4.3.2. Evaluation and Analysis
It should be noted that the MIT-BIH Arrhythmia database has
unbalanced distribution. Therefore, we abandon some samples,
which doesn’t affect the final performance. Following the works
(Kachuee et al., 2018;Wang et al., 2021), we balanced the number
of beats in each type before splitting the testing phase. This
paper selects and tests on 600 heartbeat samples. In this paper,
only lead II is considered to detect the ECG abnormalities.
This decision is motivated by the following works (Mondéjar-
Guerra et al., 2019), which proved that using only one lead
is sufficient for the arrhythmia classification task. And the 235
points are extracted as single heartbeat morphology features.
For experiment settings, the total number of iterations is 200,
and the batch size is set to 16. We apply an initial learning
rate of 10−5. The Figure 8 shows the classification results of the
MAE model with data splitting. In addition, among those works
shown in Table 5, these methods are designed for improving the
accuracy of ECG heartbeat abnormality detection. Nevertheless,
the MAE model can still exceed them with a large margin,
which can further demonstrate the effectiveness of the proposed

TABLE 4 | Mapping the heartbeat types to the AAMI heartbeat categories and

data distribution statistics (Moody and Mark, 2001).

AAMI MIT-BIH Heartbeat types Total

N

N Normal beat

90,462

L Left bundle branch block beat

R Right bundle branch block beat

e Atrial escape beat

j Nodal(Junctional) escape beat

S

A Atrial premature beat

2,777
a Aberrated atrial premature beat

J Nodal(Junctional) premature beat

S Supraventricular premature or ectopic beat

V
V Premature ventricular contraction

7,223
E Ventricular escape beat

F F Fusion of ventricular and normal beat 802

Q

/ Paced beat

8,027f Fusion of paced and normal beat

Q Unclassifiable beat

approach for ECG heartbeat abnormality detection. Meanwhile,
MAE produces the highest F1-score for most heartbeat types,
such as type of F performance has significant improvement. The
improvements are mainly attributed to the memory module.

Specifically, Table 5 shows the +p and Rec and F1 of the
proposed MAE model and other popular methods on the
database testing set. The experimental results show that the F1-
score of N category is 97.2%, the F1-score of S category is 90.0%,
the F1-score of V category is 88.3%, the F1-score of F category is
92.6%, and the F1-score of Q category is 98.3%.Table 6 shows the
overall results of the MAE model and compares it with the state-
of-the-art methods in other literature. Somemethod results show
that the classification performances for type F and type Q are not
satisfactory. It may be that these beats are harder to classify. On
the whole, our MAE model achieves better performance for type
N, S, V, F, and Q. Moreover, the MAE model can also outperform
these typical classifiers based on CNN, for example, the 9-layer
CNN proposed by Acharya et al. (2017) (92.5%, 2.4% higher F1-
score), the combination of CNNwith LSTMproposed by Shi et al.
(2019) (93.6%, 1.3% higher F1-score).

We also visualize data reconstruction in the MIT-BIH
Arrhythmia database, shown as Figure 9. The trained memory
module records the latent features of the input type. Given a
testing data ECG of “N” type, the memory module trained on
“N” type reconstructs the “N” type, resulting in a low error on
the input data. But the memory items trained on the “F” type
reconstruct the “N” type, given a testing data ECG “N” type,
resulting in a significant error on the input data “N” type. Note
that the reconstructed “F” type of MAE has a similar shape
to the input “N” since the memory module retrieves the most
similar latent features. By comparing the errors, we can easily
get the type of input test data. Despite some data having noise,
the MAE model can still detect the type of heartbeat, which
benefits from the memory module designed in MAE. Meanwhile,
the compelling performance also demonstrates the generalization
ability of the MAE model.

5. CONCLUSION AND FUTURE WORK

In this paper, a memory-based autoencoder was proposed to
construct the intelligent diagnosis model for ECG abnormality
detection. We designed a novel autoencoder using a memory
module to record the latent features from the training data of
corresponding types. The key features of MAE are to preserve
the latent features to obtain low average reconstruction error

FIGURE 7 | Example ECG signals from the MIT-BIH database. There are five heartbeat classes named N, S, V, F, and Q. The meaning of each letter is shown in

Table 4.
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FIGURE 8 | Confusion matrix of MAE model in the MIT-BIH Arrhythmia database. The row labels represent the true class records in each row and the column labels

represent the class records predicted by our method. Numbers in each grid show the number of records classified as column labels when its true class is indicated by

row label.

TABLE 5 | Comparisons of +P, Rec, and F1− score for each type on the MIT-BIH Arrhythmia database.

Methods
N S V F Q

+P Rec F1 +P Rec F1 +P Rec F1 +P Rec F1 +P Rec F1

Zhang et al., 2014 0.990 0.889 0.937 0.359 0.791 0.494 0.927 0.855 0.842 0.137 0.938 0.220 – – –

Ming et al., 2020 0.984 0.953 0.968 0.938 0.785 0.832 0.938 0.957 0.947 0.088 0.438 0.146 – – –

Li et al., 2019 0.975 0.910 0.941 0.780 0.638 0.702 0.865 0.884 0.874 0.907 0.873 0.890 0.994 0.966 0.994

Hannun et al., 2019 0.948 0.950 0.948 0.826 0.720 0.769 0.872 0.890 0.880 0.942 0.786 0.856 0.990 0.990 0.990

Mondéjar-Guerra et al., 2019 0.982 0.959 0.970 0.497 0.781 0.607 0.939 0.947 0.994 0.236 0.124 0.162 – – –

Memory-AE 0.960 0.992 0.972 0.936 0.867 0.900 0.807 0.975 0.883 0.964 0.892 0.926 0.991 0.975 0.983

TABLE 6 | Comparisons with the popular methods for overall types on the MIT-BIH Arrhythmia database.

Typical methods ECG beat types Classifier
Performance

+P Rec F1-score

Acharya et al., 2017 N S V F Q CNN 89.5% 95.9% 92.5%

Niu et al., 2020 N S V F Q Multi-Perspective CNN 96.4% – –

Shi et al., 2019 N S V F CNN-LSTM 94.2% 93.1% 93.6%

Mondéjar-Guerra et al., 2019 N S V F Ensemble SVMs 94.5% 70.3% 80.6%

Proposed MAE N S V F Q Memory-based Autoencoder 95.8% 94.0% 94.9%

in the training phase. And in the testing phase, the output
data of reconstruction will reference the memory items which
were selected as similar items of the encoding of the input
data. Furthermore, we also defined an objective function that
can compute the distance relationship between samples of the

same types and samples of different types. In brief, the proposed
MAE can well reconstruct the input data consistent with the
training types to get a low objective function error and enlarge
the objective function error of other abnormal ECG types, which
the objective function is the better criterion of abnormal ECG
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FIGURE 9 | Examples of the MIT-BIH Arrhythmia database. The “N” type and “Q” type are set to the input samples. And the different memory items mean that the

training phase records corresponding types of features. The MAE model can get a significant reconstruction error when the input data is different from the recorded

data type.

detection. The results demonstrate that the proposed model
achieves a significant performance gain with accuracy, sensitivity,
and F1-score through a series of experiments.

In future work, since the same types of ECG abnormality
has differences between different patients, we aim to record the
latent features in the same types of ECG abnormality of other
individuals. By analyzing these individual differences, we further
explore to improve the accuracy, sensitivity, and F1 score of the
model. Additionally, the diagnostic efficiency of the model is also
an important indicator of clinical ECG diagnosis. We also aim to
design a more lightweight and efficient diagnostic model which
can be better applied in clinical ECG diagnosis.
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