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Abstract

Objective: Thyroid dysfunction is associated with relevant disturbances in glucose 
metabolism. Moreover, thyroid function undergoes important changes with ageing. The 
objective of this study was to investigate the association of thyroid function with insulin 
resistance with particular consideration of possible age-related effect modifications.
Design: A sample of 4193 participants from two independent epidemiological studies, the 
Study of Health in Pomerania-TREND-0 and the Berlin Aging Study II, was included in this 
cross-sectional analysis.
Methods: Insulin resistance was estimated by homeostasis model of insulin resistance 
(HOMA-IR) and the insulin sensitivity index (ISI). Associations of thyroid biomarkers 
(thyroid-stimulating hormone, free thyroxine, and free triiodothyronine (fT3)) with 
parameters of glucose metabolism were analysed by regression models adjusted for 
age, sex, smoking status, and study site.
Results: A higher fT3 was significantly associated with higher fasting glucose and higher 
fasting and 2-h postload insulin levels, a higher HOMA-IR, and lower ISI. A higher fT3 
was also associated with a higher risk for impaired fasting glucose (RR 1.09, 95 CI 1.02; 
1.18; P  = 0.017). Many of these associations between thyroid markers and parameters 
of glucose metabolism were significant in young and middle-aged participants but not in 
older individuals.
Conclusions: The main finding of this study was a consistent association of fT3 with 
almost all markers of insulin resistance. However, this effect seems to be wearing off in 
higher age highlighting a potential age-related modification of the interaction between 
thyroid function and glucose metabolism. Further studies are needed to clarify causal 
relationships.
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Introduction

Thyroid hormones regulate important metabolic processes. 
Thus, thyroid dysfunction can lead to clinically relevant 
alterations in energy expenditure, body weight regulation, 
glucose metabolism, and lipid metabolism (1). It is well 
known that thyroid hormones, namely free thyroxine (fT4) 
and free triiodothyronine (fT3), can exert both insulin 
agonistic and antagonistic actions in different organs (2). 
The most profound alterations in glucose metabolism are 
found in overt hyper- and hypothyroidism. Mechanisms 
included in hyperthyroidism are an increased hepatic 
glucose output through a higher rate of gluconeogenesis 
and glycogenolysis induced by thyroid hormones. Usually, 
hyperthyroidism also leads to an increased glucose 
intolerance and heightened insulin resistance (2, 3).

The effects of hypothyroidism on glucose metabolism 
appear to be complex and even puzzling since clinical 
findings point into seemingly contrasting directions: on 
the one hand, hypothyroidism is viewed as a potential 
cause of hypoglycaemia and, thus, should be controlled 
in cases of unexplained low blood glucose (4) and on the 
other hand, some but not all studies found an association 
of hypothyroidism with insulin resistance (5). Individuals 
with low thyroid function and prediabetes seem to be 
more likely to progress to type 2 diabetes compared to 
those with prediabetes and thyroid hormone levels in 
the reference range (6). The effects of subclinical hypo- or 
hyperthyroidism on glucose metabolism can be expected 
to be subtle but are less examined in previous studies, 
which also reported conflicting results (7, 8). Moreover, it is 
unclear if age-associated functional changes in the thyroid 
gland may modify the effect of hyper- or hypothyroidism 
on glucose metabolism. Since many study populations 
covered only a small age range, this has not hitherto been 
studied thoroughly.

The goal of this study was to investigate the association 
of thyrotropin (TSH), fT4, and fT3 with insulin resistance 
and disturbances in glucose metabolism in a large combined 
cohort of two cross-sectional epidemiological studies: the 
Study of Health in Pomerania (SHIP)-TREND-0 and the 
Berlin Aging Study II (BASE-II). A second aim was to examine 
potential effect modifications by age on these associations.

Materials and methods

Study population

SHIP-TREND-0 is a population-based cohort study 
conducted in the Northeast of Germany between 2008 

and 2012 (9). For SHIP-TREND-0, a random, age- and sex-
stratified sample of 8826 eligible subjects was drawn from 
population registries, of which 4420 subjects aged 20–80 
years participated (net response 50.1%). All participants 
gave informed written consent. SHIP-TREND-0 followed 
the recommendations of the Declaration of Helsinki and 
was approved by the Ethics Committee of the University of 
Greifswald (Approval No. BB 39/08).

The BASE-II cohort was drawn as a convenience sample 
from the greater Berlin metropolitan area. For the medical 
part of the study, 2171 participants (~75% aged 60–84 
years and ~25% aged 20–35 years) were recruited (10) and 
baseline assessment took place between 2009 and 2014. 
BASE-II is a longitudinal observational study to investigate 
factors associated with ‘healthy’ or ‘unhealthy’ aging. 
Study details have been described previously in detail (11, 
12). All participants gave written informed consent and the 
Berlin Aging Study II was approved by the Ethics Committee 
of the Charité – Universitätsmedizin Berlin (Approval No. 
EA2/029/09) and registered with the German Clinical 
Trials Register (DRKS00009277).

From the present analysis, we excluded 614 individuals 
because of known diabetes and concomitant antidiabetic 
medication, 939 individuals due to missing data in 
laboratory values (glucose or insulin at baseline or after 2 h 
in the oral glucose tolerance test), 856 individuals because 
of a fasting period below 8 h before blood sampling, and 36 
individuals due to systemic glucocorticoid therapy.

Altogether 4193 participants from the studies 
SHIP-TREND-0 (2381 participants) and BASE-II (1776 
participants) were included in this cross-sectional analysis.

Assessments

In SHIP, smoking status was assessed in a computer-assisted 
interview. In BASE-II, information on smoking status 
was taken from the medical history recorded by a study 
physician. Smoking status was categorized in the three 
categories: current smokers, former smokers, and never 
smokers. Information on pre-existing diabetes was taken 
from the medical history and assessed by interview.

In both the studies, body weight was measured in light 
clothes with a portable electronic scale to the nearest 0.1 kg 
and height was determined to the nearest 0.1 cm by using 
an electronic weighing and measuring station (seca 764, 
seca, Hamburg, Germany). Weight and height were used 
for calculating the BMI (weight (kg)/height (m)2).

Blood samples were taken as fasting blood samples and 
analysed in the local core laboratories using standardized 
protocols. Serum TSH, fT3, and fT4 levels were analysed by 
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electrochemiluminescence immunoassays (BASE-II: cobas 
immunoassay systems, Roche Diagnostics; SHIP-TREND-0: 
Dimension Vista® System Flex® reagent cartridge, Siemens 
Healthcare Diagnostics Inc.). The analytical measuring 
range in BASE-II was 0.005–100 µIU/mL, 0.5–100 pmol/L, 
0.6–50 pmol/L for TSH, fT4, and fT3, respectively. The 
analytical measuring range in SHIP-TREND-0 was 0.005–
100 mIU/mL, 0.1–8.0 ng/dL, 0.50–30.00 pg/mL for TSH, 
fT4, and fT3, respectively. TSH levels were categorized in 
the three categories: TSH in the reference range, high TSH, 
and low TSH according to the established reference limits 
of 0.27–4.20 mU/L in BASE-II and 0.49–3.29 mIU/L in 
SHIP-TREND-0 (13).

In BASE-II, glucose concentration was determined 
by photometry, HbAlc by ion-exchange HPLC and serum 
insulin levels by chemiluminescence immunoassay 
(Roche elecsys, Roche Diagnostics). In SHIP-TREND-0, 
plasma glucose levels were measured using a hexokinase 
method (Dimension Vista 1500, Siemens Healthcare 
Diagnostics) and serum insulin values were assessed by an 
electrochemiluminescence immunoassay (ADVIA Centaur, 
Siemens Healthcare Diagnostics). HbA1c concentrations 
were determined by HPLC (Bio-Rad Diamat). A standardized 
oral glucose tolerance test (OGTT) was conducted and 
levels of insulin and glucose were measured at baseline and 
after 2 h in both studies. Impaired fasting glucose (IFG) 
and impaired glucose tolerance (IGT) as well as a formerly 
unknown diabetes were determined according to the 
criteria of the American Diabetes Association (ADA) (14).

In both studies, insulin resistance was calculated using 
the fasting glucose and insulin levels in the homeostasis 
model of insulin resistance (HOMA-IR) (15) as fasting 
glucose (mg/dL) × fasting insulin (mU/mL)/405. Insulin 
sensitivity was estimated by calculating the insulin 
sensitivity index (ISI) based on the work of Matsuda et al. 
(16) with measurements of glucose and insulin at baseline 
and 120 min after glucose challenge in the OGTT.

Statistical analyses

Characteristics of the study population are provided 
as median, 25th, and 75th percentile for continuous 
variables or as absolute numbers and percentages for 
categorical variables stratified by study. In the pooled 
population of SHIP-TREND-0 and BASE-II, associations of 
thyroid biomarkers with continuous parameters of glucose 
metabolism were analysed by linear regression models 
adjusted for age, sex, smoking status, BMI, and study. 

Associations of thyroid biomarkers with prediabetes groups 
as proposed by the ADA (17) were analysed by multinomial 
logistic regression with adjustment for age, sex, smoking 
status, and study site. Interactions of serum TSH levels 
with age were tested in these regression models. A P  < 0.05 
was considered statistically significant. All analyses were 
carried out using Stata16.0 (Stata Corporation, College 
Station, TX, USA).

Results

The median age of the 4193 participants was 49 years 
in SHIP-TREND-0 and 67 years in BASE-II (Table 1). 
Altogether, 1928 participants were men and 2265 were 
women. SHIP-TREND-0 participants had a higher median 
BMI (27.0 kg/m2 vs 25.2 kg/m2 in BASE-II) and a higher 
proportion of unknown diabetes and prediabetes based on 
IFG and IGT than participants of BASE-II. A TSH below the 
reference range was found more often in SHIP-TREND-0 
(7.5% vs 1.4% in BASE-II) while contrastingly a high TSH 
was observed less often in SHIP-TREND-0 (3.4% vs 6.7% 
in BASE-II). In both studies, participants reported taking 
thyroid medication (9.9% and 12.2% in SHIP-TREND-0 
and BASE-II, respectively). Further characteristics of the 
study population are provided in Table 1.

Associations of levothyroxine intake with thyroid 
biomarkers and glycaemic markers

Levothyroxine intake was significantly positively 
associated with fasting insulin (P  = 0.020) and HOMA-IR 
(P  = 0.025) but not with fasting glucose, 2-h postload 
glucose, and insulin or ISI. To account for potential effects 
of l-thyroxin on our results, we excluded all participants 
taking l-thyroxin from the multivariable analyses  
(n  = 424).

Association of parameters of thyroid function with 
glycaemic markers

In the pooled sample of SHIP-TREND-0 and BASE-II, we 
analysed the associations of serum levels of TSH, fT3, and 
fT4 with fasting and 2-h postload glucose, fasting and 
2-h postload insulin, HOMA-IR, and ISI in multivariable 
linear regression models. We found a positive association 
between TSH with 2-h postload insulin (β = 1.079, 
95% CI = 0.026, 2.132) and positive associations of fT4 
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with fasting (β = 0.012, 95% CI= 0.002, 0.023) and 2-h 
postload glucose (β = 0.043, 95% CI = 0.013, 0.074). 
The results are summarized in Table 2. On the other 
hand, fT3 was significantly associated with all of the 
investigated markers except 2-h postload glucose. These  
relationships were predominantly non-linear and are 
displayed in Fig. 1. Serum fT3 levels were significantly 

positively associated with fasting glucose levels, fasting, 
and 2-h postload insulin levels as well as with the 
HOMA-IR. Accordingly, higher fT3 was associated with a 
lower ISI.

In the 427 individuals with l-thyroxin treatment, we 
observed no significant associations of TSH or fT4 with 
any of the glycaemic markers (Supplementary Table 1, 

Table 1 Characteristics of the study population stratified by study.

SHIP-TREND-0 (n  = 2381) BASE-II (n  = 1776)

Age, years 49 (39, 61) 67 (61, 70)
Males 1085 (45.6%) 843 (47.5%)
Smoking status
 Never 935 (39.3%) 861 (48.7%)
 Former 862 (36.3%) 646 (36.5%)
 Current 581 (24.4%) 262 (14.8%)
BMI, kg/m2 27.0 (24.2, 30.4) 25.2 (22.8, 28.0)
Waist circumference, cm 89 (79, 99) 92 (83, 100)
Systolic blood pressure, mmHg 125 (113, 136) 137 (125, 151)
Diastolic blood pressure, mmHg 76 (70, 83) 82 (75, 89)
HbA1c, % 5.2 (4.8, 5.5) 5.4 (5.1, 5.7)
Fasting glucose, mmol/L 5.4 (5.0, 5.8) 4.9 (4.6, 5.3)
2-h postload glucose, mmol/L 6.1 (5.1, 7.3) 5.4 (4.4, 6.5)
Fasting insulin, mU/L 9.4 (6.4, 13.9) 7.5 (5.2, 10.3)
2-h postload insulin, mU/L 52.4 (32.5, 94.4) 38.6 (23.7, 65.1)
Homeostasis model assessment (HOMA-IR) 2.24 (1.46, 3.47) 1.62 (1.11, 2.40)
Insulin sensitivity index (ISI) 5.8 (3.5, 9.3) 8.4 (5.4, 12.9)
Groups according to ADA criteria
 NGT 1332 (55.9%) 1418 (79.8%)
 i-IFG 570 (23.9%) 158 (8.9%)
 i-IGT 120 (5.0%) 85 (4.8%)
 IFG + IGT 219 (9.2%) 72 (4.1%)
 Unknown diabetes 140 (5.9%) 43 (2.4%)
TSH, mIU/L 1.18 (0.81, 1.66) 1.93 (1.30, 2.74)
fT3, pmol/L 4.73 (4.36, 5.11) 4.87 (4.45, 5.35)
fT4, pmol/L 13.3 (12.3, 14.5) 15.8 (14.3, 17.4)
Thyroid status
 Low TSHa 178 (7.5%) 24 (1.4%)
 High TSHa 82 (3.4%) 118 (6.7%)
Intake of thyroid medication 236 (9.9%) 216 (12.2%)

Data are expressed as median, 25th, and 75th percentile (continuous data) or as absolute numbers and percentages (categorical data).
aAccording to the established reference limits of 0.27–4.20 mU/L in BASE-II and 0.49–3.29 mIU/L in SHIP-TREND-0.
i-IFG, impaired fasting glucose; i-IGT, impaired glucose tolerance; NGT, normal glucose tolerance.

Table 2 Associations of serum TSH, fT3, and fT4 levels with glycaemic markers in the pooled population not taking  
l-thyroxin (n  = 3719).

TSH, mIU/L, β (95% CI) fT3, mIU/L, β (95% CI) fT4, mIU/L, β (95% CI)

Linear regression: β (95% CI)
 Fasting glucose, mmol/L −0.001 (−0.014, 0.013) NLa 0.012 (0.002, 0.023)a

 2-h postload glucose, mmol/L 0.013 (−0.025, 0.052) NL (P  = 0.075) 0.043 (0.013, 0.074)a

 Fasting insulin, mU/L −0.023 (−0.151, 0.106) NLa −0.026 (−0.125, 0.072)
 2-h postload insulin, mU/L 1.079 (0.026, 2.132)a NLa 0.185 (−0.628, 0.998)
 Homeostatis model assessment (HOMA-IR) −0.006 (−0.045, 0.033) NLa 0.006 (−0.024, 0.036)
 Insulin sensitivity index (ISI) 0.001 (−0.103, 0.105) NLa −0.020 (−0.100, 0.060)

Analyses are adjusted for age, sex, smoking status, BMI, and study.
aP  < 0.05.
NL, non-linear relationship (see Fig. 1).
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see section on supplementary materials given at the end 
of this article). In this subgroup, serum fT3 levels were 
positively associated in a non-linear fashion with all 
glycaemic markers except fasting glucose. The non-linear 
associations were comparable to those in individuals not 
on l-thyroxin treatment.

Association of parameters of thyroid function with 
prediabetes groups (according to ADA classification)

In multinomial logistic regression models, we 
investigated associations of TSH, fT3, and fT4 with IFG, 
IGT, the combination of IFG and IGT, and unknown 

Figure 1
Associations of fT3 with glycaemic markers in SHIP-TREND-O, BASE-II, and the pooled population.

Table 3 Associations of serum TSH, fT3, and fT4 levels with (pre)diabetes groups in the pooled population not taking  
l-thyroxine (n  = 3719).

(Pre)diabetes groups TSH, mIU/L, β (95% CI) fT3, mIU/L, β (95% CI) fT4, mIU/L, β (95% CI)

Multinomial logistic regression: relative risk ratio (95% CI)
 NGT Base outcome Base outcome Base outcome
 i-IFG 0.96 (0.88, 1.04) 1.09 (1.02, 1.18)a 0.94 (0.89, 0.98)a

 i-IGT 1.04 (0.99, 1.10) 1.00 (0.89, 1.14) 1.02 (0.95, 1.10)
 IFG + IGT 0.96 (0.84, 1.09) 1.09 (0.99, 1.20) 1.05 (0.98, 1.13)
 Unknown diabetes 0.97 (0.83, 1.12) 1.05 (0.90, 1.22) 1.09 (1.01, 1.19)a

Analyses are adjusted for age, sex, smoking status, BMI, and study.
aP  < .05.
i-IFG impaired fasting glucose; i-IGT impaired glucose tolerance; NGT, normal glucose tolerance.
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Table 4 Interactions of thyroid biomarkers with age on glycaemic markers in the pooled population.

TSH, mIU/L fT3, mIU/L fT4, mIU/L

Fasting glucose, mmol/L 0.341 0.003 0.525
2-h postload glucose, mmol/L 0.010 <0.001 0.057
Fasting insulin, mU/L 0.014 0.004 0.005
2-h postload insulin, mU/L 0.005 <0.001 <0.001
Homeostatis model assessment (HOMA-IR) 0.013 <0.001 0.002
Insulin sensitivity index (ISI) 0.612 0.006 0.697

Data are expressed as P-value for the interaction terms derived from linear regression.

Figure 2
Interactions of TSH with age on glycaemic markers with depiction of each of the age-specific β coefficients with their 95% CI plotted against age.
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diabetes. There were no significant associations of TSH 
with prediabetes groups. We observed a slightly higher 
relative risk for IFG with higher fT3 (RR 1.09, 95% 
CI = 1.02, 1.18). The association of fT3 with the IFG + IGT 
group barely missed statistical significance. Contrary 
to fT3, a higher fT4 was associated with a lower risk for 
IFG (RR 0.94, 95% CI = 0.89, 0.98). Furthermore, fT4 was 
positively associated with unknown diabetes. The results 
are summarized in Table 3.

Interaction of age on the association of thyroid 
function with glycaemic markers

In the following analyses, we investigated whether age was 
an effect modifier for the association of thyroid markers 
with parameters of glucose and insulin metabolism. We 
observed many significant interactions of TSH, fT3, and 
fT4 with age on markers of prediabetes (Table 4). Based 
on the interaction models, we plotted the age-specific β 

Figure 3
Interactions of fT3 with age on glycaemic markers with depiction of each of the age-specific β coefficients with their 95% CI plotted against age.
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coefficients with their 95% CI against age in Figs 2, 3 and 
4. While there were significant interactions of fT3 with 
age on all markers of prediabetes, fT3 was also the only 
marker showing a significant interaction with age on the 
ISI. Moreover, TSH and age were interacting significantly 
on all other markers except the fasting glucose and ISI, 
whereas fT4 was interacting with age only on fasting and 
2-h postload insulin and HOMA-IR. The interactions of 
TSH with age on the prediabetes markers were showing 
into the same – but functionally opposite – direction as fT3 
and fT4. Most of the associations between thyroid markers 

and markers of prediabetes were significant in young and 
middle-aged individuals but not in the older participants.

Association of parameters of serum fT3 levels with 
glycaemic markers stratified by age groups

For better understanding of our data and the age-specific 
effects on the association of thyroid function with the 
glycaemic markers, we added a sensitivity analysis with a 
stratification by age-specific subgroups (Supplementary 
Table 2). Here, we replicated the main findings of the 

Figure 4
Interactions of fT4 with age on glycaemic markers with depiction of each of the age-specific β coefficients with their 95% CI plotted against age.
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associations of serum fT3 levels with glycaemic markers 
in groups of participants aged below 40 years and below 
50 years. In the age group of 50 years and above, fT3 was 
not significantly associated with any of the glycaemic 
markers. Likewise, in the age group of 70 years and above, 
no significant associations of serum fT3 levels with the 
glycaemic makers were observed.

Discussion

Our analyses of two cross-sectional epidemiologic German 
studies demonstrated consistent associations of fT3 levels 
with glycaemic markers and increased insulin resistance. 
Moreover, we observed a strong effect of age on the 
interaction of thyroid function with glycaemic markers. 
Interestingly, most of the associations between thyroid 
markers and glycaemic markers were significant in young 
and middle-aged individuals up to an age of roughly 60 
years but not in older participants.

Findings from previous studies examining the relation 
between thyroid function and glucose metabolism are 
conflicting. El Demellawy et  al. examined 40 patients 
with newly diagnosed hypothyroidism in comparison 
to 40 healthy controls (18). Interestingly, they found 
elevated markers of insulin resistance including 
HOMA-IR in both the hypo- and hyperthyroid group. 
The TSH correlated positively and fT3 and fT4 inversely 
with HOMA-IR suggesting that hypothyroidism might 
be strongly associated with insulin resistance than 
hyperthyroidism. Accordingly, the same results have been 
reported by Kapadia et al. in a small cross-sectional study 
including eight euthyroid, eight hyperthyroid, and eight 
hypothyroid patients (19). In another comparable setting, 
Abdel-Gayoum et  al. described increased parameters of 
insulin resistance in newly diagnosed subclinical and 
overt hypothyroidism (20). An association of subclinical 
hypothyroidism with insulin resistance was also reported 
in a study with 30 participants compared to age-matched 
euthyroid controls (5). Contrary to our study, fT3 was 
inversely associated with HOMA-IR. However, sample sizes 
of all these studies have been comparably small and not all 
analyses were adjusted for potential confounders such as 
age (20).

In a much larger study with 3148 patients, there was 
no difference in markers of insulin resistance between 
euthyroid and subclinically hypothyroid subjects (21). 
However, in that study, fT4 was inversely associated with 
fasting insulin and HOMA-IR after adjustment for age, sex, 
and BMI, whereas in our study, we did not find such an 

association. In 8452 participants of the Rotterdam study, a 
large longitudinal population-based cohort study, the risk 
for diabetes or for progression from prediabetes to diabetes 
increased with higher TSH levels and lower fT4 levels. 
In this study, age had no effect modification on these 
associations (6).

Whereas some studies on the topic have been small 
and many used surrogate parameters of insulin resistance 
(which has been the case in SHIP and BASE-II either), the 
sample size in the RISC (relationship between insulin 
sensitivity and cardiovascular disease) study was reasonably 
high with 940 participants (22). Moreover, a gold standard 
for determining insulin resistance was used with the 
euglycaemic–hyperinsulinaemic clamp method (22). In 
this cohort, higher fT3 levels, within the reference range, 
were consistently associated with insulin resistance (22). 
This is in line with our results. In longitudinal analyses in 
the RISC study, fT3 was also predictive for an increase in 
fasting glucose and decrease in insulin sensitivity and ß-cell 
glucose sensitivity at follow-up. The lack of any association 
of TSH with metabolic parameters of insulin resistance can 
be estimated as another similarity to our study, where TSH 
was only associated with 2-h postload insulin with regard 
to continuous variables.

An association of low fT3 and low total T3 levels with 
decreased HOMA-IR was found in a study based on National 
Health and Nutrition Examination Survey data, which 
can be interpreted in accordance with our results (23). 
Rezzonico et al. also found a moderate linear relationship 
between T3 and HOMA-IR in study participants who were 
either euthyroid or subclinically hyperthyroid due to 
levothyroxine intake or for endogenous causes (24).

In summary of the available study data, insulin 
resistance and dysglycaemia can occur in both hypo- 
and hyperthyroidism. Moreover, these effects seem 
not to be restricted to overt hypo- or hyperthyroidism 
but might encompass subclinical disorders or even 
alterations of hormone levels in the reference range. 
The pronounced associations of fT3 with markers of 
insulin resistance that was found in our study, however, 
seem biologically plausible. Even though recruitment of 
glucose transporters (GLUT), such as GLUT3 and GLUT4, 
is increased in hyperthyroidism potentially leading to 
more glucose disposal in peripheral tissues, this might 
be overruled by insulin antagonistic actions of thyroid 
hormones, such as an increased glucose output from 
the liver and intestinal glucose absorption, decreased 
muscle glycogen storage, or upregulated glycogenolysis 
(2, 3, 25, 26, 27). Moreover, an increased lipolysis leading 
to heightened insulin resistance or an increased insulin 
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clearance may link higher levels of fT3 to impaired glucose 
metabolism (3, 25, 26, 28).

Concerning the influence of age on the associations 
of thyroid function with glycaemic markers, much is still 
left to hypothesizing. However, it is already well known 
that the endocrine system, including the thyrotropic 
axis, undergoes functional changes during ageing. Many 
of the changes concerning thyroid function and aging 
have been summarized by Gesing et  al. in a concise 
review (29). Of note, subclinical hypothyroidism seems 
to be not necessarily associated with outcomes such as 
cognitive impairment, physical impairment, depression, 
or metabolic disturbances in older people as it is known 
with overt hypothyroidism or as can be found in people 
of younger age in subclinical hypothyroidism (29). On the 
other hand, subclinical hyperthyroidism seems to be more 
consistently associated with outcomes such as decreased 
bone mineral density, fractures, or mortality (29), although 
this is not confirmed by all studies (30). Moreover, fT3 
and fT4 levels were found to be inversely associated with 
age and might be linked to longevity (31), but conversely, 
making interpretation more complex, at least low T3 levels 
can also be linked to severe extrathyroidal illness as in the 
low T3 syndrome. A healthy survivor bias may also have 
influenced our analyses. Some of the participants with a 
lower fT3 due to extrathyroidal illness could already have 
died leaving healthier participants as survivors left for the 
analyses.

In our study, most of the potentially inverse effects 
of higher fT3 levels on glucose homeostasis and insulin 
sensitivity are observed in young and middle-aged 
individuals but not in the older individuals. This was 
confirmed in the additional analyses with stratification 
by age groups. Thus, a slightly higher fT3 might even be 
beneficial in terms of glucose metabolism in higher age 
although this has to be confirmed in longitudinal studies. 
On the other hand, insulin resistance is determined by 
numerous other factors such as adipose tissue or cortisol 
and growth hormone levels that might be more crucial 
than thyroid function. Multiple comorbidities and 
polypharmacy might also play an additional and more 
decisive role in higher age and might overrule the effect 
of the predominantly subclinical thyroid dysfunction on 
glucose metabolism found in our study. Moreover, fT3 
has a short half-life of less than 24 h and might reflect 
predominantly short-term effects. Short- vs long-term 
effects might also explain the non-reciprocal effects which 
have been seen between TSH on the one hand and fT3 and 
fT4 on the other hand. Of note, recent data suggest that 
thyroid hormone levels may be strongly associated with 

clinical parameters as are TSH levels (32). The association 
of T3 and fT3 levels with metabolic parameters seem to be 
strong compared to TSH and thus in this context thyroid 
function might be better assessed with measuring free 
thyroid hormones (32).

One of the limitations of our study is the use of different 
laboratory assays for the measurement of TSH, fT3, and 
fT4. Although both were electrochemiluminescence 
immunoassays used in quality-driven laboratories, 
we cannot preclude a potential effect that biases the 
results. This must also be considered with regard to other 
parameters such as insulin. The strength of this study lies in 
its large sample size and the combination of two different 
cohorts covering a large age range that is important since 
thyroid disease can occur all over the lifespan. Also, the 
measurement of fT3 seems to be not part of many other 
comparable studies, which measured only TSH and fT4.

In summary, we found a consistent association 
between fT3 and markers of glucose metabolism. An 
increased fT3 might be a risk factor for insulin resistance 
but this effect might be restricted to younger and middle-
aged individuals. This is noteworthy because from a 
clinical point of view, early detection of impaired glucose 
metabolism can prove to be decisive in terms of disease 
prevention. Moreover, our results may serve as another 
example that the investigation of associations of thyroid 
function with clinical parameters often demands the 
consideration of age-specific aspects. However, our data 
are only cross-sectional and cannot determine causality. 
Further studies are therefore warranted on this subject.
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