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Abstract: Allosteric modulators of metabotropic glutamate 5 receptors (mGlu5 receptors) have been
identified as a promising treatment to independently alleviate both negative affective states and
ethanol-seeking and intake. However, these conditions are often comorbid and might precipitate one
another. Acute and protracted ethanol withdrawal can lead to negative affective states. In turn, these
states are primary drivers of alcohol relapse, particularly among women. The current review
synthesizes preclinical studies that have observed the role of mGlu5 receptor modulation in
negative affective states following ethanol exposure. The primary behavioral assays discussed
are ethanol-seeking and intake, development and extinction of ethanol-associated cues and contexts,
behavioral despair, and anxiety-like activity. The work done to-date supports mGlu5 receptor
modulation as a promising target for mediating negative affective states to reduce ethanol intake
or prevent relapse. Limitations in interpreting these data include the lack of models that use
alcohol-dependent animals, limited use of adolescent and female subjects, and a lack of comprehensive
evaluations of negative affective-like behavior.
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1. Introduction

Metabotropic glutamate 5 receptors (mGlu5 receptors) represent a viable target for the treatment
of alcohol-use disorders (AUDs) and negative affective phenotypes, and their use for each of these was
recently independently reviewed [1–3]. However, negative affective states are also known to play a
role in AUDs, as they are a primary driver of drinking and relapse behaviors [4]. “Negative affect” is a
defined set of negative emotional states, which underlie many highly comorbid psychiatric disorders,
including depression and anxiety [5]. Preclinically, negative affective symptoms can be clustered into
changes in reinforcer seeking and consumption, behavioral despair, anxiety-like activity, increased
threat monitoring, hypervigilance, and home cage activity [6–8]. These negative affective states
might heighten sensitivity to alcohol-related cues and drive relapse [9,10]. Moreover, disorders that
encompass negative affect are more prevalent in women and are highly comorbid with AUDs [11,12].
The current review will synthesize research that has investigated the role of mGlu5 receptors in alcohol
use and negative affect, as well as identify gaps in the literature, particularly in regard to sex differences.

This review will primarily integrate the work involved in mGlu5 receptor modulation and its ability
to regulate ethanol intake, the salience of ethanol-associated cues and contexts, and ethanol-induced
behavioral despair and anxiety-like activity. mGlu5 and mGlu1 receptors comprise the group 1
metabotropic glutamate receptor class (mGlu1/5 receptors), which are Gαq/11-coupled receptors that
regulate synaptic plasticity [13]. In these studies, mGlu5 receptors have been modulated using genetic
manipulations or pharmacological tools. The role of global central nervous system knockout of
mGlu5 receptors in drug use was first reported by Chiamulera et al. [14], who demonstrated that
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mGlu5-receptor-null mice do not acquire cocaine self-administration. Many tools beyond global
knockout now exist, including cell-specific knockout [15,16], mGlu5 receptor deficiency [17], and
mGlu5 receptor point mutations [18,19]. These studies used allosteric modulators, which are
ligands that bind to a receptor site that is distinct from the endogenous or orthosteric ligand, as
pharmacological interventions. Allosteric modulators negatively or positively regulate the activity
of a receptor in the presence of its orthosteric ligand, but might also act as allosteric agonists or
inverse agonists. mGlu5 receptor allosteric modulators discussed in the current review include the
positive allosteric modulator (PAM), 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB),
and the negative allosteric modulators (NAM), 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and
3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP). CDPPB has been noted for its interaction
with the MPEP binding site, as well as its ability to mediate aberrant phenotypes associated with
dysregulation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) [20]. It should be
noted that MPEP and MTEP both act as inverse agonists to block the constitutive activities of the mGlu5

receptors in vivo [21,22]. They also differ in their selectivity for mGlu5 receptors. Although MPEP is
selective for mGlu5 receptors at lower doses, it becomes less selective as the dose increases and acts at
other receptors, including NMDARs. The more recently developed MTEP conserves selectivity for
mGlu5 receptors without demonstrating off target activity at NMDARs [2]. All of these drugs have
been implicated as potential therapeutic treatments to alleviate negative affective symptomology and
drug-seeking behavior [2,20].

2. Ethanol Intake

The ability of mGlu5 receptors to modulate ethanol intake has recently been extensively
reviewed [3]. Generally, treatment with mGlu5 receptor NAMs results in decreased ethanol
consumption and responding in 24 h access 2-bottle choice, limited access, and operant drinking
paradigms (see Table 1). With the exception of Adams et al. [23] systemic mGlu5 receptor modulation
consistently reduced drinking across a range of paradigms, species, and strains. Conversely, antagonism
of mGlu1 receptors via systemic treatment of CPCCOEt was less effective at reducing ethanol intake
or resulted in off-target effects, including reduced locomotion or sucrose intake [24–26]. Although
higher doses of mGlu5 receptor NAMs also reduced locomotion and sucrose intake in some studies,
these doses are beyond the efficacious dose for ethanol intake [26–29]. This further indicates that
mGlu5 receptor-targeted treatment could be well tolerated as a clinical intervention compared
to mGlu1-receptor pharmacological interventions. Finally, systemic MPEP prevents the alcohol
deprivation effect following free-choice and operant ethanol access [24,30]. However, its efficacy may
be reduced over repeated deprivation cycles [24], indicating the necessity of using alcohol-dependent
models. Repeated alcohol exposure and withdrawal cycles promote neuroadaptations [9,10], which
might lessen the efficacy of a drug that was initially promising.
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Table 1. Details from studies on the effects of mGlu5 receptor modulation on ethanol intake in continuous access, limited access, and operant ethanol drinking paradigms.

Continuous Access
Manipulation Average Reported Ethanol Intake Treatment Details Species/Strain/Sex Housing Effect Dose Reference

GRM5 mutation TS/TS: greater than 6.0 g/kg Male & female
GRM5TS/TS, TS/AA, AA/AA mice Grouped Increased AA/AA [19]

MTEP Up to 20 g/kg Repeated systemic
prior to access Female B6 mice Individual Increased &

Decreased 20 mg/kg [31]

mGlu5 receptor deficiency Wild type: greater than 9.0 g/kg Male Grm5tm1Rod mice Decreased n/a [17]

mGlu5 receptor knockout Wild type: up to 3.0 g/kg Female mGlu5−/− mice
Decreased, no

change n/a [32]

MTEP Up to 5 g/kg Repeated systemic Male FH rats Decreased 2 mg/kg [27]

MTEP Up to 15 g/kg Repeated systemic
prior to access Male B6 mice Individual Decreased 20 mg/kg [31]

MPEP 0.53 ± 0.05 g/kg Repeated systemic Male Wistar rats Individual Decreased 3, 10 mg/kg [30]

MPEP Greater than 5.0 g/kg Repeated systemic Meyers rats Individual Decreased 1, 3 mg/kg [33]

MPEP 17.9 ± 8.2 g/kg Repeated systemic Male B6 mice Individual Decreased 10 mg/kg [25]

mGlu5 receptor knockdown
on D1 neurons Up to 6 g/kg Male mGlu5KD−D1 mice Individual No change n/a [16]

mGlu5 receptor knockout Wild type: up to 2.0 g/kg Male mGlu5−/− mice No change n/a [32]

Impaired mGlu5/Homer
interaction Wild type: 10.84 ± 2.26 g/kg Male mGlu5-F1128R mice Grouped No change n/a [18]

Limited Access
Manipulation Average Reported Ethanol Intake Treatment Details Species/Strain/Sex Housing Effect Dose Reference

mGlu5 receptor knockout Wild type: greater than 2.0 g/kg Female mGlu5−/− mice Decreased n/a [32]

MTEP Up to 3 g/kg Repeated systemic Female B6 mice Individual Decreased 20 mg/kg [31]

MTEP Up to 3.5 g/kg Repeated systemic Male B6 mice Individual Decreased 10, 20 mg/kg [31]

MTEP Up to 4.5 g/kg Acute intra-CeA Male B6 mice Individual Decreased 3 µg/side [34]

MPEP Up to 1.5 g/kg Acute intra-NAc Male B6 mice Individual Decreased 0.1, 0.3, 1 µg/side [18]

mGlu5 receptor knockout Wild type: up to 1.5 g/kg Female mGlu5−/− mice No change n/a [32]

MTEP Up to 2.0 g/kg Acute intra-adBNST Male & female
GRM5TS/TS, TS/AA, AA/AA mice Individual No change 30 µg/side [19]

MPEP Greater than 0.75 g/kg Acute intra-NAc Male mGlu5-F1128R mice Individual No change 1 µg/side [18]
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Table 1. Cont.

Operant Responding
Manipulation Average Reported Ethanol Intake Treatment Details Species/Strain/Sex Housing Effect Dose Reference

GRM5 mutation TS/TS: up to 1.5 g/kg Male & female
GRM5TS/TS, TS/AA, AA/AA mice Grouped Increased AA/AA [19]

mGlu5 receptor knockdown
on D1 neurons Wild type: up to 3000 licks Female mGlu5KD−D1 mice Grouped Decreased n/a [15]

MTEP Up to 80 responses Acute systemic Male FH rats Decreased 2 mg/kg [27]

MTEP Greater than 100 responses Acute systemic Male iP rats Decreased 1, 2 mg/kg [27]

MTEP Greater than 100 responses Acute systemic Male B6 mice Grouped Decreased 20, 40 mg/kg [28]

MTEP Up to 20 responses Acute intra-NAc shell Male Wistar rats Decreased 1.5 µg/side [35]

MTEP Non-dependent: up to 30 responses
Dependent: up to 40 responses Acute systemic Male Wistar rats Grouped Decreased 1, 3 mg/kg [36]

MPEP Up to 80 responses Acute systemic Male iP rats Individual Decreased 3, 10 mg/kg [24]

MPEP Greater than 8.0 g/kg Acute systemic Male B6 mice Individual Decreased 3, 10 mg/kg [25]

MPEP Up to 5 g/kg Acute systemic Male B6 mice Decreased 3, 10 mg/kg [26]

MPEP Greater than 0.6 g/kg Acute systemic Male iP rats Pair Decreased 3, 10 mg/kg [29]

MPEP 0.96 ± 0.22 g/kg Acute intra-NAc
medial core Male iP rats Individual Decreased 10 µg/side [37]

MTEP Up to 15 responses Acute intra-NAc core Male Wistar rats No change 1.5 µg/side [35]

MTEP 0.60 ± 0.1 g/kg Acute systemic iP rats Pair No change 2.5 mg/kg [23]

MPEP 1.15 ± 0.18 g/kg Acute
intra-dorsomedial caudate Male iP rats Individual No change 1, 3, 10 µg/side [37]

MPEP 1.02 ± 0.08 g/kg Acute
intra-medial PFC Male iP rats Individual No change 1, 3, 10,

30 µg/side [37]

wild-type (GRM5TS/TS), heterozygous mutant (GRM5TS/AA), homozygous mutant (GRM5AA/AA), C57Bl/6J (B6), Fawn Hooded (FH), central amygdala (CeA), nucleus accumbens
(NAc), anterior dorsal bed nucleus of the stria terminalis (adBNST), inbred alcohol-preferring (iP), prefrontal cortex (PFC), 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and
3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP).



Brain Sci. 2019, 9, 183 5 of 21

Due to the allosteric properties of CDPPB, MPEP, and MTEP, it is important to consider
whether alcohol exposure affects receptor availability and how that could inform the appropriate
pharmacological treatment for different populations with AUDs. Using the highly potent and selective
mGlu5 receptor NAM 18[F]-FPEB in PET scans, mGlu5 receptor availability has been demonstrated to
be relatively stable in healthy humans over a 6 month period [38]. However, higher doses of MTEP
are required to reduce ethanol consumption in alcohol-dependent rats [36], and alcohol has been
demonstrated to alter mGlu5 receptor availability in both humans and rodents. In rodents, relatively
low doses of forced ethanol over a two-week period enhances striatal, hippocampal, and cortical mGlu5

receptor availability compared to saline controls [39]. In contrast, chronic free-choice access to ethanol
decreases mGlu5 receptor availability in the hippocampus and amygdala, when compared to baseline
levels [40]. These PET studies lend support to the hypothesis that extensive alcohol exposure shifts
the availability of mGlu5 receptors, thereby resulting in reduced efficacy of MTEP to reduce drinking
in dependent rats [36]. Similar results have been found in humans, where increased mGlu5 receptor
availability primarily in cortical regions is associated with “feeling high” during alcohol exposure
in healthy, low-drinking humans [41]. Alcohol-dependent individuals have lower mGlu5 receptor
availability compared to controls, across many striatal and cortical regions [42]. Availability of mGlu5

receptors recovers in a site- and time-dependent manner, across 6 months of alcohol abstinence, except
in the hippocampus, accumbens, and thalamus [43]. This reduced mGlu5 receptor availability in
alcohol-dependent subjects may be mediated by comorbid substance use, such as smoking status [44].
Non-smoking alcohol-dependent males show increased, not decreased, mGlu5 receptor availability in
cortical regions and the amygdala at one month of abstinence [44]. Notably, reduced mGlu5 receptor
availability is related to increased alcohol craving, regardless of smoking status [42–44]. Collectively,
this work points toward dynamic regulation of mGlu5 receptor availability across early alcohol use,
chronic alcohol use, alcohol abstinence, and comorbid drug use. It is still unclear from this work if there
is a causal relationship between receptor availability and excessive ethanol drinking, dependence, and
craving. Genetic variants in the mGluR-eEf2-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor (AMPAR) pathway, including GRM5, predict alcohol intake [45] and might independently
regulate receptor availability. These findings complement the pharmacological studies mentioned
above in pointing towards differences in mGlu5 receptor availability and pharmacological efficacy,
depending on the type of alcohol exposure and genetic predisposition.

The studies detailed in Table 1 primarily focused on adult males; however, there is strong clinical
evidence that supports the need to observe ethanol consumption in females and adolescents following
mGlu5 receptor modulation. Adolescence is the time when alcohol use is typically initiated, and this
use is known to be one of the strongest predictors for later development of AUDs [12,46]. While males
are likely to use alcohol as positive reinforcement, females are more likely to use alcohol as a negative
reinforcement coping mechanism [47]. Females are 2–3 times more likely to develop stress and anxiety
disorders that might contribute to negative affective states, and this divergence of risk coincides with
adolescent alcohol exposure [11]. It has been demonstrated that women have lower mGlu5 receptor
availability across many brain regions [48], thereby indicating that there may be sex-differences in
response to allosteric modulators. Cozzoli et al. [31] investigated the interaction of both adolescence
and sex on ethanol intake. MTEP effectively reduced ethanol intake in both adolescent and adult male
and female mice. However, during protracted abstinence (21 days), prior MTEP treatment showed no
long-term effects on ethanol consumption in males of either age group. Females exposed to MTEP
pretreatment during adolescence reduced their ethanol consumption in adulthood, whereas their
adult-treated counterparts showed increased alcohol consumption. In another study, Parkitna et al. [15]
demonstrated that knockdown of mGlu5 receptors on D1 neurons did not alter acquisition of ethanol
intake under a continuous access instrumental response paradigm in females, but did inhibit an ethanol
deprivation ramp-up during forced abstinence. Although males of the same strain demonstrated
alcohol deprivation ramp-up of intake, it was not altered by mGlu5 receptor knockdown [16]. However,
the male and female paradigms differed in length of alcohol history and instrumental response criteria,
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making it difficult to determine if the disparate findings were due to methodological- or sex-differences.
Although mGlu5 receptor NAMs have not yet been investigated for their potential to alleviate AUD
and comorbid symptomology, multiple treatments that target this system with minimal side effects
have been developed for clinical use [49]. The preclinical studies indicate that alcohol duration, length
of abstinence, age, and sex are all-important considerations in judging the effectiveness of mGlu5

receptor NAMs.

3. Ethanol-Associated Cues and Contexts

The role of mGlu5 receptors in learning and memory of discrete and contextual cues has
been well documented. mGlu5 receptor activity contributes to neural plasticity via both long-term
depression (LTD), as well as long-term potentiation (LTP) via mGlu5-NMDAR interactions discussed
in Section 6 [13,50]. In rodent models of non-dependent ethanol intake, mGlu5 receptor modulation
effectively reduces the salience of ethanol-associated cues and contexts when administered following
the cue–ethanol association (see Table 2). The ability to modulate the salience of ethanol-associated cues
and contexts, plays an important role in reducing susceptibility to relapse, making it a critical target for
pharmacological intervention [51,52]. Two paradigms have been primarily used to observe the role
of mGlu5 receptors in ethanol-associated cues and contexts—ethanol cue-induced reinstatement and
conditioned place preference (CPP).

With the exception of Adams et al. [23,57], systemic and site-specific negative allosteric modulation
of mGlu5 receptors was found to reduce cue-induced reinstatement in the presence of discrete cues,
such as a light cue [53–55], or diffuse contextual stimuli, such as an olfactory scent [30]. Contextual
cues have been posited as more analogous to cues that induce drug craving and seeking in humans
than discrete cues, due to their role in indicating general drug availability, transfer of salience, and
the difficulty involved in extinguishing these cues [52]. Although Adams and colleagues [23,57]
partially contributed their null findings to the low dose of MTEP used, it is important to note that
their cue-induced reinstatement paradigm utilized a contextual scent to signal ethanol availability and
inbred, high-alcohol-preferring iP rats. Using a discrete-cue paradigm, mGlu5 receptor modulation
was found to readily block cue-induced reinstatement at a relatively low dose in iP rats [55]. Therefore,
it might be speculated that a genetic predisposition for alcohol preference makes animals resilient
to pharmacological intervention, to reduce particularly salient ethanol-associated cues. Without the
investigation of higher drug doses in the iP rats, it cannot be concluded whether these disparate results
were due to less sensitivity to mGlu5 receptor intervention under contextual cue paradigms, or whether
mGlu5 receptors only play a role in discrete-cued reinstatement when there is a genetic predisposition
to consume ethanol.

CPP, which quantifies the reinforcing value of ethanol by observing the amount of time spent
in an ethanol-paired context, can be broken down into the cue/context learning phase (acquisition)
and the expression of the learned association [52]. Pharmacologically or genetically reducing the
activity of mGlu5 receptors results in impaired ethanol CPP, indicating that mGlu5 receptor activity
contributes to the associating contexts, with ethanol. Notably, this effect appears to be restricted
to the expression [25,56,58] but not acquisition of CPP [56,59]. In the acquisition studies, drug was
administered prior to ethanol during the contextual-pairing sessions, whereas drug was administered
without any ethanol on board during the expression test sessions. This might indicate that mGlu5
receptor modulation is not able to overcome the salience of ethanol exposure as it occurs, but rather it
blocks the recall of ethanol-associated cues.
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Table 2. Details from studies observing the effect of mGlu5 receptor modulation on cue-induced reinstatement to seek ethanol and ethanol-conditioned place preference.

Ethanol Cue-Induced Reinstatement
Manipulation Average Reported Ethanol Intake Treatment Details Species/Strain/Sex Housing Effect Dose Reference

CDPPB Up to 80 responses Repeated systemic, during extinction Male Wistar rats Individual Decreased 20 mg/kg [53]

MTEP Greater than 60 responses Acute intra-BLA, prior to
reinstatement test Male Wistar rats Individual Decreased 3.0 µg/µl [54]

MTEP Greater than 40 responses Acute intra-NAc core, prior to
reinstatement test Male Wistar rats Individual Decreased 3.0 µg/µl [54]

MPEP Up to 60 responses Acute systemic, prior to
reinstatement test Male iP rats Pair Decreased 1, 10 mg/kg [55]

MPEP 0.53 ± 0.05 g/kg Acute systemic, prior to
reinstatement test Male Long Evans rats Pair Decreased 3, 10 mg/kg [30]

MPEP 2.0 g/kg Acute systemic, prior to
reinstatement test Male B6 mice Grouped Decreased 20 mg/kg [56]

MTEP 0.54 ± 0.04 g/kg Acute systemic, prior to
reinstatement test iP rats Pair No change 2.5 mg/kg [57]

MTEP 0.60 ± 0.1 g/kg Acute systemic, prior to
reinstatement test iP rats Pair No change 2.5 mg/kg [23]

Ethanol Conditioned Place Preference
Manipulation Ethanol Dose Treatment Details Species/Strain/Sex Housing Effect Dose Reference

GRM5 mutation 1.0–3.0 g/kg Male & female
GRM5TS/TS, TS/AA, AA/AA mice Grouped Increased

Decreased
TS/TS

AA/AA [19]

mGlu5 receptor deficiency 1.0 g/kg Male Grm5tm1Rod mice Decreased n/a [17]

MTEP 0.5 g/kg Acute systemic, prior to test Male Wistar rats Grouped Decreased 2.5, 5 mg/kg [58]

MPEP 2.0 g/kg Acute systemic, prior to test Male B6 mice Grouped Decreased 20 mg/kg [56]

MPEP 2.0 g/kg Acute systemic, prior to test Male B6 mice Individual Decreased 10 mg/kg [25]

mGlu5 receptor knockdown
on D1 neurons 1.5 g/kg Male & female mGlu5KD−D1 mice Grouped No change n/a [15]

MPEP 2.0 g/kg Repeated systemic,
during acquisition Male B6 mice Grouped No change 5, 10,

20 mg/kg [56]

MPEP 2.0 g/kg Repeated systemic,
during acquisition Male D2 mice Grouped No change 1, 5,

20 mg/kg [59]

Basolateral amygdala (BLA), nucleus accumbens (NAc), inbred preferring rat (iP), C57Bl/6J (B6), DBA/2J (D2), 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB).
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In direct opposition to the current studies, it has been reported that mGlu5 receptor NAMs often
inhibit the extinction of contextual and spatial memories, whereas positive modulation enhances
extinction [60–64]. Notably, these studies consist primarily of aversive learning conditions, such
as avoidance learning, startle response, and fear conditioning. Similar to the currently discussed
findings on ethanol context and cues, negative mGlu5 receptor modulation has been shown to block
context-paired locomotor conditioning to cocaine and methamphetamine CPP [65,66]. Acknowledging
the divergent effects of negative mGlu5 receptor modulation on cues and contexts associated with
positive versus negative stimuli is important. In states of dependence and withdrawal, positive
ethanol-associated cues might transfer their association to negative affective states. Therefore, these
once positive cues might be more similar to the aversive cues that are enhanced by negative mGlu5

receptor modulation. Sidhpura et al. [36] demonstrated that, although MTEP was still effective at
blocking stress-induced reinstatement in dependent rats, it was more effective in non-dependent rats.
mGlu5 receptor NAMs might also be an insufficient treatment for people experiencing an ethanol
relapse. Positive mGlu5 modulation has been demonstrated to rescue impaired spatial learning
following heavy ethanol exposure [67], indicating its safety and efficacy in models of dependence.
Although the studies discussed within this section favor negative mGlu5 receptor modulation for
mediating ethanol-associated cues and contexts, positive mGlu5 receptor modulation might be a better
course of treatment under aversive states associated with alcohol withdrawal and relapse.

Females were not included in any of the discussed studies that observed cue-induced cue
reinstatement. In rodents, acute pharmacological stress significantly enhances cue-induced ethanol
reinstatement in females, but not males [68]. In humans, stress has not been demonstrated to
enhance ethanol craving or relapse to a greater degree in females than males. However, these human
studies either did not report estradiol levels or estrous status [69,70], or restricted female testing to
periods when circulating estradiol levels were low [71]. In rodents, circulating estradiol levels were
significantly positively correlated with the magnitude of stress-induced reinstatement [68]. Further,
females demonstrate an enhanced ethanol CPP that is dependent upon circulating hormones [72],
as well as alterations in drug efficacy to reduce ethanol intake based on estrous status [73]. These
data indicate that circulating hormones mediate the salience of cues and stress on ethanol-associated
activity and should be included in human female studies. There is support for direct interaction of
mGlu1/5 receptors and estrogen receptors (ER) signaling (see Section 6). This convergence of signaling
cascades might indicate that mGlu5 receptor modulation would be a particularly salient treatment in
female populations.

4. Behavioral Despair

Behavioral despair, or anhedonic activity, is observed in animal models that represent
depressive-like behavior. Although many animal models of behavioral despair exist—including
reduction in intake of appetitive reinforcers, the forced swim test, the tail suspension test, social
interaction, and response to novelty [8,74]—few have been observed following ethanol administration
and/or mGlu5 receptor manipulation (see Table 3). Of these studies, the forced swim task has been
the predominantly used paradigm. This task observes the time spent immobile in a container of
water. Time spent immobile is decreased by treatment with antidepressants, indicating translational
relevance [74]. Limited access ethanol in adult male mice reliably induces behavioral despair in the
forced swim test 24 h into withdrawal [75–77]. This effect is rescued by systemic MTEP treatment, but
not site-specific treatment targeting the NAc shell [75,76]. Conversely, systemic treatment with the
mGlu5 receptor PAM, CDPPB, exacerbates the effect of ethanol withdrawal on behavioral despair [75].
Adolescent ethanol exposure, however, does not result in a behavioral despair phenotype in male
mice 24 h into withdrawal. In contrast, CDPPB administration is able to induce a behavioral despair
phenotype in water drinking controls [75]. Interestingly, protracted withdrawal from adolescent
alcohol does result in a behavioral despair phenotype [76], but it is not known if it can be rescued via
systemic mGlu5 receptor modulation.
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Table 3. Details of the effects of mGlu5 receptor modulation on behavioral despair in the forced swim task.

Manipulation Average Reported Ethanol Intake Treatment Details Species/Strain/Sex Housing Alcohol × Drug Effect Dose Reference

MTEP 4.00 ± 0.05 g/kg Acute systemic Adult male B6 mice Grouped Rescued 30 mg/kg [77]

MTEP Greater than 4.0 g/kg Acute systemic Adult male B6 mice Grouped Rescued 30 mg/kg [75]

CDPPB Greater than 4.0 g/kg Acute systemic Adult male B6 mice Grouped Exacerbated 30 mg/kg [75]

MTEP Greater than 5.0 g/kg Acute systemic Adolescent male B6 mice Grouped No change 30 mg/kg [75]

MTEP Up to 7.0 g/kg Acute intra-NAc shell Adolescent male B6 mice Grouped No change 1, 10 µg/side [76]

MTEP Up to 5.0 g/kg Acute intra-NAc shell Adult male B6 mice Grouped No change 1, 10 µg/side [76]

CDPPB Greater than 5.0 g/kg Acute systemic Adolescent male B6 mice Grouped No change 30 mg/kg [75]

C57Bl/6J (B6), nucleus accumbens (NAc).
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Although mGlu5 receptors appear to be a promising target for rescuing behavioral despair induced
by ethanol exposure, these studies suffer from lack of diversity in tests, ethanol exposure paradigms,
sex, and age. All studies discussed in this section used a 14-day drinking-in-the-dark exposure in male
B6 mice. No studies have observed the effects of ethanol dependence, prolonged ethanol exposure,
or protracted ethanol withdrawal in adulthood on behavioral despair. These studies are necessary
to accurately capture the ability of mGlu5 receptor modulation to mediate the negative-affective
withdrawal phenotype that promotes relapse susceptibility. Male and female rodents also express
behavioral despair in a sex-dependent manner. For example, females are susceptible to the forced
swim test, but relatively resilient to psychosocial models of despair [74]. The forced swim task
suffers from many criticisms, which include the lack of translational value for treatment development,
dependence on physical activity, and differing survival strategies to conserve energy [74,78]. However,
the forced swim test is high-throughput, and engages overlapping neural circuitry with humans
suffering from depression [74], making it a valuable tool when paired with other behavioral despair
tests. Complementary tasks may include seeking and consumption of non-drug reinforcers, tail
suspension task, social interaction, response to novelty, and observation of normative home-cage
activities such as grooming [6,8]. As these tests result in sexually distinct phenotypes that are not
consistent between tasks [8], it is important to include multiple behavioral paradigms to observe how
ethanol alters the complete behavioral despair phenotype. Finally, as mGlu5 receptor modulation
shows promise in these studies, it should be examined at both younger and older ages, following
alcohol exposure, dependence, and protracted withdrawals. Depression at both young and old age is
associated with poor outcomes and limited response to traditional antidepressants [74], making the
mGlu5 receptors a promising target.

mGlu5 receptors have been extensively implicated in major depression disorder (MDD) at the
clinical and preclinical levels, as recently reviewed by Esterlis et al. [79]. Similar to the studies
discussed that have observed mGlu5 receptor availability in alcohol use disorders (see Section 2),
studies observing those with MDD without alcohol and substance use disorders have reported mixed
findings. One study has reported increased post-mortem Grm5 expression in the locus coeruleus
of MDD individuals, noting the important role of locus coeruleus excitability in MDD [80]. Studies
reporting reduced mGlu5 receptor availability in those with MDD have been conducted in non-smoking
populations [81,82], whereas those that reported no differences overwhelmingly included smoking
individuals [83–86]. Smoking status also mediates the relationship between mGlu5 receptor availability
and alcohol use, but it appears that smoking is responsible for the reduced mGlu5 receptor availability
in heavy drinkers [44]. Although the relationships between mGlu5 receptor availability and smoking
status in heavy alcohol use and MDD are divergent, it is still notable that smoking status might
alter response to mGlu5 receptor modulators as behavioral treatments in each of these populations.
Ketamine, which was recently approved by the FDA for treatment-resistant MDD, rapidly reduces
availability of mGlu5 receptors in non-smokers with MDD and in healthy controls. The magnitude of
reduction of receptor availability in the hippocampus was positively correlated with a reduction in
symptoms of depression [81]. This relationship between mGlu5 receptor availability and depression
symptomology has also been reported in non-smoking individuals not treated with ketamine [82].
Although the effects of ketamine have been linked to mGlu5 receptors, directly targeting mGlu5

receptors with NAMs has not been demonstrated to treat symptoms of MDD in clinical trials [87,88].
Notably, the primary outcome of these studies was the Montgomery–Åsberg Depression Rating Scale
(MADRS), which is clinician-rated during an interview session. However, when patients are asked to
self-report, negative mGlu5 receptor modulation significantly improves depressive symptomology and
quality of life when paired with a traditional antidepressant [88]. These results indicate that treatment
with mGlu5 receptor modulators might alleviate internal feelings of depressive symptomology that
promote excessive alcohol intake.
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5. Anxiety-Like Activity

Anxiety-like activity is a major component of negative affective behavior, as well as a primary
driver of stress and stress-induced relapse [5,10]. Several studies have observed the ability of mGlu5

receptor modulation to alter alcohol-induced unconditioned anxiety-like behavior across a range
of paradigms. These paradigms include approach–avoidance conflict tasks (elevated plus maze,
light/dark box, and the open field task) [89], as well as the marble burying task. Although marble
burying is poorly correlated with traditional measures of anxiety, it is regarded as a perseverative,
investigative activity that can be pharmacologically manipulated [90,91]. With few exceptions [58,75],
all papers detailed in Table 4 observed increases in anxiety-like activity following ethanol exposure,
which were overwhelmingly rescued by mGlu5 receptor NAM administration.

The efficacy of mGlu5 receptor NAMs to reduce heightened anxiety-like activity is consistent across
ethanol i.p. administration [92], ethanol liquid diet [93], and free-choice limited ethanol access [75,76].
Within adult animals, the findings were also consistent across behavioral assays. This is notable
due to the poor predictive validity of each of these tests on their own [89]. Further, in the absence
of alcohol, mGlu5 receptor modulation is a promising target for treatment of anxiety disorders. A
majority of reports using mGlu5 receptor modulation to alter anxiety-like activity report anxiolytic
responses, whereas serotonergic, endocannabinoid, neuropeptide, and other glutamatergic targets
often report inactivity of the tested compounds, or even anxiogenic activity [94,95]. In these studies,
mGlu5 receptor modulation had minimal effects on anxiety-like activity in control mice, contrary to its
predominately anxiolytic profile in many assays [95]. One reason for this might be that these tests
employed parameters that evoked low baseline anxiety levels (such as low light intensity) to be able
to detect heightened anxiety-like activity present in alcohol exposed mice. In typical anxiety-like
assays, ceiling levels of anxiety are often provoked by bright lights, aversive or threatening stimuli, or
conflict [95]. As such, the current studies indicate that targeting mGlu5 receptors might normalize
maladaptive behavior that is present following alcohol use, without disrupting normal system function.

Although the studies examining anxiety-like activity use a wide range of ethanol exposures and
behavioral outcomes, they still suffer from limitations of age and sex, with adult males being the primary
demographic studied. With the exception of Lee et al. [75], mGlu5 receptor modulation was able to
rescue anxiety-like phenotypes observed within 48 h of the last ethanol vapor. Lee et al. [75] were
unable to demonstrate an enhanced anxiety-like profile in adolescent males following ethanol exposure.
However, it has been well-documented that alcohol exposure during adolescence kindles anxiety-like
behavior during protracted withdrawal, as mice age into adulthood [75,96–101]. In the context of
preventing negative-affect-induced relapse, it is necessary to investigate whether mGlu5 receptor
modulation might also rescue enhanced anxiety-like activity that occurs during extensive ethanol
abstinence. Similarly, females may be especially sensitive to anxiety during periods of abstinence [11,47],
with protracted withdrawal from adolescent alcohol resulting in enhanced anxiety-like and despair
behavior [99,102]. These results highlight the need to observe the ability of mGlu5 receptor modulation
to alter anxiety-like activity in males and females during protracted withdrawal from alcohol.
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Table 4. Details from studies assessing anxiety-like activity following mGlu5 modulation in the elevated plus maze (EPM), light/dark box (LD), open field (OF), and
marble burying (MB) tasks.

Manipulation Task Average Reported Ethanol Intake Treatment Details Species/Strain/Sex Housing Alcohol × Drug Effect Dose Reference

MTEP EPM Up to 2 g/kg Acute systemic Adult male Wistar rats Grouped Rescued 2.5, 5 mg/kg [92]

MPEP EPM Greater than 10.0 g/kg Acute systemic Male Wistar rats Individual Rescued 2.5, 5, 10, 20, 30 mg/kg [93]

MTEP LD Greater than 4.0 g/kg Acute systemic Adult male B6 mice Grouped Rescued 30 mg/kg [75]

MTEP LD Up to 5.0 g/kg Acute intra-NAc shell Adult male B6 mice Grouped Rescued 1 µg/side [76]

CDPPB LD Greater than 4.0 g/kg Acute systemic Adult male B6 mice Grouped Exacerbated 30 mg/kg [75]

MTEP LD Greater than 5.0 g/kg Acute systemic Adolescent male B6 mice Grouped No change 30 mg/kg [75]

CDPPB LD Greater than 5.0 g/kg Acute systemic Adolescent male B6 mice Grouped No change 30 mg/kg [75]

MTEP LD Up to 7.0 g/kg Acute intra-NAc shell Adolescent male B6 mice Grouped No change 1, 10 µg/side [76]

MPEP OF Greater than 10.0 g/kg Acute systemic Male Wistar rats Individual Rescued 2.5, 5, 10 mg/kg [93]

MTEP MB Greater than 4.0 g/kg Acute systemic Adult male B6 mice Grouped Rescued 30 mg/kg [75]

MTEP MB Up to 5.0 g/kg Acute intra-NAc shell Adult male B6 mice Grouped Rescued 1 µg/side [76]

MTEP MB Up to 7.0 g/kg Acute intra-NAc shell Adolescent male B6 mice Grouped Rescued 10 µg/side [76]

MTEP MB Greater than 5.0 g/kg Acute systemic Adolescent male B6 mice Grouped Decreased 30 mg/kg [75]

CDPPB MB Greater than 5.0 g/kg Acute systemic Adolescent male B6 mice Grouped Increased 30 mg/kg [75]

CDPPB MB Greater than 4.0 g/kg Acute systemic Adult male B6 mice Grouped No change 30 mg/kg [75]

Elevated plus maze (EPM), light/dark box (LD), C57Bl/6J (B6), nucleus accumbens (NAc), open field (OF), marble burying (MB).
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6. Synaptic Plasticity

While the studies discussed up to this point have focused on the behavioral outcomes of mGlu1/5

receptor activation, much is also known about the impacts of the cellular mechanisms of these receptors
by drugs of abuse and negative affect. mGlu1/5 receptors are located postsynaptically or perisynaptically
and are anchored to the postsynaptic density by interactions with Homer and SHANK. While mGlu1/5

receptors are key regulators of excitatory synaptic plasticity through both LTD and LTP, the following
discussion focuses on mGlu1/5 regulation of LTD. Generally in regions like the bed nucleus of the
stria terminalis (BNST) and striatum, mGlu1/5 receptor activation leads to phospholipase C (PLC)
enhancement of PIP2, which in turn activates two divergent downstream pathways. One involves the
activation of IP3 pathway and release of endoplasmic reticulum Ca2+ subsequent protein kinase C
(PKC), mitogen-activated protein kinase kinase (MEK), and Erk1/2 activation, which can ultimately
activate Arc. Secondly, activation of the IP3 pathway produces diacyl-glycerol (DAG), which is then
acted upon by PLC and DAG lipase (DAGL) to produce the endocannabinoid, 2-AG. In LTD, the initial
(early) phase of this LTD is initiated by generation of 2-AG, which is released from the postsynaptic
neuron and activates presynaptic type 1 cannabinoid receptors (CB1 receptor). The activation of
presynaptic CB1 receptors produces a reduction in glutamate release or an enhancement of GABA
release. The maintenance (late) phase of this LTD is initiated through the actions of the IP3 pathway
(discussed above) that ultimately produces the internalization of AMPARs [13]. The reliance on a
raise in postsynaptic Ca2+ and subsequent activation of PKC or PLC, as well as the involvement of
an endocannabinoid signaling, differ by brain region (reviewed in [13]). Additionally, the mode of
LTD induction [drug induced via (S)-3, 5-dihydroxyphenylglycine (DHPG), paired-pulse-induces, or
frequency-induced] is also thought to influence the reliance on certain mechanisms (reviwed in [13]).
Further the anatomical contributions of mGlu1 receptors versus mGlu5 receptors differ by brain region.

The extended amygdala is a collection of brain structures including the nucleus accumbens
shell (NAc shell), the bed nucleus of the stria terminalis (BNST), and the central nucleus of the
amygdala (CeA). These brain structures are known to play critical roles in in the modulation of negative
affect and stress, particularly in the context of withdrawal [4]. In the BNST of male mice, mGlu1/5

receptor-mediated LTD is disrupted by chronic cocaine during both acute withdrawal and prolonged
abstinence [103,104]. This cocaine-induced mGlu1/5 receptor-mediated LTD disruption is manifested
by internalization of GluA2-containing AMPARs (calcium-impermeable), followed by replacement
with calcium-permeable-AMPARs in the ventral tegmental area (VTA) and NAc [105–108]. Outside
the extended amygdala, a similar disruption of mGlu1/5 receptor-mediated LTD is also found in the
hippocampus during acute withdrawal from chronic ethanol vapor in male mice. In the CeA, there is
a role for mGlu1/5-Homer signaling on ethanol binge-drinking [34]. A large body of literature from
the Szumlinski lab finds that mGlu1/5 receptor signaling effects on ethanol are mediated through the
interaction with Homer 2 [18,34,109–113]. Recently, this same group expanded on this work to find
that Erk phosphorylation enhances mGlu5-Homer interaction in the BNST and this action attenuates
ethanol drinking [19].

This mGlu5 receptor signaling mechanism was also found to be critical for estradiol-driven
potentiation of psychostimulant-induced behaviors in female rodents [114,115]. Estradiol activates
ERα through activation of mGlu1/5 receptors, thereby activating CREB and phosphorylated PLC
through MAPK, independent of glutamate activation. Estradiol-induced CREB phosphorylation is
differentially mediated depending on the brain region. mGlu5 receptor-dependent regions include
the dorsal striatum and NAc core, whereas the NAc shell is mGlu1a receptor-dependent. Estradiol’s
interactions with mGlu1/5 receptors also site-specifically alters brain morphology, decreasing dendritic
spines in the NAc core while increasing dendritic spines in the NAc shell. Rodent models of
chronic cocaine use have demonstrated that females have fast acquisition, enhanced escalation, and
greater reinstatement. ER/mGlu receptor signaling is thought to be responsible for a majority of
the sex differences in cocaine behaviors and the neural transmission cocaine phenotypes elicited in
females [116]. Given the efficacy of mGlu5 receptor modulation in males and the role of female sex
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hormones contributing to these behaviors in the cocaine literature, it might be expected that females
would demonstrate enhanced ethanol intake, stronger associations with ethanol-associated cues and
contexts, and enhanced behavioral despair and anxiety that would be particularly responsive to mGlu5

receptor modulation.

7. Conclusions

The data currently reviewed indicate that mGlu5 receptor modulation is a promising target for
negative affect-like behavior associated with alcohol use disorders. mGlu5 receptor modulation is
able to reduce ethanol intake, salience of ethanol-associated cues and contexts, behavioral despair,
and anxiety-like activity. In humans, alcohol consumption manifests in many ways. This includes no
alcohol use, light and recreational use, and dangerous levels of binging and intoxication. Currently,
the literature suggests that mGlu5 receptors contribute to sex-specific neuroadaptations following
alcohol use. These adaptations appear to be dependent upon age of onset of use, frequency of
use, length of use, and length of abstinence from ethanol. Although the current studies touch
on these points, the field is ripe for investigation of sex-differences, adolescent alcohol exposure,
the role of alcohol dependence, and the effect of varying periods of withdrawal on the interaction of
negative affect with alcohol intake and seeking. In particular, females and those exposed to alcohol
during adolescence might be particularly susceptible to developing these negative affective states
following protracted withdrawal from ethanol due to the role of developmental sex hormones in
neuroadaptations underlying mGlu5 receptor signaling. The current studies also primarily focused on
negative affective states following ethanol exposure. However, negative affective states often precipitate
relapse. Therefore, future studies are needed to observe whether mGlu5 receptor modulation during
periods of negative affect, such as chronic or unpredictable stressors, might work to alleviate ethanol
intake. Finally, studies should consider using more than one task to observe behavioral despair and
anxiety-like activity, as these phenotypes might manifest differently based on sex, age of exposure, and
length of exposure or withdrawal. Although further work is required to broadly ensure the safety and
efficacy of mGlu5 receptor modulation, the current work supports this system as a promising target for
treating both ethanol-induced negative affect, as well as preventing negative affect-induced relapse.
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