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Introduction

Anorexia (loss of appetite) is a common concomitant of can-
cer.1 Anorexia in cancer has many causes, but the primary
cause is often an increase in pro-inflammatory cytokines or
an increase in lactate. These two factors then modulate cen-
tral nervous system neurotransmitter cascades. In this article,
we will review the pathophysiology of cancer anorexia and its
treatment. For this literature review, we ran a PubMed search
based on the keywords ‘anorexia cachexia cancer’, and we
generated 1170 results. We reviewed 650 abstracts, of which
we read 233 articles. Abstracts that were not read were be-
cause the title made it obvious that it was a review or not rel-
evant to this review. In addition, we also utilized references in
some of these articles and the awareness of one of us (J. E.M.)
of other pertinent articles. The decision on whether or not an
agent was a mediator was based on the senior author’s

opinion. In most cases, there is inadequate experimental data
to determine the importance of any single mediator. This is a
narrative review. It is important to recognize that the anorexia
associated with cancer is derived from conserved evolutionary
responses to the physiological challenges of cancer. In addi-
tion, there is a secondary set of responses due to the variety
of toxins that are currently infused into patients in an effort
to cure the primary disease. It is the overlap of these two
responses that leads to the cancer cachexia syndrome.

Causes of anorexia

There are numerous causes of anorexia in cachexia (Figure 1).2

These can be conveniently categorized as being due to cen-
tral or peripheral mechanisms. In each group, there are also
a series of secondary causes due to chemotherapy.

Anorexia is commonly present in persons with cancer and a major component of cancer cachexia. There are multiple causes of
anorexia in cancer. Peripherally, these can be due to (i) substances released from or by the tumour, e.g. pro-inflammatory
cytokines, lactate, and parathormone-related peptide; (ii) tumours causing dysphagia or altering gut function; (iii) tumours
altering nutrients, e.g. zinc deficiency; (iv) tumours causing hypoxia; (v) increased peripheral tryptophan leading to increased
central serotonin; or (vi) alterations of release of peripheral hormones that alter feeding, e.g. peptide tyrosine tyrosine and
ghrelin. Central effects include depression and pain, decreasing the desire to eat. Within the central nervous system, tumours
create multiple alterations in neurotransmitters, neuropeptides, and prostaglandins that modulate feeding. Many of these
neurotransmitters appear to produce their anorectic effects through the adenosine monophosphate kinase/methylmalonyl
coenzyme A/fatty acid system in the hypothalamus. Dynamin is a guanosine triphosphatase that is responsible for internaliza-
tion of melanocortin 4 receptors and prostaglandin receptors. Dynamin is up-regulated in a mouse model of cancer anorexia. A
number of drugs, e.g. megestrol acetate, cannabinoids, and ghrelin agonists, have been shown to have some ability to be
orexigenic in cancer patients.
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Peripheral causes can be directly due to (i) tumours caus-
ing dysphagia or directly impinging on gastrointestinal func-
tion; (ii) tumours producing substances that alter food intake,
e.g. lactate, tryptophan, or parathormone-related peptide3;
(iii) tumours leading to alterations in nutrients resulting in
anorexia, e.g. zinc; or (iv) tumours producing inflammation
leading to cytokine release. Alterations in gastrointestinal
function can alter visceral receptor function, leading to
altered secretion of gastrointestinal peptides, e.g. peptide
tyrosine tyrosine (PYY), and alterations in stomach emptying
can alter feedback of satiating hormones.4 Peripherally,
chemotherapy can alter taste perception and cause nausea,
vomiting, mucositis, abdominal cramping, bleeding, and ileus.
Dysgeusia is present in 39% of patients receiving
chemotherapy.5

Central causes of anorexia can be depression, pain, or a
variety of alterations in central neurotransmitters. The neuro-
transmitter changes in depression that lead to anorexia
appear to be alterations in serotonin and corticotrophin-
releasing factor (CRF).6,7 When cancer patients are infused
with interferon, there is an increased kyreunine/keurinic acid,
which is associated with depression and anorexia.8 This leads
to alterations in tryptophan and serotonin levels. Sickness
behaviour is due to a variety of pro-inflammatory cytokines.
The behavioural characteristics of sickness behaviour consist
of fatigue, weakness, social withdrawal, sleepiness, sadness,
lack of motivation, hyperalgesia, failure to concentrate, and
anorexia.9 Hypoxia has been considered to lead to anorexia
in patients with head and neck cancer.10

There is some evidence that some of the central anorectic
effects of chemotherapy involve ghrelin (vide infra). Metho-
trexate leads to a decrease in proopiomelanocortin (POMC)
messenger RNA (mRNA) (potentially decreasing opioid-
mediated feeding) and activation of brain pathways associ-
ated with dehydration.11 Tamoxifen, which induces anorexia
when used for the treatment of breast cancer, inhibits fatty
acid synthase in the hypothalamus, leading to an accumula-
tion of malonyl coenzyme A (CoA).12 Increased malonyl CoA
is associated with anorexia in cancer (vide infra). Common
chemotherapeutic agents act on the chemo-receptor trigger
zone, which contains serotonin 5-HT3 receptors. These recep-
tors activate neurokinin-1 receptors, leading to emesis.13 At
present, there is limited information on how chemotherapeu-
tic agents produce anorexia in cancer patients.

Cytokines and adipokines

Cytokines are a group of peptide hormones that are released
from the immune system or from tumours themselves.14

They can act in either a paracrine, autocrine, or endocrine
fashion. Cytokines generally act in a synergistic or antagonist
cascade system to produce their effects. Inflammatory cyto-
kines such as tumour necrosis factor alpha (TNFα),
interleukin-1 (IL-1), and interleukin-6 (IL-6) are elevated in
many cancers.15,16 Administration of cytokines to rodents
has been demonstrated to reduce food intake.17–19

Interleukin-1, which is produced by lymphocytes and mac-
rophages, is the most potent anorectic cytokine. IL-1 reduces
the size, duration, and frequency of meals but does not re-
duce the desire for food.20 IL-1 has its most potent anorectic
effects when injected into the ventromedial hypothalamus.21

It can produce its effects either by directly crossing the
blood–brain barrier or by activating ascending fibres of the
vagal nerve to release IL-1 in the central nervous system.22

Antibodies to IL-1 enhance food intake in tumour-bearing
rodents.23 IL-1 enhances serotonin activation, leading to
increased POMC activity.24 IL-1 stimulates CRF production in
the hypothalamus, leading to anorexia.25 The anorectic effect
of IL-1 can be partially blocked by antibodies to CRF.25 IL-1
alpha is the major peripheral mediator, whereas within the
brain, it is the paracrine effects of IL-beta that are more
important.

Interleukin-6 is secreted by T-cells and macrophages as
well as microglia, astrocytes, and neurons. While there is
evidence that IL-6 plays a role in the cachexia of colon
adenocarcinoma-26 bearing mice, these tumours do not
produce anorexia in the host, suggesting that IL-6 does not
play a role in cancer anorexia.26

Monocytes, macrophages, and tumours produce TNFα.
TNFα levels are increased in cachectic mice.27 TNFα produces
anorexia either peripherally or centrally.28 It can cross the

Figure 1 Causes of anorexia in cachexia.

288 C. C. Ezeoke and J. E. Morley

Journal of Cachexia, Sarcopenia and Muscle 2015; 6: 287–302
DOI: 10.1002/jcsm.12059



blood–brain barrier29 or produce its effects by stimulating
ascending fibres of the vagus.30 An inhibitor of TNFα
increased food intake in anorectic tumour-bearing rats.28

The TNFα rs800629 single-nucleotide polymorphism is asso-
ciated with anorexia in patients with non-small-cell lung
cancer.31

Interferon-γ reduces meal size when administered into
the cerebral ventricles.32 Anti-interferon-γ antibodies re-
verse cachexia in mice with Lewis lung tumours.33 Cytokines
stimulate immunoreactive nitric oxide synthase in the hypo-
thalamus, suggesting a mechanism by which they alter
central neuropeptides.34 Figure 2 provides an overview of
the potential mechanisms by which cytokines may produce
anorexia.

Leptin is an adipokine, produced from fat cells, that pro-
duces anorexia within the central nervous system.35 There
is no evidence that leptin plays a role in cancer anorexia.24

There is also no evidence for a role in the pathogenesis of
cancer anorexia for adiponectin, resistin, and chimerin.

Visfatin or pre-B colony-enhancing factor (PEBF) or nicotin-
amide phosphoribosyl transferase (Namprt) is a cytokine that

is involved in obesity by promoting vascular smooth cell mat-
uration and inhibition of neutrophil apoptosis in the presence
of IL-7 and stem cell factors. Its gene, PEBF, is encoded as a
pseudogene in chromosome 10.36 Its role is in catalysing the con-
version of nicotamide with 5-phosphoribosyl-1-pyrophosphate
to yield nicotinamide mononucleotide. Nicotinamide mono-
nucleotide is an adipokine substrate that promotes insulin
sensitivity by mimicking insulin and lowering blood sugar
levels. Its serum level is increased in obese patients because
of its expressivity in visceral tissues. Cell culture experiments
and high visfatin levels in mice after a high-fat diet have
shown that visfatin contributes to metabolic syndrome in
obese patients.37 Visfatin elevation in obese patients was
described by Haider et al.37 After 6months, gastric banding
decreased visfatin level and leptin but increased adiponectin
level.

Cancer cells have increased levels of visfatin, and
Namprt/PEBF/vistatin plays a role in cancer signalling path-
ways. It was first discovered in increased levels in colorectal
cancer.38 Moreover, cells that overexpressed Namprt/PEBF/
visfatin were more resistant to chemotherapy than cell lines

Figure 2 Potential mechanisms by which cytokines produce anorexia.
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with stable knockdown of Namprt/PEBF/visfatin genes.39 In
addition, prostate cancer cells with exogenous expression of
visfatin genes show rapid tumour cell proliferation.40

Intracerebroventricular administration of visfatin decreased
food intake, resulting in weight loss.41 This was associated with
an increase in POMCmRNA and α-melanocyte-stimulating hor-
mone (α-MSH). The decrease in food intake was prevented by
the administration of SHU9119, an inhibitor of melanocortin
receptor 3 and melanocortin receptor 4 (MC4R). While the
visfatin data are somewhat paradoxical, it can be hypothesized
that this is due to an attempt of the body to protect itself
against the anorectic effect of visfatin.

Lactate

Malignant tumours often have an increase in glycolysis
associated with an increase in lactic dehydrogenase activity
(LDH).42 The LDH is of the type that preferentially converts
pyruvate to lactate.43 Numerous studies have found an
increase in LDH and lactate in the serum in both experimental
tumour-bearing animals44–46 and humans with cancer.47–51

A number of studies have found that lactate is a potent an-
orexic agent. Bales et al.52,53 reported that lactate reduced
feed intake in goats and monkeys. Spontaneous food intake
is inhibited after both intravenous and intraportal infusion
of lactate in rats.54 Lactate infusion into the carotid artery
of rats decreased levels of c-Fos in the paraventricular nuclei
of the hypothalamus.55 This effect of lactate activates glucose
responsive neurons in the ventromedial hypothalamus,
resulting in a reduction in satiation. Lactate infusion into
the hypothalamus plays a key role in glucosensing and regula-
tion of food intake.56–59 Lactate can be transported across the
blood–brain barrier by monocarboxylate transporters.60 Thus,

a peripheral increase in lactate can interfere with the
glucosensing mechanisms in the hypothalamus, which is
dependent on the interaction of tanycytes and neuronal cells
secondary to lactate flux through monocarboxylate trans-
porters. Physiologically, this system regulates food intake via
orexigenic neurons [synthesizers of neuropeptide Y (NPY) and
agouti gene-related peptide (AGRP)] and anorectic POMC
neurons by altering the activity of the monocarboxylate trans-
porter 4. Lactate infusion decreased food intake in humans.61

In persons undergoing peritoneal dialysis, lactate-based dialysis
solutions are more anorectic than are bicarbonate-based
solutions.62,63

Lactate levels increase in tumour-bearing animals but not
in pair-fed animals.64 In tumour-bearing animals, lactate
levels increased contiguously with the onset of anorexia.65

Lactate infusion was associated with elevated levels of NPY
in the ventromedial hypothalamus and dorsomedial hypo-
thalamus, but there was no alteration in CRF. Lactate
suppresses food intake by activating adenosine monophosphate
(AMP) kinase/methylmalonyl CoA signalling pathway66 (Figure
3). Dichloroacetate enhances pyruvate dehydrogenase, leading
to a reduction of lactate. Dichloroacetate failed to decrease an-
orexia in tumour-bearing rats.65 This may be due to conflicting
effects of dichloroacetate on central levels of lactate.

Overall, it would appear that lactate is a strong candidate
for one of the reasons why cancer is associated with anorexia.

Monoamines

Historically, studies have shown that norepinephrine is a po-
tent enhancer of food and serotonin is an anorectic agent.67

Dopamine appears physiologically to increase motivation for
food intake.68

Figure 3 Lactate mechanism of tumour induced anorexia.
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In 1979, Krause et al.69 found that anorectic rats carry-
ing a Walker 256 tumour had increased plasma free tryp-
tophan, brain tryptophan, and 5-hydroxyindole acetic acid.
These results suggested a role of serotonin in cancer
anorexia. In 1986, Rossi Fanelli and his colleagues70 found
that plasma free tryptophan was elevated in cancer pa-
tients with anorexia. In addition, the free tryptophan-to-
neutral amino acid ratio was elevated in cancer patients
with anorexia and early satiety compared with controls
and with non-anorectic cancer patients. Another study
reported that plasma and cerebrospinal fluid tryptophan
were increased in persons with cancer anorexia.71 Surgical
ablation of tumours in cancer patients reduced plasma
tryptophan and anorexia.72 Utilizing a branched-chain
amino acid supplement designed to reduce tryptophan en-
try into the brain and thus serotonin synthesis improved
appetite in cancer patients.73

In other tumour models in rats (MCG101), serum trypto-
phan does not correlate with food intake,74 and in cancer
anorexic humans given interleukin 2, plasma tryptophan
levels are low.75 Overall, these data suggest that tryptophan
elevations may play a role in some, but not all, anorexia
associated with cancer.

Chance et al.76 found elevated tryptophan, serotonin, and
5-hydroxyindole acetic acid in a variety of brain areas in rats
with Walker 256 tumours. They found similar increases in the
brains of the methylcholanthrene-induced sarcoma model of
cancer anorexia. However, serotonin depletion in rats with
the Walker 256 tumour had minimal effects on food in-
take.77,78 Similarly, the serotonin antagonist failed to increase
feeding after injection into the ventromedial nucleus of the
hypothalamus in tumour-bearing rats.79,80 Other studies have
also shown an activation of serotonin in the hypothalamus in
methylcholanthrene sarcoma rats, which could be reversed
by surgical removal of the tumour.81 Using in vivo/microdial-
ysis tumour-bearing rats increased the serotonin-to-
dopamine ratio.82 In tumour-bearing rats, the hypothalamic
serotonin (5-HT1B) receptor is up-regulated, and tumour re-
section leads to normalization of food intake and the seroto-
nin receptor.83,84 Serotonin levels increase and dopamine
levels decrease in the hypothalamus of rats with cancer
anorexia.85

Finally, in humans with cancer, small increases of food
intake have been seen with the serotonin antagonist cypro-
heptadine, the serotonergic-3-receptor blocker, ondansetron,
ramosetron, and granisetron.75,86,87 However, this small
increase did not alter the cachexia-associated weight loss.

In general, dopamine levels appear to be decreased in
hypothalamic nuclei of tumour-bearing animals.85,88,89 Dopa-
mine receptors (D1 and D2) are increased in tumour-bearing
animals.90 The D2 dopamine antagonist, sulpiride, increased
food intake in tumour-bearing rats when injected bilaterally
into the supraoptic nucleus.19 This effect is due to an increase
in meal size.90

There is a paucity of data on norepinephrine effects on
cancer anorexia. In the Walker 256 cancer model, there was
an increase in hypothalamic norepinephrine at night, which
correlated with the size of the rats’ food intake.91 In a
benzo(a)pyrene murine fibrosarcoma, norepinephrine levels
were reduced.92 In a murine lymphoma cell line, norepineph-
rine levels were increased.93 Norepinephrine injections into
the hypothalamus continued to elicit feeding during the an-
orexic phase in methylcholanthrene sarcoma-bearing rats.94

These data suggest that the norepinephrinergic system
increases its activity in some cancers in an attempt to over-
come cancer cachexia.

Peptides, nitric oxide, and adenosine
monophosphate kinase

A number of gastrointestinal peptides such as cholecystokinin
(CCK), bombesin-like peptides, amylin, and glucagon-like
peptide-1 have been demonstrated to be anorectic in animals
and humans.95–100 There are little data on changes in these
peptides and their relationship to anorexia in cancer in either
animals or humans. CCK is unaltered peripherally in tumour-
bearing rats but may be increased in the central nervous
system.101 CCK8 levels were not elevated in anorectic cancer
patients and did not correlate with anorexia severity.102 An
animal study suggested that increases in bombesin-like pep-
tide in salivary glands may play a role in irradiation-induced
anorexia.103 PYY causes severe weight loss when adminis-
tered peripherally.104 PYY levels were found to be elevated
in children with acute lymphoblastic leukaemia,105 but not
in adults with cancer cachexia.106 Overall, these studies
provide little evidence for peripheral peptides playing a role
in cancer anorexia.

In the central nervous system, a number of neuropeptides
interact with classical neurotransmitters to regulate food
intake.67 Of these, NPY has been considered one of the most
potent orexigenic agents.107 In rats with the Yoshida sar-
coma, NPY concentrations were increased in the arcuate nu-
cleus but decreased in the paraventricular nucleus.108 CRF, an
anorectic peptide, was reduced in both nuclei. This was
confirmed by other studies109 despite an increase in NPY
mRNA.110–113 NPY immunostaining was decreased in the
supraoptic nucleus, the parvocellular portion of the
paraventricular nucleus, and the suprachiasmatic and arcuate
nuclei of tumour-bearing rats.114 In addition, hypothalamic
concentrations of NPY release measured by microdialysis
were reduced.115 Hypothalamic injections of NPY into the
hypothalamus of tumour-bearing rats were limited in their
ability to increase food intake.116 The Y1 receptor showed a
reduction in the arcuate and paraventricular nucleus of
tumour-bearing rats.117 These studies suggest that, in
tumour-bearing rats, there is dysfunction of the NPY feeding
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regulatory system. It is possible that this down-regulation
of the NPY system is due to overactivation of the
POMC/cocaine and amphetamine-regulated transcript
system.118

There is now evidence that most of the central effect of
neuropeptides on feeding is mediated through neuronal ni-
tric oxide synthase (nNOS).119 Nitric oxide antagonists block
the effects of NPY, ghrelin, and orexin.120,121 nNOS-knockout
mice also block the effects of orexigenic agents.122 Leptin’s
anorexic effects are also mediated through nNOS.123 In
tumour-bearing mice, nNOS was significantly increased in
the paraventricular and ventromedial hypothalamus.124 This
suggests that nNOS may be increased to try and overcome
a distal effect of tumours on anorexia (Figure 4).

Adenosine monophosphate-activated protein kinase has
been shown to regulate appetite and to control energy
metabolism.125 Nitric oxide stimulates AMP kinase.126 Phos-
phorylated AMP kinase activates acetyl CoA carboxylase,
which inhibits the conversion of acetyl CoA to malonyl
CoA.126 Inhibition of malonyl CoA reverses its anorectic
effect. In anorectic tumour-bearing rats, infusion of
5-amino-4-imidazolecarboxamide-riboside into the third
cerebral ventricle activates AMP kinase.127 This leads to an
increase in food intake in these tumour-bearing rats.

Melanocortin

Pre-POMC is a 285-amino-acid precursor to its anorexigenic
product, POMC, a 241-amino-acid precursor by the transla-
tional removal of 44 amino acids.128 POMC is synthesized in
the corticotrophin cells of the anterior pituitary, melanotrope
cells of the pituitary, skin melanocytes, nucleus tractus
solitarius of the brainstem, and the arcuate nucleus of the
hypothalamus. It can be cleaved to form [Met]enkephalin,
β-lipotropin, γ-melanotropin (γ-MSH), corticotropin-like inter-
mediate peptide, corticotropin (adrenocorticotrophic hormone),
α-MSH, γ-lipotropin, β-melanotropin (β-MSH), β-endorphin, and
N-terminal peptide of POMC. It plays a role in appetite regu-
lation.129 In the arcuate nucleus, neurons of the cocaine and
amphetamine-regulated transcript and POMC are produced
by satiety neurons.130

In 1989, Tsujii et al.130 found that acetylated α-MSH de-
creased food intake after central administration. This effect
is secondary to melanocortin receptors 3 and MC4R. AGRP
is produced by NPY-expressing cells and is an inverse agonist
of the MC4R and blocks the effects of α-MSH. Our unpub-
lished studies suggest that α-MSH works through nNOS acti-
vation (Morley and Farr, unpublished data). POMC neurons
have a receptor for IL-1β, which when activated increased
α-MSH release.131 Leukaemia inhibitory factor is induced by
a number of tumours and activates the POMC neurons in
the arcuate nucleus, causing the release of α-MSH.132 A

number of small-molecule inhibitors of the MC4R are avail-
able.133 Lipopolysaccharide-induced anorexia is reversed by
AGRP administered centrally and is resisted in MC4R-
knockout mice.134 AGRP has also been shown to prevent a
decrease in food intake in sarcoma-bearing mice.134 Food in-
take was preserved in Lewis lung adenocarcinoma-implanted
MC4R-knockout mice.135 A number of other studies in the
Lewis lung carcinoma mouse model of cachexia have
shown that melanocortin antagonists increase food in-
take.136,129,137,138 Melanocortin antagonists also increase
food intake in mice implanted with C26 adenocarcinoma
cells139,140 and prostate cancer.135 However, in a
methylcholanthrene-induced sarcoma in rats, an MC4R
antagonist failed to reverse the anorexia.141 In another
tumour model, Buffalo rats implanted with Morris hepatoma
7777 cells, the tumour-bearing rats failed to show an increase
in AGRP in the hypothalamus, normally seen in food-
restricted rats.142 LC-6 lung cancer-bearing rats secrete para-
thyroid hormone-related peptide (PTHRP). In these animals,
there is a decrease in mRNA and peptide levels of the anorec-
tic agents, POMC, and cocaine and amphetamine-regulated
transcript and an increase in NPY and AGRP levels and their
mRNA.143,144 These findings suggest that, in this model of
cancer anorexia, POMC works through a mechanism separate
from the classic neuropeptide model. It was also shown that
this effect was not due to the hypercalcaemia produced by
the PTHRP. The C26 colon adenocarcinoma mouse model
has increased food intake with increasing food burden and
decreased levels of POMC.145

Overall, the findings suggest that the melanocortin plays a
role in the anorexia produced by some cancers, but in others,
the anorectic effect occurs distal to the neurons activated by
α-MSH (Figure 5).

Dynamin

Dynamin is a 96 kDa guanosine triphosphatase that plays a
role in endocytosis in cells. Using proteomic profiling in a
mouse model of cancer anorexia, dynamin-1 was up-
regulated compared with both tumour-bearing and pair-fed
mice.146 Dynamin-1 is important for the internalization of
MC4Rs. In HEK293 cells, dominant negative mutants of
dynamin-1 prevent internalization of the MC4R when it is
stimulated by α-MSH.147 Stimulation of MCR4 leads to
anorexia.134 This suggests that dynamin internalization of
MC4Rs is a cellular component of cancer anorexia, possibly
acting as a physiological factor to try and attenuate cancer
anorexia.

Prostaglandins (PGE2 and PGF2α) reduce food intake after
central administration.148 Cyclooxygenase-1 inhibition re-
duces cancer-induced anorexia.149 PGE2 activation of the
EP4 signalling in the hypothalamus is the mediator of PGE2
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suppression of feeding.150 Dynamin-1 is responsible for the
internalization of EP4 receptors, leading to mitogen-activated
protein kinase.151

G-proteins play a role in allowing melanocortin coupling to
MC4R. Central administration of an antisense to a guanine

nucleotide-binding protein (Gαo) subunit slows weight reco-
very in rats following starvation.152 In the proteomic profiling,
Gαo was down-regulated two-fold in both anorectic and pair-
fed mice.146 As previously discussed, dopamine plays a role in
food intake in tumor-bearing rats. N-ethylmaleimide-

Figure 4 Peptide hormones, nNOS AMP kinase, and cancer anorexia.
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sensitive factor plays a role in the localization of the D1 recep-
tor to the membrane.153 Both D1 and D2 receptors were up-
regulated in the brains of cancer-bearing rats.146

These findings point to proteomic profiling as a useful
technique to explore intracellular effects of tumour anorexia.
Utilization of mRNA microarrays may prove equally useful. In
the C26 colon adenocarcinoma tumour-bearing animals,
there were increases in mRNA expression for NPY and AGRP
and a decrease for CCK and POMC.145 Unfortunately, this
tumour line, while causing cachexia, actually increased food
intake, making these data of little use in understanding
cancer anorexia.

Zinc deficiency

Zinc is a trace element needed in transcription, nutrition,
gastrointestinal motility, digestion, oxidative processes,
synaptic signalling, signal transduction, memory, ligand
binding, apoptosis, and healing.155–159 Cancer disrupts zinc

metabolismas a result of the acute phase response to inflammatory
cytokine activity.159 There are several mechanisms of zinc
deficiency in cancer patients: low albumin reducing zinc
binding, anorexia contributing to low intake, ubiquitin–
proteasome activation causing accumulation and wasting in
muscle cells, gastrointestinal loss, diversion of zinc away from
muscle production, and increased urinary excretion of
zinc.160–162 There is limited investigation in the relationship
between cachexia and zinc. Normal serum zinc levels are
95.5–99.3μg/dL. Lindsey et al.163 identified an average
weight loss of 7.6 kg in 10 lung carcinoma patients with a
mean zinc level of 71μg/dL. These patients also failed to
consume about 30% of the recommended dietary allowance
of meals daily.

Zinc deficiency is well recognized to produce anorexia.164

In part, this is because low zinc levels result in hypogeusia.165

Zinc-deficient animals have a reduced response to
norepinephrine-induced and dopamine-induced feeding.166

Similarly, dynorphin, an endogenous opiate agonist that is a
potent orexigenic peptide, has a decreased ability to produce
feeding in zinc-deficient animals.167 Zinc-deficient animals

Figure 5 Role of the melanocortin system in tumour-induced anorexia.
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have lower levels of dynorphin in the hypothalamus. Zinc
deficiency in cachexia blocks the release of NPY and adminis-
tration of zinc results in increased expression of both NPY and
orexin mRNA.168 The putative mechanisms by which zinc
deficiency results in cancer anorexia are shown in Figure 6.

Treatment

A number of specific orexigenics have been developed to
treat anorexia in cancer patients. They have all been demon-
strated to have some utility, but none of them are disease
modifying.

Megestrol acetate

Megestrol was approved by the Food and Drug Administra-
tion in the USA to treat anorexia and weight loss in patients
with AIDS in 1993. Megestrol is a mixed drug having andro-
genic, corticosteroid, and progestogenic properties. In ro-
dents, megestrol has been shown to increase NPY in a
number of hypothalamic nuclei in both normal and zinc-
deficient animals.169,170 When progesterone increases, NPY
activity in the paraventricular nucleus also increases, coincid-
ing with an increase in feeding activity.171 This suggests that
the prostagestational action of megestrol is a major compo-
nent in its ability to increase feeding. Corticosteroid Type II
receptor stimulation has been also shown to increase NPY
gene expression in the hypothalamus.172 There is also some
evidence that megestrol may reduce serotonin.173 Two stud-
ies have also found that megestrol acetate decreases certain
cytokines, such as IL-1 and TNFα, most probably secondarily
to the corticosteroid effects.174,175

Normal doses of megestrol used to enhance appetite are
between 600 and 800mg. A Cochrane meta-analysis found

that megestrol increased weight [risk ratio 1.55 (1.06–2.26),
appetite 2.57 (1.48–4.49)] and quality of life (1.02–3.59) in
cancer patients. The majority of these studies lasted between
56 and 84 days. Higher doses were more effective for weight
gain but had more adverse effects. The adverse effects that
were increased included deaths, oedema, dyspnoea, and
deep vein thrombosis.176

Subsequent to this meta-analysis, megestrol was shown to
improve weight gain and reduce anorexia in children with
cancer and weight loss.177 Adrenal suppression was a
common side effect in this study. A number of combination
studies of megestrol with a variety of other agents (β2
agonist,178 meloxicam,179 celecoxib,180,181 thalidomide,182

and olanzapine183) have shown improvement in weight gain
and appetite, with, in most cases, a better response to the
combination agents.

Megestrol acetate has been shown to be poorly absorbed
when taken without food.184 A nanocrystal formulation of
megestrol acetate (625mg/5mL) has been shown to have
greater absorption and bioavailability than megestrol acetate
(800mg/200mL).185,186 There is a lack of controlled trials in
cancer patients showing an improved clinical outcome with
the nanocrystal formulation.

Overall, there is little evidence to support the use of
megestrol acetate in cancer patients.

Cannabinoids

Cannabis has long been recognized to improve appetite (the
‘munchies’), decrease nausea, and enhance food taste.187 It
is now known that endogenous cannabinoids (anandamide)
acting through the four-protein coupled-cannabinoid recep-
tors (CB1) increase appetite.188 Cannabinoids increase NPY
in the hypothalamus.189 Activation of the CB1 receptor
results in stimulation of AMP-activated protein kinase.190

Figure 6 Possible mechanisms by which zinc deficiency produces anorexia in cancer.
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Another mechanism by which cannabinoids may regulate
feeding is directly at the intestinal level where release of
anandamide acts as a ‘hunger signal’ while another fatty acid
ethanolamide, oleoylethanolamide, is increased during feed-
ing and acts as a satiation signal.184,191 It appears that these
signals are transmitted to the brain through ascending fibres
of the vagus nerve. There is some evidence that anandamide
may be negatively linked to PYY, which peripherally causes
weight loss.192 When smoked medicinal cannabis was used
in HIV-infected adult men, PYY was decreased, and ghrelin
levels increased.193

In 1994, Nelson et al.194 evaluated the effect of tetrahydro-
cannabinol on appetite in 18 patients with cancer. Appetite
was improved in 13 patients. In patients with AIDS anorexia,
dronabinol improved appetite and mood and decreased nau-
sea compared with placebo.195 There was a tendency for pa-
tients on dronabinol to maintain weight better than placebo
over the 3week study period. In the extension of this study,
appetite continued to improve, and body weight remained
stable.196 In the study by Jatoi et al.175 on advanced cancer
patients, 49% showed an improved appetite, and 3% gained
at least 10% of their weight from baseline. Dronabinol in
combination with megestrol acetate had no advantages.
Strasser et al.197 in a placebo-controlled study of 243 patients

found no significant difference of oral cannabis extract or
testrahydrocannabinol compared with placebo. In an uncon-
trolled study of malnourished nursing home residents, 53%
gained weight.198 Finally, in patients with advanced cancer,
tetrahydrocannabinol enhanced chemosensory perception
and appetite.199 There was also an improved quality of sleep
and relaxation.

There is a paucity of evidence to support the use of canna-
bis in any form to enhance weight gain in cancer patients. On
the other hand, the data suggest that it may be an excellent
drug for palliative care patients.200

Ghrelin

Ghrelin is a 28-amino-acid peptide secreted from the fundus
of the stomach. It increases food intake through a nitric
oxide-dependent mechanism.121,122 It also improves memory
and results in growth hormone release from the
pituitary.201,202

Patients with cancer cachexia have elevated levels of circu-
lating ghrelin.106,203,204 In a study of rats implanted with a
sarcoma, a long-acting ghrelin analogue (BIM-28131) resulted
in increased food intake and weight gain, as well as

Figure 7 The mechanism(s) by which drugs developed to treat cancer anorexia produce their antral nervous system effects.
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maintenance of lean mass.205 The ghrelin analogue’s effects
were coupled with a significant increase in hypothalamic
NPY and AGRP. In another rat tumour-bearing model, ghrelin
failed to increase food intake.206 In this model, NPY was in-
creased, but the increase in AGRP was not different from that
in the saline controls. In rats, ghrelin prevented cisplatin-
induced anorexia, weight loss, and hyperalgesia.207 Cisplatin
reduces hypothalamic ghrelin secondarily to overactivity of
the serotonin 2c receptor208 and CRF.209 Animal studies have
suggested a Japanese herbal product, Rikkunshito, may en-
hance peripheral ghrelin secretion and central ghrelin activity
through inhibiting the 2HT2c receptor. A recent study sug-
gested that Rikkunshito can suppress cisplatin-induced an-
orexia in humans.210 This is in keeping with the low levels
of plasma active ghrelin seen during chemotherapy.211

A small study in cancer patients with anorexia found that
ghrelin could increase food intake and meal appreciation
over a single meal.212 A short-term study in patients with ad-
vanced cancer found no effect of ghrelin on nutritional intake
nor eating-related symptoms.213

Hiura et al.214 studied 42 patients with oesophageal cancer
who were receiving cisplatin. They received ghrelin (3μg/kg)
twice daily or saline. Food intake and appetite were im-
proved, and the ghrelin group had less anorexia and nausea
following cisplatin. Yamamoto et al.215 found ghrelin reduced
weight loss in patients with oesophagectomy and gastric tube
reconstruction.

Anamorelin is an oral ghrelin mimetic. In a placebo-
controlled crossover study of 16 patients with cancer,
anamorelin increased weight gain and appetite.216 Two studies
of anamorelin in non-small-cell lung cancer cachexia are ongo-
ing (ROMANA 1 and ROMANA 2) (www.clinicaltrials.gov).217

Overall, the studies on ghrelin have been somewhat patchy,
and there is a need for a substantially powered trial to
determine the future of this agent.218 Figure 7 provides the
mechanisms by which drugs used in development of cancer
anorexia produce their effects in the central nervous system.
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