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ABSTRACT Whole-genome sequencing allows rapid detection of drug-resistant Myco-
bacterium tuberculosis isolates. However, the availability of high-quality data linking
quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far
been limited. We determined drug resistance profiles of 176 genetically diverse clinical
M. tuberculosis isolates from the Democratic Republic of the Congo, Ivory Coast, Peru,
Thailand, and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs
using the BD Bactec MGIT 960 system and 7H10 agar dilution to generate a cross-
validated phenotypic DST readout. We compared DST results with predicted drug resis-
tance profiles inferred by whole-genome sequencing. Classification of strains by the two
phenotypic DST methods into resistotype/wild-type populations was concordant in 73 to
99% of cases, depending on the drug. Our data suggest that the established critical con-
centration (5 mg/liter) for ethambutol resistance (MGIT 960 system) is too high and mis-
classifies strains as susceptible, unlike 7H10 agar dilution. Increased minimal inhibitory
concentrations were explained by mutations identified by whole-genome sequencing.
Using whole-genome sequences, we were able to predict quantitative drug resistance
levels for the majority of drug resistance mutations. Predicting quantitative levels of
drug resistance by whole-genome sequencing was partially limited due to incompletely
understood drug resistance mechanisms. The overall sensitivity and specificity of whole-
genome-based DST were 86.8% and 94.5%, respectively. Despite some limitations, whole-
genome sequencing has the potential to infer resistance profiles without the need for
time-consuming phenotypic methods.

KEYWORDS drug resistance, drug resistance level prediction, Mycobacterium
tuberculosis, quantitative phenotypic drug susceptibility testing, whole-genome
sequencing

Timely and accurate drug susceptibility testing (DST) of M. tuberculosis isolates is vital
to prevent the transmission of multidrug-resistant strains (MDR; resistance to

rifampin and isoniazid) (1). The slow growth and stringent biosafety requirements of M.
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tuberculosis make obtaining a full DST profile by culture-based techniques a matter of
weeks or months. In addition, culture-based DST is notoriously challenging for several
drugs, e.g., pyrazinamide and ethionamide, due to poor drug solubility in commonly
used culture media (2).

Drug resistance in M. tuberculosis is mainly conferred by chromosomal mutations in
a few genes (3), making it possible to detect drug resistance by sequencing these genes
or probing them by molecular hybridization (4). Several commercial tests for the
detection of resistance-associated mutations are available, e.g., the GenoType MTBDR-
plus V2 (Hain Lifescience GmbH, Nehren, Germany) (5) and the AID TB Resistance line
probe assay (AID GmbH, Strassberg, Germany) (6). The World Health Organization
(WHO) endorses line probe assays and the Xpert MTB/RIF assay (Cepheid, Sunnyvale,
CA, USA) for the detection of rifampin resistance as a surrogate marker for multidrug
resistance (7, 8). These molecular tests have high sensitivities for drugs with an
established target(s) of resistance and for which only a few mutations are responsible
for most resistance in clinico (e.g., rifampin and isoniazid) (4). However, these molecular
tests show low sensitivity for heteroresistant strains (concomitant presence of the wild
type [wt] and mutant or multiple different resistance variants in patient isolates) when
frequencies of mutant variants drop below 5 to 50% (9, 10). Furthermore, there are no
commercially available rapid tests for many currently used or prospective drugs (e.g.,
bedaquiline, delamanid, linezolid, and p-aminosalicylic acid), and the WHO only re-
cently defined ad interim critical concentrations for bedaquiline and delamanid for use
with the Bactec MGIT 960 system (11, 12).

A wealth of genomic data on drug-resistant M. tuberculosis has become available in
recent years (13, 14). Unfortunately, quantitative phenotypic DST data are lacking for
most of the genetic data sets, which are necessary to infer phenotypes from genotypes.
In addition, DST data are often limited, as the strains were classified as susceptible or
resistant using the WHO-defined critical concentration (15). There is an urgent need to
link genotypic and phenotypic drug resistance readouts to obtain a better understand-
ing of the mechanisms influencing the evolution and spread of drug resistance in M.
tuberculosis (3, 16).

Whole-genome sequencing (WGS) of clinical isolates allows for accurate identifica-
tion of established chromosomal mutations increasing the MIC (13, 17, 18) and may
ensure adequate treatment in days instead of months. We compared whole-genome-
based drug resistance profiles with two culture-based quantitative DST methods for a
total of 11 drugs, including rifampin, rifabutin, isoniazid, all WHO group B drugs
(streptomycin, kanamycin A, amikacin, and capreomycin), and selected group A (moxi-
floxacin), group C (ethionamide), and group D (ethambutol and pyrazinamide) drugs
(11).

RESULTS
Agreement between MGIT 960 and 7H10 agar dilution phenotypic DST. Table

1 and Fig. 1 summarize the agreement between the semiquantitative/quantitative MIC

TABLE 1 Summary statistics of the method agreement between 7H10 agar dilution and
MGIT 960-based phenotypic DST for all drugs assayed in this study

Antibiotic n
Categorical
agreement (%)

SD of log2

(MIC MGIT 960/MIC agar dilution) �

Ethionamide 56 95 1.9 � 0.3 0.91
Ethambutol 171 73 1.9 � 0.5 0.94
Capreomycin 56 98 1.5 � 0.5 0.65
Streptomycin 56 93 1.5 � 0.3 0.98
Kanamycin A 56 98 1.2 � 0.2 0.8
Amikacin 174 98 1.4 � 0.6 1
Moxifloxacin 173 99 1 � 0.2 1
Isoniazid 173 96 1.2 � 0.1 1
Rifampin 174 99 NA 1
Rifabutin 56 96 0.8 � 0.1 0.98
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determination by MGIT 960 and 7H10 agar dilution in terms of classifying strains as
belonging to the resistotype or wt populations, as inferred by growth/no growth at the
epidemiological cutoffs (ECOFF) (Table 2). Agreement was high for all drugs except
ethambutol (see below). For most drugs, the MGIT 960-based MICs were higher than
the 7H10 agar dilution-based MICs. MICs obtained using the two methods were within
1 to 2 2-fold dilution steps of each other. The classifications into resistotype/wt
populations demonstrated high rank correlations for most drugs (Table 1 and Fig. 1),
except for capreomycin (see Fig. S4 in the supplemental material), due to few strains
demonstrating increased capreomycin MICs included in the study.

FIG 1 Method agreement between phenotypic DST performed with MGIT 960 and 7H10 agar dilution (agardil.),
represented as Bland-Altman plots for all drugs tested in this study.
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WGS and in silico resistance profile prediction. A total of 176 whole-genome
sequences with a median coverage of 67.6� (interquartile range [IQR], 37.48) were
obtained. Median mapping percentage and percentage of genome covered were
98.7% (IQR, 0.94) and 99.4% (IQR, 0.4), respectively. Genes involved in drug resistance
demonstrated high coverages, with only 0.8% of all positions suffering from coverages
below 7� (see the supplemental material). All major M. tuberculosis lineages, except
lineage 7, were represented in the study (L1 � 6, L2 � 36, L3 � 11, L4 � 123, L5 � 1,
and L6 � 1). The strains showed a range of drug resistance profiles (Fig. 2). Based on the
set of analyzed genes (Table 3), 25 strains were predicted to be fully susceptible against
all assayed drugs, 59 strains were mono-/polyresistant, 91 strains were MDR, and two
strains were predicted to be extensively drug resistant (XDR; isoniazid, rifampin, fluo-
roquinolone, and aminoglycoside resistant).

Drug resistance profile prediction by WGS versus phenotypic DST. After exclu-
sion of known phylogenetic markers not involved in resistance, WGS-based resistotype
prediction using a defined set of target genes (Table 3) was highly congruent with the
categorical classification based on the phenotypic DST for most drugs (Tables 1 and 4
and Fig. 1). Based on the in silico resistotype prediction, the MICs of mutant and wt
strains frequently followed a Gaussian distribution. However, the same resistance
marker may confer different MICs in different strains (Fig. S1C, S2C, S3C, S8C, S9C, and
S10C). In some cases, the increase in the MIC conferred by a certain resistance mutation
fell within the distribution of the wt MIC (e.g., for gidB and eis promoter mutations; Fig.
S3C and S6C).

Distinct wt and mutant MIC distributions. MIC distributions of wt and mutant strains
were well separated for rifampin, rifabutin, isoniazid, kanamycin A, amikacin, capreo-
mycin, streptomycin, and pyrazinamide, indicating that the resistance markers used
had a high positive predictive power (88.9% overall positive predictive power of
association with MIC increases). For streptomycin, two strains harbored no mutations in
the target genes, yet they demonstrated high-level phenotypic resistance (Fig. S3C).

Overlapping wt and mutant MIC distributions. MIC distributions of wt and mutant
strains overlapped for ethambutol, moxifloxacin, and ethionamide (Fig. 3). For etham-
butol and ethionamide, overlapping MIC distributions of wt and mutant strains were
associated with a large number of polymorphisms in resistance-conferring genes
(ethambutol resistance, 22 polymorphisms in embB; ethionamide resistance, 28 in ethA,
3 in inhA, and 6 in the inhA promoter). Solubility issues with ethionamide led to
quantitative differences in MGIT 960 versus 7H10 agar dilution-based DST (Table 1 and
Fig. 1). The overlap in MIC distributions between the wt and strains carrying an embB
mutation was reduced by adjusting the critical concentration for ethambutol resistance
from 5 mg/liter to 2.5 mg/liter (MGIT 960). However, there was variability in the MICs for
the same mutation (e.g., MIC EmbB M306I/V in 7H10 agar dilution, 4 to 16 mg/liter;

TABLE 2 ECOFF used for 7H10 agar dilution and MGIT 960 phenotypic DST, derived from
wt MIC distributions determined in this study

Antibiotic

ECOFFa (mg/liter)

Agar dilution MGIT 960

Ethionamide 1 (5) 5
Ethambutol 2 (5) 5
Capreomycin 4 2.5
Streptomycin 0.5 (2) 1
Kanamycin A 2 (5) 2 (2.5)
Amikacin 1 (4) 1
Moxifloxacin 0.25 (0.5) 0.25 (0.5)
Isoniazid 0.125 (0.2) 0.1
Rifampin 0.5 (1) 1
Rifabutin 0.0625 0.1
Pyrazinamide NA 100
aThe values given in parentheses are the critical concentrations recommended by the WHO in 2014 (43). NA,
not applicable.
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Fig. S2C). Moxifloxacin resistance was rare (n � 9, MGIT 960, critical concentration of
0.25 mg/liter), and MIC distributions of mutant strains partially overlapped those of the
wt. Sensitivity of the genome-based moxifloxacin resistance prediction was 80.0%
(Table 4).

Defining cutoffs for high- and low-level MICs. (i) Isoniazid. Mutations in the
promoter of inhA caused low-level MICs of �1 mg/liter (7H10 agar dilution) compared
to strains harboring mutations in katG or combinations of inhA promoter and katG
mutations, which demonstrated MIC levels ranging from �1 mg/liter to �32 mg/liter in

FIG 2 Maximum likelihood phylogeny of 176 M. tuberculosis strains based on 20,510 variable positions.
Reference strains are labeled with green. Main lineages are highlighted with the following color scheme:
red, L4; purple, L3; blue, L2; pink, L1; green, L6; brown, L5. Scale bar indicates the number of substitutions
per site. Phylogeny is rooted on M. canettii. Colored bars indicate resistance mutations per gene, and
within a distinct column (gene) each colored bar represents a distinct mutation. Black bars indicate no
mutation, i.e., wt.
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7H10 agar dilution (Fig. S8C). Defining cutoffs for low-level (�1 mg/liter for MGIT
960/7H10 agar dilution) and high-level (�1 mg/liter MGIT 960/7H10 agar dilution)
isoniazid MICs is warranted.

(ii) Rifampin/rifabutin. Most mutations in rpoB increased the MIC for rifamycins
beyond the therapeutic window (peak serum concentration, 10 mg/liter [19, 20]).
However, some rare rpoB mutations (e.g., RpoB L452P, H445L; Fig. S9C) demonstrated
MICs within the therapeutic window. Thus, defining cutoffs for low- and high-level MICs
may be justified.

For rifampin, cutoffs for low- and high-level MICs were �4 and 2 mg/liter for MGIT
960/7H10 agar dilution and �4 and 2 mg/liter for MGIT 960/7H10 agar dilution.

For rifabutin, our data suggest a cutoff for low- and high-level MICs of �0.4 and 0.25
or 0.5 mg/liter for MGIT 960/7H10 agar dilution and �0.4 and 0.25 or 0.5 mg/liter for
MGIT 960/7H10 agar dilution.

Mutations in rpoB conferring resistance to rifampin and rifabutin showed highly
correlated increases (Fig. 4) of MICs beyond the therapeutic window for most rpoB
mutations (Fig. 3 and Fig. S9C and S10C), indicating that both drugs are rendered
clinically ineffective by the mutations identified in the data set (21) and cannot
substitute for each other.

(iii) Amikacin. Few strains had mutations in the regions of rrs relevant for amikacin
resistance or the eis promoter (n � 12). Mutations in rrs were associated with high-level
MICs (�128 mg/liter in 7H10 agar dilution). With regard to the eis promoter, only the
C-14T mutation increased the MIC and led to low-level MICs (2 to 4 mg/liter in 7H10
agar dilution). The definition of a cutoff for low-level (�4 mg/liter for MGIT 960/7H10
agar dilution) and high-level (4 mg/liter for MGIT 960/7H10 agar dilution) amikacin MICs
may be warranted.

(iv) Streptomycin. Certain mutations lead to MICs well beyond the therapeutic
window (19) of streptomycin (e.g., RpsL K43R, MIC 7H10 agar dilution of �128 mg/liter;
Fig. S3C). On the other hand, gidB mutations increase the MIC only moderately (MIC
7H10 agar dilution, 1 to 4 mg/liter; Fig. S3C). Mutational combinations in gidB, rrs, and
rpsL were common and produced a range of different MICs. Despite the distribution of
MICs conferred by combinations of mutations, there were distinct mutations that
systematically led to MICs beyond the therapeutic window, e.g., RpsL K43R. Defining a
cutoff for low-level (MGIT 960, �4 mg/liter; 7H10 agar dilution, �4 to 8 mg/liter) and
high-level streptomycin MICs (MGIT 960, �4 mg/liter; 7H10 agar dilution, �4 to 8 mg/
liter) is warranted.

DISCUSSION

The results of MGIT 960 and 7H10 agar dilution-based phenotypic DST methods
were highly correlated and suitable to separate the resistotype from the wt popula-
tions. Based on phenotypic DST results and WGS, we were able to define cutoffs for
high- and low-level MICs for isoniazid, rifampin, streptomycin, and amikacin. Defining
such cutoffs may serve as starting points for correlating mutational, DST, and pharma-

TABLE 3 List of genes implicated in drug resistance in M. tuberculosis that were screened
for polymorphisms by WGSa

Drug Target gene(s)

Ethionamide ethA, inhA, inhA promoter
Ethambutol embB
Capreomycin rrs, eis promoter, tlyA
Streptomycin rrs, gidB, rpsL
Kanamycin A rrs, eis promoter
Amikacin rrs, eis promoter
Moxifloxacin gyrA
Isoniazid katG, inhA promoter
Rifampin/rifabutin rpoB
Pyrazinamide pncA, pncA promoter
aData are adapted from references 3, 12, and 23.
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cokinetic/dynamic data to gain more insight into the influence of individual mutations
on treatment outcomes, especially in the light of, e.g., increased drug dosing.

Our data suggest that the current WHO-defined critical concentration for pheno-
typic DST of ethambutol by MGIT 960 (5 mg/liter) is too high and may misclassify strains
as belonging to the wt population compared to the 7H10 agar dilution-based classi-
fication. Given the narrow therapeutic window for ethambutol, this may lead to
mistreatment due to presumed ethambutol susceptibility. After adjusting the ECOFF to
2.5 mg/liter for MGIT 960, we observed a strong improvement of the categorical

FIG 3 Histograms of MICs (7H10 agar dilution) for all drugs assayed in this study.
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agreement between MGIT 960- and 7H10 agar dilution-based classification into resis-
totype/wt populations.

The mutations identified by WGS had a high predictive power to classify strains as
belonging to the resistotype population. However, the predictive power depends on a
number of factors. For instance, the increase in MIC conferred by an identical mutation
can vary greatly in different strains (e.g., EmbB M306I/V and RpsL K88R) (22). Such
variation may be clinically relevant if there is a significant overlap between the MICs of
mutant and wt strains (23), as was the case for strains harboring mutations in genes
associated with ethionamide, ethambutol, and streptomycin (e.g., gidB) resistance.
Furthermore, it is difficult to classify strains as part of resistotype or wt populations if
the MIC increase lies within the therapeutic window of a drug. The overlap between
MICs of mutant and wt strains is confounded by the fact that we only screened for
mutations in genes which had previously been associated with drug resistance. Thus,
we might have missed possible resistance-conferring mutations in other genes. Addi-
tionally, WGS will always produce distributions of coverages, which in turn will inevi-
tably lead to certain regions in the genome suffering from low coverage, preventing the
detection of mutations. However, in cases where we observed elevated MICs without
any mutations detected in the target genes, coverage issues could not explain the
absence of any mutations. Furthermore, the strain genetic background (24), nonmu-

TABLE 4 Sensitivity and specificity of the genome-based drug resistance profile
predictiona

Drug Sensitivity (%) Specificity (%)

Ethionamide 75.0 92.9
Ethambutol 89.6 94.2
Capreomycin 75.0 94
Streptomycin 68.0 92.1
Kanamycin A 83.3 98.8
Amikacin 63.6 96.9
Moxifloxacin 80.0 90.2
Isoniazid 93.6 96.8
Rifampin 100 94.0
Rifabutin 98.9 94.0
Pyrazinamide 80.8 88.9
aSensitivity and specificity were determined using the 7H10 agar dilution-based categorical classification as the
gold standard for all drugs except pyrazinamide, for which the MGIT 960 categorical classification was used.

FIG 4 Correlation between 7H10 agar dilution MICs for rifampin and rifabutin.
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tational mechanisms (e.g., modulation of gene expression) (25), and drug efflux mech-
anisms (26) may contribute to the variability in increase of the MIC conferred by
resistance mutations.

The predictive power of mutations in target genes also depends on removing
phylogenetic markers not involved in increasing MICs. Separating phylogenetic
from resistance-associated markers works well for essential (highly conserved)
genes such as rpoB, rpsL, and rrs but is problematic in nonessential genes involved
in the conversion of prodrugs into their active forms, like pncA (pyrazinamide) and
ethA (ethionamide), or in genes that generally exhibit higher numbers of polymor-
phisms, e.g., embB. Of note, the embABC operon is highly polymorphic, harboring
more polymorphisms than expected by chance (mutations in embABC operon, 81;
expected, 44.8; P � 9.174e�07, binomial test). Mutations conferring increased
ethambutol MICs (27) will therefore inevitably evolve in the presence of phyloge-
netic single-nucleotide polymorphisms (SNPs) and may interact epistatically to
produce the variability in MICs we observed for wt strains and for the most common
marker associated with increased ethambutol resistance MICs, embB M306I/V. The
embABC operon is involved in the biosynthesis of decaprenylphosphoryl-�-D-
arabinose, which is an integral component of the mycobacterial cell wall. The cell
envelope interacts with the host immune system, and the high levels of diversity of
these genes might be the product of diversifying selection due to host immune
pressure. The influence of polymorphisms in the embABC operon on MICs in general
is supported by the observation that subinhibitory concentrations of ethambutol
lower the MICs for isoniazid, rifampin, and streptomycin (28). Thus, even small
changes in activity of the decaprenylphosphoryl-�-D-arabinose biosynthetic and
utilization pathway might alter cell wall permeability and influence MICs of several
drugs.

Similarly, in the case of increased streptomycin MICs, the RpsL substitution K88R
exhibited a wide range of MIC increases, partially within the therapeutic window of the
drug. Streptomycin was the first effective antituberculous drug discovered (29) and has
been used for decades. The long-term use has produced complex resistance profiles
with multiple mutations known to increase streptomycin MICs on their own (e.g., in
gidB, rpsL, and rrs) occurring concomitantly, producing wide ranges of MICs. Further-
more, many strains with increased streptomycin MICs displayed MDR/XDR phenotypes.
Mutations conferring increased streptomycin MICs are frequently found in backgrounds
which have mutations in genes affecting the information pathway (DNA¡RNA¡pro-
teins), e.g., gyrA (DNA gyrase), rpoB (DNA-dependent RNA polymerase), and rrs (rRNA).
The simultaneous presence of multiple MIC-increasing mutations may alter the adap-
tive landscape (30, 31). In addition, nonmutational processes (e.g., alteration of gene
expression) may compensate for fitness costs of drug resistance and at the same time
alter the MIC for the drug (25). This has not been demonstrated for streptomycin
resistance in M. tuberculosis, but it seems possible that compensation of fitness costs in
MDR phenotypes alter the MIC for streptomycin (30), considering that streptomycin is
not part of the current standard treatment regimen and selection for high-level
streptomycin MICs is relaxed.

Concerning eis promoter mutations and aminoglycoside resistance, there is mount-
ing evidence that the eis C-14T promoter mutation confers clinically relevant increases
in amikacin MICs, especially in the light of the revised critical concentrations for
amikacin (2 mg/liter for 7H10 agar dilution) (11).

We observed an overrepresentation of lineage 2 and 4 strains in our sample set. The
strain set used to establish the methodology was collated with a specific aim to include
drug-resistant strains. Given the frequent association of lineages 2 and 4 with drug
resistance (32, 33), the observed skew is not surprising. Furthermore, lineage 2 and 4
strains are also frequently isolated at the collection sites of the strain set used to apply
the methodology (Ivory Coast, Peru, and Democratic Republic of the Congo). Similarly,
increased MICs for a number of drugs (amikacin, capreomycin, kanamycin, and moxi-
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floxacin) were rare, reflecting the scarcity of pre-XDR/XDR phenotypes in Switzerland
and at the sites of prospective sampling.

At 63.6% to 80.8%, sensitivities were low (34) for a number of drugs (i.e.,
amikacin, moxifloxacin, and pyrazinamide) (Table 4) but were comparable to those
of other studies not employing a database of predefined resistance mutations (14,
17, 35). The observed low sensitivities for some drugs were due to few strains
belonging to the resistotype population included in the data set, the presence of
additional resistance mutations in genes not assessed, or to unknown resistance
mechanisms and not due to low coverages prohibiting the detection of mutations.
The use of a curated SNP database containing high-confidence drug resistance
mutations would improve sensitivity for some drugs where additional targets, less
well associated with MIC increases, are known (34, 36). However, reliance on a
predefined resistance mutation database comes at the cost of reduced sensitivity.
After known phylogenetic mutations have been removed, it is important to treat
any mutation in known target genes as potentially being involved in drug resis-
tance. In cases where previously unknown mutations (i.e., not known to increase
MICs and not a known phylogenetic SNP) in resistance-related genes are detected,
genetic engineering and targeted DST are necessary to confirm or reject the drug
resistance-conferring nature of a novel mutation to achieve high sensitivities and
specificities for whole-genome sequencing-based DST.

Generating high-quality quantitative DST data using diverse M. tuberculosis strains is
important to accurately define the ECOFF and subsequently guide treatment decisions.
The two quantitative DST methods employed are difficult to standardize across labo-
ratories, technically demanding, and at best challenging to scale up. Microtiter plate-
based quantitative DST methods (37, 38) have the potential to aid in the generation of
more high-quality DST data due to their standardized formulation and relative ease of
application compared to established methods.

In conclusion, we demonstrate that MGIT 960 and 7H10 agar dilution-based phe-
notypic DST provide highly congruent classifications of strains into resistotype or wt
populations. WGS has high predictive power to infer resistance profiles without the
need for time-consuming phenotypic methods. Limitations due to overlapping distri-
butions of wt and resistotype MICs, various MICs for the same mutations in different
strains, presence of phylogenetic markers in resistance-associated genes, and rare
resistance markers with low frequencies will likely be resolved by on-going large-scale
projects (e.g., ReSeqTB and others [15, 39]), combining phenotypic DST with WGS of
thousands of M. tuberculosis isolates. Our findings, together with those of on-going
studies, will pave the way for the replacement of phenotypic DST with drug resistance
profile prediction based on WGS in the coming years.

MATERIALS AND METHODS
M. tuberculosis isolates. The initial data set consisted of 189 M. tuberculosis isolates. A subset of 61

strains was used to establish the phenotypic DST methodology. These 61 strains were collected by the
Swiss National Center for Mycobacteria between 2004 and 2015 and represent a broad spectrum in
geographic origin and drug resistance profiles (40–42). We then applied the quantitative DST method-
ology to 125 prospectively collected clinical isolates from clinics participating in the International
Epidemiology Databases to Evaluate AIDS (IeDEA) (43) in Peru, Thailand, Ivory Coast, and the Democratic
Republic of the Congo (see Table S3 in the supplemental material). Thirteen strains had to be excluded
due to failed WGS (n � 4; failed library preparation due to low DNA quality), irreproducible DST results
(n � 1), no growth in the 7H10 agar dilution assay (n � 3), duplication (n � 1), mixed cultures (n � 2;
cross-contamination or patient infected with multiple strains), or transmission clusters (n � 2). The final
set consisted of 176 strains.

Phenotypic DST. MGIT 960- and 7H10 agar dilution-based phenotypic DST were performed as
described previously (40). Critical concentrations used for the classification of strains into resistant/
susceptible aim to predict clinical outcome, i.e., treatment failure if a given strain is resistant at the critical
concentration. However, critical concentrations should ideally be defined on the basis of the epidemi-
ological cutoff (ECOFF; the highest wt MIC observed in the absence of any detectable resistance
mechanism [23]), treatment outcomes, and pharmacokinetic and -dynamic data. As M. tuberculosis
infections are treated with combination therapy, outcome data for single drugs are difficult to obtain
(44). This calls for definition of critical concentrations solely based on the ECOFF (11). We therefore
classified strains as belonging to the resistotype/wt populations on the basis of the detection of
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growth/no growth at the ECOFF derived from our data (45). Table 2 lists the ECOFFs used, Table S2 the
drug concentrations tested with the MGIT 960 and 7H10 agar-dilution assays, and Table 3 the genes
screened for mutations with WGS. Further details on how the phenotypic DST assays were performed are
available in the supplemental material.

Data analysis. The categorical agreement between classification of strains into resistotype/wt
populations using MGIT 960 and 7H10 agar dilution was based on detectable growth at the ECOFF (Table
2). The numerical variation between the two methods was quantified as the geometric standard
deviation (SD; given with its standard error) of the ratio of MGIT 960 MIC to the agar dilution MIC,
expressed as a number of 2-fold dilutions and denoted by �. The geometric SD was computed by fitting
a log-normal distribution to the MGIT 960 MIC/agar dilution MIC ratio as implemented in the R package
fitdistrplus (v.1.0-9) (46). If the data were compatible with � � 0, the geometric standard deviation could
not be estimated and was defined as not applicable. The approach is a generalization of the Bland and
Altman method (47), taking censoring of the data into account. Strains for which the MGIT 960 MIC and
7H10 agar dilution MIC were both left censored or both right censored were excluded, since no
information on the ratio could be derived.

Goodman and Kruskal’s gamma was used to quantify the rank correlation between the two methods.
No correlation could be calculated if the variance for either method was 0 and denoted not applicable.

Distributions of wt and mutant MICs were analyzed qualitatively based on the results of 7H10 agar
dilution. We divided the data set into two groups: drugs for which the MIC distributions of wt and mutant
strains did not overlap and those for which MIC distributions overlapped.

Sensitivities and specificities of WGS-based resistance profile inference were calculated based on the
7H10 agar dilution results for all drugs except pyrazinamide, for which the MGIT 960 results were used,
based on growth/no growth at the ECOFF, derived from our data and the presence or absence of a
putative resistance-associated mutation.

Defining cutoffs for high- and low-level MICs. The therapeutic window of a drug is defined as the
concentration range within which a drug is considered to be effective and safe to use (19). Mutations can
increase the MIC beyond the therapeutic window and render the drug clinically ineffective. Drugs may
have large therapeutic windows beyond the ECOFF. For these, MIC increases caused by mutations may
still be within the therapeutic window of a drug: these strains might still be treatable by increasing the
drug dose. We analyzed the distribution of MICs of mutant strains and assessed if cutoffs for low-level
(within the therapeutic window) and high-level (beyond the therapeutic window) MICs were definable.
There were sufficient data available to define distinct cutoffs for low- and high-level MICs for isoniazid,
rifampin, streptomycin, and amikacin. For mutations conferring resistance to other drugs assayed in this
study, no distinct separation into resistotype populations with high- and low-level MICs was possible due
to wide ranges of MICs conferred by the individual mutations or because the mutations conferred MICs
beyond the therapeutic window.

WGS and SNP calling. WGS and data analysis were performed as previously described (48) and are
summarized in the supplemental material. The performance of WGS-based DST greatly depends on the
availability of robust markers of resistance. We therefore focused on a set of high-confidence resistance-
associated genes (3, 14, 19) (Table 3). We additionally assessed the impact of eis promoter mutations on
amikacin and capreomycin resistance, as the association of mutations in the eis promoter with resistance
to the aforementioned drugs has been reported but is not well established (11, 49).

Ethics. Local institutional review board or ethics committee approval was obtained at all local study
sites. Informed consent was obtained where requested per local regulations. This project was also
approved by the Cantonal Ethics Committee in Bern, Switzerland.
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Supplemental material for this article may be found at https://doi.org/10.1128/AAC
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