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ABSTRACT

Many platforms for genome-wide analysis of gene
expression contain ‘redundant’ measures for the
same gene. For example, the most highly utilized
platforms for gene expression microarrays,
Affymetrix GeneChip� arrays, have as many as ten
or more probe sets for some genes. Occasionally,
individual probe sets for the same gene report dif-
ferent trends in expression across experimental
conditions, a situation that must be resolved in
order to accurately interpret the data. We developed
an algorithm, SCOREM, for determining the level of
agreement between such probe sets, utilizing a stat-
istical test of concordance, Kendall’s W coefficient
of concordance, and a graph-searching algorithm
for the identification of concordant probe sets. We
also present methods for consolidating concordant
groups into a single value for its corresponding
gene and for post hoc analysis of discordant
groups. By combining statistical consolidation with
sequence analysis, SCOREM possesses the unique
ability to identify biologically meaningful discordant
behaviors, including differing behaviors in alternate
RNA isoforms and tissue-specific patterns of
expression. When consolidating concordant behav-
iors, SCOREM outperforms other methods in
detecting both differential expression and over-
represented functional categories.

INTRODUCTION

The Gene Expression Omnibus (GEO) database at NCBI
is an extensive repository of publicly available,
genomic-scale data, including gene expression data. The
most common platforms in GEO are Affymetrix
GeneChip� arrays (http://www.ncbi.nlm.nih.gov/geo).
One significant issue with analyzing this type of data is

that, for any given gene, a GeneChip�can contain more
than one probe set designed to hybridize to the tran-
script(s) for that gene. In many gene expression studies,
a gene is stated to be differentially expressed if any one of
its representative probe sets reports differential expression,
without regard for the other probe sets. Ideally, a group of
probe sets representing the same gene will always behave
concordantly, i.e. report similar measures of differential
expression. However, this is not always the case. In
order to obtain the maximum and most accurate informa-
tion possible, therefore, redundant probe sets must be
addressed.
Various approaches to dealing with redundant measures

of gene expression have been proposed, from naı̈ve to
elaborate. Naı̈ve approaches include choosing the probe
set with the highest variance (1) or the best P-value (2), or
simply accepting an average value of the majority of probe
sets. More elaborate methods make use of statistical tests
to analyze the agreement between probe sets (3,4).
Another type of methodology is to reannotate all
uniquely assignable probes based on sequence alignment
to a given gene (5–7) or specific transcript sequence (8–10)
into one gene- or transcript-specific probe set. Each of
these approaches has its limitations. In order to
overcome those limitations and to take full advantage of
all the data available from a given experiment, we have
developed the SCOREM algorithm.
The SCOREM algorithm utilizes Kendall’s W coeffi-

cient of concordance, converts the results to an adjacency
matrix and then performs a search for connected compo-
nents (subgraphs) to identify concordant and discordant
groups of probe sets. We then use sequence alignment to
form biological interpretations of discordant observa-
tions. The SCOREM algorithm improves the interpret-
ation of redundant gene expression measures both by
adding statistical confidence to concordant measures,
yielding improved detection of differential expression
and functional enrichment compared to other methods,
and by finding meaningful biological reasons (including
the prediction of novel alternate RNA isoforms) for
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discordant measures, something no statistics-only or
sequence-only method can deliver. Although in the re-
mainder of this article we refer only to Affymetrix micro-
arrays, the same issue of redundant probe sets also exists
for other gene expression platforms, and the SCOREM
algorithm is inherently applicable to those as well.

MATERIALS AND METHODS

Data sources and processing

Eight sets of data including four different Affymetrix
GeneChip� arrays were used in this study; five are
publicly available through NCBI’s GEO website
(Table 1). Raw data (where available) were normalized
using the R package gcrma (19). Filtering was performed
with genefilter (20), and fold change (m) and significance
(P) were calculated with eBayes in the limma package (21).
Generally, statistical significance is determined using hard
cutoffs, e.g. a value of m greater than 2 with P better than
0.01. Here, we have implemented a sliding scale for fold
change and significance cutoffs: the critical value for P is
a, a=0.01 when jmj=1; a increases up to Pmax (e.g. 0.05)
when jmj> 1 and decreases when jmj< 1. The critical
value for P for any given value of m is given by a
sigmoid function, similar to that described in Ref. (22).
This sliding scale can be utilized with or without prior
P-value adjustments, such as false discovery rate (FDR)
correction (23). The analyses of the data sets specified
were completed with and without FDR correction.
Correction with an FDR of 0.05, however, can be more
or less stringent than using a hard cutoff of P< .01, de-
pending on the sample. The use of FDR correction is
further discussed in the context of consolidation of con-
cordant probe sets.
The analyses discussed below was carried out in R,

using Bioconductor annotation packages Mouse4302.db

version 2.5 and org.Mm.eg.db version 2.5 in Bioconductor
release 2.8.

Measurement of concordance

Kendall’s W, or Kendall’s coefficient of concordance, is a
statistical method used to measure inter-rater reliability
(24). Originally devised for subjective human observations
in psychological studies, it has been used for the analysis
of biological data such as species associations in commu-
nity ecology (25). Unlike other tests of concordance,
Kendall’s W does not consider absolute values of
ratings, but overall ordering, as it is a rank-sum method
based on Spearman’s � correlation coefficient. When
applied to a group of probe sets, a significant value of
W (as defined below) indicates a high level of concordance
across a group of probe sets. Groups with a value below
the critical value are discordant.

Kendall’s W is calculated from the mean of all pair-wise
Spearman’s coefficients as follows (24):

W ¼
m� 1ð Þ ��þ 1

k
ð1Þ

where k is the number of judges (probe sets), kC2
(k choose 2) is the number of pairs of judges, and � is
the mean Spearman’s correlation coefficient. It can
further be seen that

�� ¼

P
i

�i

kC2
¼

2
P
i

�i

k k� 1ð Þ
ð2Þ

which when substituted into Equation (1) gives

W ¼

2
P
i

�i þ k

k2
ð3Þ

Table 1. Data used in evaluating the SCOREM algorithm

Experiment Tissue type Conditions Platform Source (Rawa) No. of
samples

GSE3678b Thyroid Tumor versus normal Human Genome U133 Plus 2.0 (GPL570) GEO (yes) 14
GSE4051 (11) Retina Nrl-knockout versus wild-type at

5 time points in development
Mouse Genome 430 2.0 (GPL1261) GEO (yes) 39

GSE4799 (12) Spermatogonial
stem cells

Growth factor restoration (3 time
points) versus withdrawal and
baseline

Mouse Genome 430 2.0 (GPL1261) GEO (no) 15

GSE9371 (13) Aorta Estrogen versus placebo in wild
type, ERa- and ERb-
knockouts

Mouse Genome 430 2.0 (GPL1261) GEO (yes) 22

BrCac (14–16) Breast cancer
(MCF7 cell line)

Estrogen versus placebo at 2 time
points

Human Genome U133A (GPL96) GEO (no) 26

VSMC (17) Aorta Estrogen versus placebo at 3 time
points

Mouse Genome 430A 2.0 (GPL339) Authors (yes) 18

GonFat (18) Gonadal fat Female versus male and female
versus ovarioectomized female

Mouse Genome 430 2.0 (GPL1261) Authors (yes) 21

IngFat (18) Inguinal fat Female versus male and female
versus ovarioectomized female

Mouse Genome 430 2.0 (GPL1261) Authors (yes) 21

aWhether or not raw data (.CEL files) were available or only preprocessed data.
bReyes et al. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3678.
cThis data set consists of similarly treated samples from GEO series GSE4006, GSE4025 and GSE9936.
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The significance of an individual value of � is
determined using the Student’s t-test for significance
with n� 2 degrees of freedom, where n is the number of
observations (arrays) (26).

t ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� �2

s
ð4Þ

A critical value (cutoff) for � is calculated by
rearranging the terms of this equation, using an appropri-
ate critical value for t (e.g. t< 0.01).

�crit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2crit

t2crit þ n� 2

s
ð5Þ

The critical value for W is then calculated as half the
distance between �crit and 1 (a perfect correlation), making
the W cutoff more stringent than that for an individual �.

Wcrit ¼
�crit þ 1

2
ð6Þ

Detection of concordant subgroups

If the entire group’s W does not meet the cutoff Wcrit, a
search for concordant subsets within the group (sub-
groups) is performed. It is useful to note at this point
that Equation (3), from the rearrangement of Equation
(1), is the same as taking the mean of the symmetric
matrix of pairwise coefficients (Table 2). This matrix is
then converted into a matrix of true/false values, based
on each �>�crit. This creates an adjacency matrix for an
undirected graph, reducing the problem of finding con-
cordant subgroups to that of finding connected compo-
nents within the graph. If a group is insufficiently
concordant (connected under �>�crit but W<Wcrit), a
recursive search for concordant subgroups is performed.

Consolidation of concordant groups

When concordant groups or subgroups are found, a
combined P-value can be obtained by performing
Fisher’s method [Equation (7)] and obtaining the
P-value for the resulting �2 value (27). The individual
P-values being combined are those generated by eBayes
(21) for each probe set within the group.

�2 ¼ �2
X
i

log Pið Þ ð7Þ

Fisher’s method is intended for independent measure-
ments (27). Due to the design and experimental protocol
under which the gene expression arrays are performed,
redundant probe sets can indeed be considered independ-
ent measures. The standard Affymetrix sample prepar-
ation protocol calls for fragmentation of RNA (resulting
fragments are 35–200 bases long), therefore the pool of
fragments hybridizing to a given probe set is distinct and
independent from that hybridizing to another. For cases in
which there are redundant probe sets for the same gene,
some represent uniquely processed transcripts; in theses
cases, hybridization is clearly independent. However,
even when probe sets represent the same transcript,
there is minimal overlap between regions covered by
those probe sets: the average overlap is 2–3%, with the
majority (80–85%) having no overlap at all. Thus, Fisher’s
method is an appropriate choice.
Finally, each group or subgroup is given a new anno-

tation that indicates which probe sets are included, and
the total size of the group, e.g. for the gene with Entrez
Gene identifier 99 999, new annotations 99999.1_2_3.5,
99999.4.5, and 99999.5.5 indicate that probe sets 1, 2
and 3 out of 5 have been consolidated, while 4 and 5
have been left as individual values. When there is more
than one final value for a given gene, a post hoc analysis is
performed, to determine which value(s) makes the most
sense, biologically speaking, to use. When necessary,
probe sequences were aligned to the most current
version of their annotated RefSeq transcripts and gene
exon tables downloaded from NCBI (28). When probe
sets failed to align to the NCBI transcript sequences,
further analysis was performed using the UCSC Blat
website (29,30).

R software package SCOREM

All the programs needed to carry out this analysis have
been included in an R software package, available for
download from the NAR website (Supplementary Data).
Requirements are a normalized ExpressionSet object (as,
for example, produced by gcrma) and an MArrayLM
object with P values, such as produced by eBayes.
Appropriate annotation packages must also be available.
The SCOREM package includes methods for determin-
ation of concordance, consolidation of concordant
groups and determination of differential expression, as
well as detection of discordant groups remaining after
consolidation. Further analysis can be performed using
UCSC Blat website or the stand-alone Blat server
package available for download. Output of the Blat
software (.psl files) can be visualized on the UCSC
Genome Browser website, or the Integrated Genome
Browser application. Since transcript annotations change
on a daily basis, alignment and visualization of probe sets
of interest can be repeated as needed.

RESULTS

Redundant probe sets on Affymetrix arrays

The three most common platforms in GEO are the
Affymetrix Human Genome U133 Plus 2.0, the Human

Table 2. Calculation of W from the mean of the matrix of all

pairwise correlation coefficients between k judges

1 2 . . . k-1 k

1 1.0 �1,2 . . . �1,k�1 �1,k
2 �2,1 1.0 . . . �2,k�1 �2,k
. . . . . . . . . . . . . . . . . .
k-1 �k�1,1 �k�1,2 . . . 1.0 �k�1,k
k �k,1 �k,2 . . . �k�1,k 1.0
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Genome U133A and the Mouse Genome 430 2.0
GeneChip� arrays. On any of these arrays, a gene may
be represented by one or more probe sets. For instance,
the U133 Plus 2.0 array averages 2.8 probe sets per gene
(54 675 probe sets representing 19 621 genes), while the
smaller 133A array averages 1.8 probe sets per gene.
Overall, about half of all genes are represented by more
than one probe set; a few are represented by ten or more
probe sets (Figure 1). Ideally, all the probe sets for a gene
would hybridize concordantly, which would provide
added confidence to the behavior being observed.
However, on occasion some groups of probe sets instead
behave discordantly, for a variety of reasons: cross-
hybridization to another transcript, misannotation or
alternate-transcript-specific binding (which may also be
cell type-specific). Such groups of discordant probe sets
must be identified and analyzed further, to determine the
mostly likely signal for that condition in the biological
samples.
Several approaches to resolve the issue of different

results from supposedly analogous probe sets have been
proposed. The simplest approaches for dealing with re-
dundant probe sets do not examine their relative behav-
iors, but instead employ naı̈ve methods such as choosing
the probe set with the highest variance (1), choosing the
one with the best P-value (2) or taking a ‘majority rules’
approach. Other approaches use statistical tests to analyze
the level of agreement among the data. Jaksik et al. (3) use
Dixon’s Q test to detect probe sets that are statistical
outliers, having significantly higher or lower hybridization
levels than the rest, but they do not examine the level of
agreement in behavior across conditions. Li et al. (4) use
ANOVA to attempt to distinguish probe sets that behave
concordantly from those that do not. Their analysis,
however, takes an all-or-none approach, ignoring the
possibility that some subset of the probe sets might
be in agreement. Other groups have implemented a

sequence-based approach to redefine the probe sets on
the Affymetrix GeneChip� arrays in order to create a
one-to-one mapping of probe sets to genes (5–7) or tran-
scripts (8,9). Each of these approaches has its advantages
and its limitations, the latter of which the SCOREM
algorithm is designed to overcome.

SCOREM: statistical consolidation of redundant
expression measures

A typical microarray analysis involves pre-processing the
raw data from .CEL files, using linear modeling to fit the
samples to conditions, and determining fold change
(m-value) between conditions for each probe set
(Figure 2a). Optionally, filtering may be performed to
remove probe sets reporting extremely low expression or
variability. This step is required with the consolidation
approach in order to remove probe sets with zero
variance, which cannot be included in correlation calcula-
tions. Additionally, confidence levels (P-values) are
generated for every m-value, and cutoffs may be applied
to the m- and P-values to extract a list of genes that are
statistically differentially expressed (‘Materials and
Methods’ section). In this analysis, we add two additional
steps (Figure 2b). First, the processed data are analyzed
for concordance of gene groups. Where groups are not in
concordance, they are annotated into concordant sub-
groups (or individually, as warranted). Second, after the
m- and P-values are calculated, concordant groups/sub-
groups are consolidated to one pair of values.

Concordance is measured with Kendall’s W test
(‘Materials and Methods’ section) (24). When a group is
found not to be concordant, the group is searched for
subgroups that are concordant. Probe sets are then
reannotated with their new group ids—all the same for
groups with complete concordance, or distinct ids for
two or more subgroups. In the most discordant case,
each probe set remains as a separate value. When the
analysis is complete, each consolidated (sub)group will
have a single m-value (fold change) with a corresponding
P-value for each comparison performed in the experiment
(e.g. treatment versus control). To determine m for a con-
cordant (sub)group, the individual m-values are averaged.
P-values are combined using Fisher’s method (27). The
resulting values are tested for statistical significance as
described in ‘Material and Methods’ section. The final
list of differentially expressed genes can then be used for
further analysis, such as enrichment of functional
categories. In order to understand the biological basis
for any probe set groups that were not fully consolidated,
they are examined further by sequence alignment to the
current version of the transcript/gene.

Application of SCOREM

In all, we applied the SCOREM algorithm to eight data
sets, on four different Affymetrix arrays (Table 1). On
average, 41% (range 6–56%) of the redundant probe
sets were able to be completely consolidated, 19% were
partially consolidated, and approximately 40% were not
able to be consolidated at all (Table 3). The genes in the
latter two categories are examined further, to examine
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Figure 1. Distribution of the number of probe sets per gene on the
three indicated popular Affymetrix GeneChip� arrays.
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potential reasons for the discordant behaviors of their
probe sets.

In comparing any two conditions A and B (e.g. drug
treatment versus control, mutant versus wild type, or
tumor versus normal tissue), a given probe set or group
of probe sets can be (i) higher in A than in B, (ii) lower in
A than in B or (iii) the same in A and B (no change). Thus,
types of discordant behavior we can examine include when
one probe set or subgroup reports differential expression
(either higher or lower) in a given condition while another
probe set or subgroup is unchanged. Another occurs when
two groups report differential expression in opposite dir-
ections. A third can be considered to occur when both
groups report differential expression, in the same direc-
tion, but of very different magnitudes (e.g. two-fold
versus eight-fold increases). In an experiment with more
than two conditions (e.g. a time course or testing multiple
different drugs), discordant subgroups can exhibit one or

more of these behaviors. Table 4 summarizes, for each
data set, how many instances of the first two types of
discordant behaviors exist among the genes reported to
have changing expression levels in more than one
subgroup of probe sets.

Post hoc analysis and the detection of differential
processing

Potential reasons for discordant behavior among probe
sets representing the same gene include multiple RNA
isoforms for the gene, misannotation of probe sets and
cross-hybridization of multiple mRNAs to a single probe
set. Multiple RNA isoforms can be generated via alterna-
tive splice sites, polyadenylation sites and/or promoters.
To determine whether probe set inconsistencies in hybrid-
ization levels could be due to biologically significant dif-
ferences, the probes in each probe set or group are

Preprocessing
(background correction,

 CDF-based summarization 
of probes,  normalization)

Processing

List of Differentially 
Expressed Probe Sets

Are m- and p-values 
significant?

(linear modeling and
contrast fitting)

Raw Data (.CEL files)

Group probe sets
by Entrez Gene IDs

   List of Differentially 
  Expressed Genes

Preprocessed Data 

Is n>1?

Is W > Wcrit?

Post-hoc Analysis
(sequence alignment)

Reannotate and Consolidate
Concordant (Sub)Groups

Yes

Yes

Are m- and p-values 
significant?

Yes

No Yes

(a) (b)

Probe Set Filtering
(optional)

Filtering and Processing

No
Calculate W

Accept Single
      Values

recurse

Preprocessing

Raw Data (.CEL files) OR

Figure 2. Flowchart for algorithms for analyzing gene expression data. (a) Typical Affymetrix processing. (b) SCOREM processing with concord-
ance testing and consolidation.

Table 3. Degree of probe set consolidation by the SCOREM algorithm in eight data sets

Experiment Probe sets (Genes)a Consolidation level (%)

On GeneChip� After filtering Unannotated Single Redundant After SCOREM None Partial Complete

GSE3678 54 675 (19 798) 18 725 (10 516) 2578 6802 9345 (3714) 6668 (3714) 44 19 37
GSE4051 45 101 (20 757) 16 992 (9963) 1996 6645 8351 (3318) 5019 (3318) 27 19 54
GSE4799 45 101 (20 757) 44 062 (20 459) 6597 11 006 26 459 (9453) 24 192 (9453) 80 15 5
GSE9371 45 101 (20 757) 20 728 (11 184) 1937 6512 12 279 (4672) 9094 (4672) 47 22 30
BrCa 22 283 (12 718) 13 397 (8558) 982 5939 6476 (2619) 4031 (2619) 28 19 53
VSMC 45 101 (20 757) 19 914 (11 717) 1012 7171 11 731 (4546) 8224 (4546) 44 19 37
GonFat 45 101 (20 757) 24 260 (12 586) 2472 7073 14 715 (5513) 9320 (5513) 30 23 48
IngFat 45 101 (20 757) 24 364 (12 585) 2590 7080 14 694 (5505) 8966 (5505) 28 20 52

aNumbers in parentheses indicate the number of distinct genes represented by those probe sets.
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mapped to the sequences for all annotated transcript
variants of that gene.
Through such mapping we have also validated the rele-

vance of the SCOREM approach, as many of the
discordancies can be attributed to known cases of alterna-
tive RNA transcripts. In the data sets we analyzed, there
were 77 cases in which discordantly expressed subgroups
for the same gene were expressed in opposite directions
(Table 4, final column). The 76 genes (one is discordant in
two data sets) are represented on the arrays by 298 total
probe sets (199 after gene filtering). For 26 of these genes,
probe sets differentially mapping to distinct, known RNA
isoforms can account for the discrepancy (Supplementary
Table S1); the alternate RNA isoforms are annotated in
RefSeq (28) for 15 of these genes and in the UCSC
Genome Browser (29) for an additional 11 cases. These
reflect all types of alternative transcript formation: alter-
native splicing (fifteen genes), alternative polyadenylation
(nine genes) and alternative promoters (two genes).
One example where discordant probe sets map to

distinct transcripts occurs in Shprh (encoding SNF2
histone linker PHD RING helicase). This gene is repre-
sented by four probe sets on the Affymetrix Mouse
Genome 430 2.0 array. In the GSE4051 data set,
SCOREM measures the correlation coefficient W to be
0.42, not significantly concordant. However, when the dis-
cordant subgroups are analyzed, it is clear that two of the
probe sets reflect discordant expression values; hybridiza-
tion to one (1452261_at) increases when that to the other
(1457327_at) decreases. There are two known RefSeq
transcripts for Shprh, NM_172937 and NM_001077707
(Figure 3a); due to differential splicing these transcripts
contain distinct 30 untranslated regions (UTR). Aligning
the probe sequences to the genomic sequence of Shprh
reveals that each of the discordant probe sets maps exclu-
sively to only one of the two different isoforms. Thus, it is
straightforward to interpret that under conditions of this
experiment (in the mouse retina in response to a knockout

of the Nrl gene), when expression of the Shprh transcript
NM_001077707 increases, expression of transcript
NM_172397 decreases. Thus, the SCOREM analysis
uncovers novel biological information regarding expres-
sion of this gene.

For an additional 35 genes in which discordantly ex-
pressed subgroups were expressed in opposite directions,
known isoforms did not distinguish behavior between
probe sets. Instead, mapping of the probe sets suggest
novel RNA isoforms. The simplest interpretations of
various observed scenarios include: (i) when discordant
subgroups of probe sets map to distinct coding exons,
we propose novel alternatively spliced variant(s); (ii)
when a discordant subgroup maps to an intron between
coding exons, we propose alternate isoforms containing
novel exons; (iii) when discordant subgroups map to
distinct regions within the known 30UTR or when some
map downstream of the known 30UTR, we propose alter-
native polyadenylation; (iv) when a discordant subgroup
maps either to regions upstream of the identified promoter
or to an intron prior to the encoded translational initi-
ation codon, we propose an alternative transcription
start site (promoter). Other interpretations of novel
RNA isoforms for the respective genes are clearly
possible. The analysis does not pinpoint the alternate
RNA isoform, but it does suggest that more than the
known RNAs are being expressed, for subsequent experi-
mental exploration. Finally, it is possible (depending on
the source of RNA used in the experiments) that signal
from probe sets (especially ones in introns) reflect either
partially processed RNA or RNAs unconnected to the
gene in question (e.g. non-coding RNAs overlapping the
genomic region).

Examples of three categories of genes containing dis-
cordant probe sets that cannot be explained by known
RNA isoforms are shown in Figures 3b–d. Dpysl2 is rep-
resented by discordant probe sets that both map (partially
or completely) in the 30UTR (Figure 3b); this is an
example of potential alternate polyadenylation sites in
the terminal exon. For Scmh1, one discordant probe set
maps in the intron upstream of the first coding exon
(Figure 3c); this is predicted to reflect an alternate
promoter, most likely mapping within the annotated
intron 4. For Mllt10, there are two probe sets mapping
to annotated introns 3 and 4, respectively, where their
expression levels change in opposite directions
(Figure 3d). This scenario suggests alternative splicing,
presumably including novel coding exons within the
annotated introns 3 and/or 4.

Finally, 16 of the 77 cases could not be explained by the
existence of alternate RNA isoforms. For these, the use of
BLAT (30) to align the individual probe sequences against
the entire genome can reveal whether some of the probes
do not appropriately represent the gene in question
(misannotation) or represent more than one gene
(cross-hybridization). For eight of these genes, at least
one of the probe sets is misannotated (including probe
sets that map to the non-coding strand, or to non-coding
RNAs overlapping the given gene). Two genes are repre-
sented by a probe set that has the potential to
cross-hybridize to another gene on a separate

Table 4. Characterization of differentially expressed groups represent-

ing differentially expressed genes from eight gene expression data sets

Data set Total
number
of groups

Number of genes represented by

A single
group

Multiple subgroupsa

(a) Yes
versus
no

(b) Small
versus
large

(c) Down
versus
up

GSE3678 1430 1383 0 5 0
GSE4051 4006 3656 126 24 13
GSE4799 5122 4239 348 16 43
GSE9371 1593 1509 32 3 2
BrCa 947 915 5 1 0
VSMC 451 447 1 0 0
GonFat 4559 4449 14 3 13
IngFat 3049 2933 32 2 6

aColumns refer to discordant groups where (a) one is changing and the
other is not; (b) both are changing in the same direction, but with
different magnitudes; and (c) one is increasing while the other is
decreasing.
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chromosome. Finally, six genes do not include annotated
exon information, and cannot therefore be assessed. Full
details for all 77 cases are provided in Supplementary
Table S1.

Overall, the ability to identify and map the locations of
probe sets that reflect discordant expression patterns
expands and clarifies the information gleaned from
analyzing gene expression data. As a validation that

SCOREM appropriately separates probe sets into discord-
ant subgroups, over a third of the more severely discord-
ant subgroups can be explained by distinct, known RNA
isoforms. For these genes, the discordant expression
behavior can add valuable biological insights. In �45%
of the cases, our analysis suggests novel RNA isoforms
that are differentially regulated, thus generating
hypotheses to be tested for genes of interest. Finally, by

Shprh (268281)
SNF2 histone linker PHD RING helicase 

1430582_at (no expression)
1452261_at (up)
1457327_at (down)
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NM_001077707.1 (30 exons)

Gene Position (nucleotides)

NM_009955.3 (14 exons)

Dpysl2 (12934)
dihydropyrimidinase-like 2 

1433770_at  (down)
1450502_at  (up)

(a)

(b)

NM_010804.3 (23 exons)

1420869_at  (no change)
1420870_at  (no change)
1438525_at  (down)
1442070_at  (up)

Mllt10 (17354)
myeloid/lymphoid or mixed-lineage leukemia 
(trithorax homolog, Drosophila); translocated to, 10

(d)

0                                                 20,000                                             40,000                                            60,000

0                                                   50,000                                               100,000                                             150,000

0                                                 20,000                                            40,000                                             60,000

0                                                    40,000                                               80,000                                              120,000

       NM_013883.2 (17 exons)

NM_001159630.1 (18 exons)

Scmh1 (29871)
sex comb on midleg homolog 1

1426241_a_at  (down)
1441573_at       (up)

(c)

NM_172937.3 (28 exons)

Gene Position (nucleotides)

Gene Position (nucleotides)

Gene Position (nucleotides)

Figure 3. Examples of post hoc analysis in order to determine causes for discordant expression patterns. Genomic DNA is indicated as a line, with
exons indicated as boxes on the line. Nucleotide positions within each genes are given with zero representing the presumed transcription start site for
the indicated mRNAs. Mapping of each probe set is color-coded for each gene. Translation start and stop codons are indicated by arrows and
asterisks, respectively. Whether each probe set is differentially regulated in the experimental samples, and the direction of regulation, are indicated in
parentheses after each probe set id. (a) Detection of different expression patterns in known alternate RNA isoforms of Shprh. The probe sets
reporting differential expression correspond to exons unique to each of the known isoforms. Expression changes are for experiment GSE4051 at the
post-natal day 10 time point. (b) Identification of a possible novel isoform of the gene Dpys12. The alternate RNA isoform could involve alternate
splicing of exons 12–14 or an alternate 30UTR (polyadenylation site). Expression changes are for experiment GSE4799, deprivation versus untreated.
(c) Identification of a potential alternate promoter in Scmh1. Expression changes are for experiment GSE4051 at the embryonic day 16 time point.
(d) Identification of potential novel coding exons in Mllt10, in introns 3 and/or 4. Expression changes are for experiment GSE4799, 2 h
post-restoration versus untreated.
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invalidating probe sets in the remaining �20% of the dis-
cordant cases, incorrect data can be excluded from further
consideration.

Detection of tissue-specific behaviors

Since SCOREM performs a new analysis of concordance/
discordance in each experiment, the results for any given
group of probe sets may differ from experiment to experi-
ment. For instance, this could reflect tissue- or cell
type-specific expression of alternate variants. An interest-
ing case in point is that of Rbm39 (Entrez Gene ID
170791). This gene is represented by 10 different probe
sets, according to the annotation supplied by
Affymetrix. In the analysis of the GSE9371 data sets,
the 10 probe sets were not concordant (W=0.47)
(Figure 4a), but two subgroups were highly concordant
(Figure 4b and c). If the naı̈ve approach of ‘majority
rules’ had been applied, the first group (Figure 4b) with
five probe sets would have been taken as the representative
value. However, mapping probes to the transcript
sequence indicates that only the smaller subgroup of two
probe sets (Figure 4c) maps to the annotated (exonic)
transcript sequence (Figure 4d). The larger subgroup
maps instead to intronic regions of the gene. Whether
these represent a separate transcript (e.g. non-coding
RNA, overlapping gene) or unannotated alternate exons
requires further investigation. Most importantly,
Figure 4e–i shows that the clustering of probe sets is dif-
ferent in different experiments. In particular, note that
probe sets 2 and 3 do not always behave concordantly,
and in one case all 10 probe sets act in concert. Using the
standard analysis from Figure 2a, these experiment-
dependent differences would not be discerned. Thus, the
method described here is sufficiently flexible to provide
important additional nuances in understanding the differ-
ential RNA processing.
We have examined the possibility that some genes

would always have discordant probe sets, and have
found that not to be the case. In the eight data sets
examined, only one gene [WD repeat domain 33
(Wdr33), EntrezGene 74320] was discordant in more
than one set (GSE4051 and Inguinal Fat). However,
even in this case, the seven probe sets representing this
gene were not grouped in the same manner, and so were
discordant in different ways (see Supplementary Table S1
for details). This again leads to the conclusion that
patterns of concordance and discordance cannot be
assumed to be replicable across data sets.

DISCUSSION

The SCOREM algorithm is a novel approach to gene ex-
pression analysis, making use of Kendall’s coefficient of
concordance to determine the level of agreement (con-
cordance) among multiple probe sets representing the
same gene in a gene expression experiment. While other
methods have been proposed to resolve the issue of
so-called redundant probe sets, SCOREM is the only
one that also provides information about differential
RNA processing, even when no known alternate

transcripts exist, and thus can reveal tissue- or cell-specific
expression patterns. At the same time, it yields expression
measures with increased statistical confidence, leading to
further statistical confidence in secondary analyses such as
functional enrichment analysis.

SCOREM is evaluated here in comparison with a
standard (non-consolidating) approach to expression
analysis, as well as two other methods for consolidation.
Li et al. (4) use ANOVA to analyze agreement between
multiple probe sets, while Dai et al. (5) use sequence align-
ment information to create composite probe sets. We
evaluate each method for its ability to detect differentially
expressed genes and the statistical confidence of subse-
quent functional enrichment analyses [measured as the
average P-value of the top 20 categories detected as
enriched by GOstats (1)].

Comparison with a standard approach

Overall, SCOREM consistently calls more differentially
expressed genes than the standard method (Table 5).
This includes more genes in each statistically
over-represented functional category, resulting in better
P-values of the top categories identified by GOstats (1)
(Table 5).

For example, our previous studies investigated the role
of estrogen and estrogen receptors (ER) a and b in
regulating gene expression in vascular tissue (GSE9371)
(13). This study found that estrogen/ERb was responsible
for downregulation of a number of nuclear-encoded genes
in the mitochondrial respiratory chain. Using a standard
analysis, 17 genes in the oxidative phosphorylation
pathway (KEGG:00190) were identified that had at least
one probe set reporting differential expression. Using
SCOREM, the list was extended to 26 genes (14 from
the original list plus 12 new genes); consequently, the
P-value for the statistical significance of this pathway went
from 1.9� 10�04 to 1.8� 10�7 (Supplementary Table S2).

Since the standard approach makes no attempt to con-
solidate redundant probe sets, the resulting list of differ-
entially expressed genes typically includes values from
redundant probe sets, with no mention of other probe
sets corresponding to these genes. There were a total of
over 3000 redundant measures in the lists for the eight
data sets generated by the standard method, compared
to only 334 remaining redundant measures for SCOREM.

Comparison with a statistical approach

The approach developed by Li et al. (4) utilizes ANOVA
with the intent of distinguishing between the effects of
discordancy on expression measures and true experimen-
tal effects. This analysis takes an all-or-none approach, in
which all probe sets that are in agreement are consolidated
while probe sets not in agreement are all treated as
separate measurements, ignoring the possibility that
some subset might be in agreement and that this could
be the source of valuable information about the gene in
question. However, as SCOREM demonstrates, in the
majority of cases concordant subgroups can be delineated
(Table 3). For example, the ANOVA approach (4) would
treat all probe sets as separate signals for Lman1, even
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though three out of five probe sets are hybridizing
concordantly and can be consolidated into one statistically
significant increasing value, while a fourth is decreasing
(Supplementary Table S1). Finally, when directly

compared, SCOREM finds more differentially expressed
genes and shows better enrichment of experimentally
relevant functional categories than the ANOVA
approach (Table 5).
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Figure 4. Graphical analysis of probe sets annotated as representing Rbm39 (encoding RNA binding motif protein 39) from multiple experiments
performed on the Mouse 430 2.0 GeneChip�. (a–c) Expression profiles of probe sets across the 22 samples in the GSE9371 data set; W indicates level
of concordance. (a) All 10 probe sets; W shows lack of concordance. A dotted line shows a probe set removed by gene filtering (for very low
expression or very low variance) and therefore not included in the calculation of W. (b) The largest subgroup includes probe sets 4, 6, 7, 9 and 10;
W shows high concordance. (c) The second subgroup includes probe sets 2 and 3; W shows high concordance. (d) Mapping of the 10 probe sets to
the genomic sequence of Rbm39 and the exons of its only known transcript. Probes mapped above the line map to the coding (negative) strand, those
below the line map to the non-coding (positive) strand. (e–i) Connected subgraphs indicating groups of concordant probe sets in five different
experiments. In parentheses are the number of samples in each data set (n) and the critical value for W for a data set of that size. W is given for each
group as a whole (bottom) and for each concordant subgroup (below each subgroup). Filled circles indicate statistically significant differential
expression in that experiment. A dotted circle indicates a probe set removed during gene filtering in that data set.
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Comparison with a custom CDF approach

Dai et al. (5) use a sequence-based approach to generate a
custom Chip Definition File (custom CDF) that redefines
the probe sets on the Affymetrix GeneChip� arrays to
generate a single probe set per gene. Probes that match
more than one transcript (or no annotated transcripts) are
removed entirely; the remainder is consolidated into one
probe set. As pointed out in Ref. (31), typically more than
half of the data from hybridization to an array is
eliminated. The number of genes represented by the final
probe sets is reduced as well (Table 6). While deLeeuw
et al. (31) salvage these lost probe sets by creating
hybrid CDFs and annotating ‘less reliable probe-sets’,
SCOREM takes the approach of examining probe set
behavior in each data set, and annotating the reliability
of those whose behavior is inconsistent with the more
reliable of its siblings. It is not surprising, given the loss
of data in the custom CDF approach, that SCOREM
finds more differentially expressed genes and shows
greater significance of enriched functional categories
(Table 5).

The custom CDF approach has been favorably
reviewed (32) and is currently is use by others, e.g.
Carroll et al. (33). However, it does have a number of
limitations. First, it can only be applied to raw data
(Figure 2a); while gene expression data in GEO are in-
creasingly available in raw format, many data sets are
still only available in pre-processed form (34). Second,
as a result of eliminating so many probes, the redefined
probe sets vary widely in size, from as few as three to over
100 probes, instead of the original 11, thus in any given
probe set there may be too few probes left to generate a
statistically significant result. For example, analysis of the
GSE9371 data set with SCOREM indicates that all
three probe sets (33 probes total) for Cox7a2l (Entrez
Gene 20463) behave in a highly similar fashion, leading
to a highly significant combined expression change
(Supplementary Table S2). However, the BrainArray
custom CDF file eliminates all but 6 of the 33 probes,
and consequently does not consider the results for this
gene to be significant. Third, the new probe set definitions
are based on the current annotated genomic sequences,
which are certain to change, especially as more splice
variants are found. As a result, the entire analysis must
be repeated each time a new version of the custom CDF is
released, requiring periodic downloads of large annotation
packages. Fourth, this approach eliminates non-annotated
sequences, producing a bias toward well-understood tran-
scripts, and limits the ability of researchers to identify
unannotated transcripts that nevertheless may be of
critical importance in a particular study. Finally, this
approach is based solely on sequence and not at all on
behavior, with the same probes being consolidated for
each gene expression experiment. However, our method
reveals that redundant probe sets can show independent
behaviors in different conditions or tissue or cell types.

Table 5. Comparison of SCOREM with other methods in terms of detection of differential expression and functional enrichment

Data Set Standard (+FDR) ANOVA Custom CDF SCOREM (+FDR)

Number of genes called differentially expressed
GSE3678 1026 (1064) 402a 667 1405 (821)
GSE4051 2829 (2400) 313a 1678 3829 (1930)
GSE4799 2146 (323) 832a NAb 4660 (298)
GSE9371 720 (102) NA 480 1550 (123)
BrCa 73 (1137) NA NAb 931 (592)
VSMC 80 (92) NA 126 449 (53)
GonFat 1753 (6005) NA 1966 4502 (3455)
IngFat 777 (3925) NA 940 2989 (1782)

Average P-value of top 20 enriched GO categories
GSE3678 4.5� 10�10 (1.8� 10�7) 3.5� 10�2a 2.5� 10�6 1.3� 10�10 (5.1� 10�9)
GSE4051 6.1� 10�10 (5.1� 10�8) NA 2.0� 10�4 1.6� 10�6 (4.9� 10�8)
GSE4799 3.6� 10�10 (5.3� 10�9) 1.2� 10�2a NAb 2.0� 10�13 (2.8� 10�10)
GSE9371 6.1� 10�7 (3.0� 10�5) NA 8.6� 10�6 1.8� 10�9 (9.5� 10�6)
BrCa 3.6� 10�4 (5.0� 10�5) NA NAb 6.3� 10�5 (3.0� 10�5)
VSMCc NA (NA) NA 9.8� 10�4 4.5� 10�4 (NA)
GonFat 3.2� 10�15 (2.5� 10�12) NA 1.2� 10�9 8.3� 10�13 (1.7� 10�13)
IngFat 1.6� 10�8 (4.4� 10�9) NA 7.9� 10�6 3.5� 10�8 (1.9� 10�8)

aNumber of differentially expressed genes or average P-values of top three or five GO categories as given in Ref. (4).
bNA indicates data sets with no raw data available, where the custom CDF approach could not be applied.
cP-values are for top 5 (Custom CDF) or top 10 (SCOREM) overrepresented GO categories; NA indicates fewer than five GO categories with any
overrepresentation.

Table 6. Comparison of the number of probes, probe sets used and

genes represented in Affymetrix and Brainarray custom CDF files

Array CDF Probes Probe sets Genes

Human U133 Plus 2.0 Affymetrix 604 258 54 675 19 798
Custom 277 789 19 008 18 974

Human U133A Affymetrix 247 965 22 283 12 718
Custom 167 345 12 078 12 065

Mouse 430 2.0 Affymetrix 496 468 45 101 20 757
Custom 240 917 17 306 17 289
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As an example of the effect of combining probe sets
based only on sequence, the gene Shprh is represented
by four probe sets on the Affymetrix Mouse 430 2.0
array. The BrainArray custom CDF retains and
combines 35 of the 44 probes for these probe sets.
SCOREM, however, reveals that two of the probe sets
are not hybridizing at all, while the other two uniquely
map to (and hybridize with) each of two different
known isoforms (Figure 3a). As a result, the BrainArray
analysis concludes this gene is not differentially expressed,
while SCOREM reveals that both isoforms are, but in
different directions.

Further applications

Although in this article we have only presented the results
of applying SCOREM to Affymetrix microarray data,
SCOREM is platform-independent and can be applied
to any type of data containing redundant measures
where a single value is desired. All that is needed is an
ExpressionSet object containing normalized data and an
MArrayLM object with P-values, such as produced by
eBayes. In the case of the discordant behaviors where
one probe set or subgroup is reporting differentially ex-
pression and other subgroup(s) for that gene are not, or
where the groups are reporting differential expression of
different magnitudes (Table 4, columns a and b), the
post hoc analysis described in Results can also be
applied. Finally, results of a Blat analysis can be down-
loaded from the UCSC website, and visualized with a tool
such as the Integrated Genome Browser (IGB) (35).
Therefore, SCOREM can be applied to any type of data
and make sense of any type of discordant behavior present
in that data.

CONCLUSIONS

The SCOREM algorithm has several advantages, both
technical and biological, over the other methods
examined. Its technical advantages include that: (i) it is
applicable to raw data (.CEL) or preprocessed data; (ii)
its basic analysis does not change, even when sequences
are re-annotated, therefore, only the post hoc analysis
must be repeated when new information becomes avail-
able; (iii) probe sets that do not map to currently known
coding sequences are retained for future analysis, not dis-
carded; (iv) it does not require downloading of multiple,
large annotation packages from external sources, instead
utilizing the latest annotation obtained directly from
NCBI; and (v) it is applicable to any type of expression
data with redundant expression measures, regardless of
platform.

SCOREM also has several key biological advantages
over statistical-only or sequencing-only approaches,
including that: (i) it identifies differential RNA processing
of known isoforms, and it detects potential novel
isoforms; (ii) it makes no a priori assumptions that
behavior will be the same across experiments, allowing
the detection of tissue- or cell-specific differential process-
ing; and (iii) when redundant probe sets behave
concordantly, it provides greater statistical confidence in

measuring differential expression and in subsequent func-
tional enrichment analyses.
By assessing redundant probe sets based on their

behavior, not just their sequence, we achieve an increase
in statistical power for concordant sets, and an opportun-
ity for further analysis for discordant sets. Therefore, by
utilizing the SCOREM approach, we obtain results with
greater statistical confidence in the determination of dif-
ferential expression and subsequent analysis of functional
enrichment, and gain additional information about
tissue-and isoform-specific behavior of genes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3, Supplementary R package file.
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