
Vol.:(0123456789)1 3

Comparative Clinical Pathology 
https://doi.org/10.1007/s00580-022-03400-x

ORIGINAL ARTICLE

Vitamin C mitigates hematological and biochemical alterations caused 
by di(2‑ethylhexyl) phthalate toxicity in female albino mice, Mus 
musculus

Meenakshi Soni1  · Mohd. Zahoor ul haq Shah1  · Vinoy Kumar Shrivastava1 

Received: 16 June 2022 / Accepted: 30 September 2022 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Di(2-ethylhexyl) phthalate (DEHP) is ubiquitous environmental contaminant and identified as endocrine-disrupting chemical 
(EDC), present in plastics as plasticizer. Due to its versatile use, human exposure level reaches to danger limit. The main focus 
of our study is to see the effect of vitamin C on hematological and biochemical alterations caused by Di(2-ethylhexyl) Phthalate 
toxicity in female albino mice, Mus musculus. It is found to cause defects of the liver, kidney, and lungs. Its anti-androgenic 
nature brings the main focus on its toxicity associated with reproductive and endocrine system. In this experimental study, 18 
young female Swiss albino mice, Mus musculus, were used and divided into 3 groups of 6 animals each as control (corn oil 
vehicle), DEHP group (100 mg/kg body weight dissolved in corn oil), and DEHP + vitamin-C group (100 mg/kg body weight 
each, dissolved in corn oil and double distilled water, respectively) for 90 days. In this research, serum metabolites were evalu-
ated to study the effect of DEHP on glucose, total protein, and lipid profile along with some hematological, enzymological, and 
oxidative stress parameters. Simultaneously, we compared the effectiveness of vitamin-C against DEHP toxicity to mitigate 
the serum homeostasis disturbance. In present study, we observed, in DEHP-treated animals, glucose, triglycerides, very-low-
density lipoprotein (VLDL), total protein, alkaline phosphatase (ALP), acid phosphatase (ACP), and alanine aminotransferase 
(ALT) levels increased remarkably, whereas total cholesterol, high-density lipoproteins (HDL), aspartate aminotransferase 
(AST), total RBC count, total WBC count, and hemoglobin (Hb) level significantly decreased as compared to control group. In 
addition, we noticed there was a decrease in superoxide dismutase (SOD) and increase in levels of lipid peroxidation (MDA) 
and interleukin-6 (IL-6) in DEHP treatment group as compared to control group. The results indicated vitamin C had a bet-
ter improving effect against DEHP toxicity on balancing metabolic abnormalities and inflammation-related comorbidities.
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Introduction

Since its discovery in 1930, di(2-ethylhexyl) phthalate 
(DEHP), a member of the phthalate ester class of chemical, 
has been the most frequently used plasticizer. DEHP is added 
to plastics to make them softer and more flexible. They are 
ubiquitous pollutants found in toys, childcare products, food 
packaging, household items, personal care products, medical 
devices, modern electronics, detergents, vinyl flooring, air 
fresheners, and a variety of other consumer products as 

plasticizers, solvents, adhesives, additives, binding agents, 
or for some other reason (Xu et al. 2010; Koniecki et al. 
2011). Due to its acceptable qualities and low cost as a 
plasticizer in polyvinyl chloride (PVC) items, DEHP is one 
of the most widely used phthalates. Its extensive use causes 
substantially higher exposure with an average daily intake 
of 3–30 g/kg/day, although occupational exposure levels are 
even higher, reaching up to 300–600 g/kg body weight/day 
(Doull et al. 1999; Kavlock et al. 2002). They are easily 
leached out of goods by heat, agitation, and lengthy storage 
since they are not chemically linked to the materials (to 
which they are added). This can happen at any point in the 
product’s life cycle, from conception through disposal. They 
infiltrate human bodies via ingestion, inhalation, or direct 
contact (Chen et al. 2008; Schettler 2006). The yearly global 
production of phthalates around us is believed to be more 
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than 2 million tonnes, according to reports (Latini 2005). 
The presence of phthalates and their metabolites in sewage 
and sediment was found to be greater above the European 
Union’s safety guidelines (Gani and Kazmi 2020). DEHP and 
its metabolite, mono(2-ethylhexyl) phthalate (MEHP), have 
been found in a variety of human tissues, including urine 
(Silva et al. 2000; Becker et al. 2004; Genius et al. 2012; 
Arbuckle et al. 2016), breast milk (Hogberg et al. 2008; 
Arbuckle et al. 2016), blood (Hogberg et al. 2008; Genius 
et al. 2012), cord blood (Latini et al. 2003), and follicular 
fluid (Krotz et al. 2012). It has also been reported that 
phthalates have a greater influence on children and women. 
Children receive greater doses per unit body surface area 
due to their chewing habits and are at greater risk because 
of their developing endocrine and reproductive systems 
(Johnson et al. 2010, 2011). Adult women excrete larger 
amounts of phthalates metabolites in their urine, presumably 
as a result of their frequent use of personal care products and  
cosmetics (Fourth National Report on Human Exposure to 
Environmental Chemicals (Crinnion 2010): The Centre for 
Disease Control (CDC)). DEHP has been identified as a 
reproductive toxicant and an endocrine disruption chemical 
(EDC) (Kay et al. 2014; Hannon and Flaws 2015; Chiang 
et al. 2017; Rattan et al. 2017), and it has been linked to 
lung, liver, kidney, and reproductive system damage, devel-
opmental toxicity, and lowered sperm count (Rastogi et al. 
2006).

EDCs exert their effects through a variety of mecha-
nisms, including mimicking endogenous hormones, antago-
nizing normal hormones, and disrupting the natural cycle 
of hormone production or metabolism via hormone recep-
tor activation/repression (Sonnenschein and Soto 1998; 
Diamanti-Kandarakis et al. 2009). Reduced conception 
rates, higher miscarriage rates, lower estrogen levels, and 
irregular ovulation are all linked to female employees’ occu-
pational exposure to DEHP, according to epidemiological 
research (Reddy et al. 1976; Aldyreva et al. 1975). DEHP 
and its bioactive metabolite MEHP have been demonstrated 
to cause a decrease in female sex hormone synthesis and 
a depletion of primordial follicles (Hannon et al. 2014; 
Lovekamp and Davis 2001; Hannon et al. 2015). However, 
the exact methods by which DEHP impacts female repro-
ductive, however, are unknown.

DEHP is well-known for its reproductive toxicity 
and teratogenic consequences, which might include 
liver damage, neurotoxicity, nephrotoxicity, thyroid 
dysfunction, and immune system disruption (Carlisle 
et al. 2009) and cardiovascular disease (Muscogiuri and 
Colao 2017). Hematological analysis is also useful in 
determining physical health status (Parida et al. 2012, 
2013, 2014; Pal et al. 2018). Changes in the blood profiles 
of amino acids and phosphatidylcholines identified in rats 

following DEHP exposure reflect these effects on the liver 
(van Ravenzwaay et al. 2010). Targeted and quantitative 
serum metabolomics have been shown to provide 
functional insights, particularly in the development and 
progression of metabolic disorders (Suhre et al. 2011). 
DEHP-fed rats displayed altered glucose tolerance, which 
was linked to aberrant glucose intermediate metabolite 
levels in the liver and skeletal muscle, as well as a glucose 
transport deficit and a reduction in glycogen synthesis 
(David et al. 2000).

DEHP’s negative effects have been linked to the peroxi-
some proliferator, hormonal instability, and free radical 
production (Lovekamp-Swan and Davis 2003). Choi et al. 
(2004) previously revealed that about 94% of the 48 EDC 
identified by the Centers for Disease Control and Preven-
tion (CDC) produce free radicals, suggesting that this 
property is a common toxic mechanism underpinning EDC 
effects. As a result, antioxidant supplementation was pro-
posed as a way to prevent a range of EDC-mediated toxici-
ties that develop following chemical exposure. Vitamin C 
and vitamin E are small molecule antioxidants that have 
been discovered to interact directly with oxidizing radicals 
(Jones et al. 1995). Vitamin C decreases oxidized vitamin 
E and scavenges aqueous-phase ROS through fast electron 
transfer, whereas vitamin E stops the chain process of lipid 
peroxidation in biomembranes (Wang and Quinn 1999). 
Antioxidants may thus be beneficial in the treatment of 
free radical-related illnesses, such as toxins (Caxico Vieira 
et al. 2018; Kim and Lee 2018; Lee 2018; Roh et al. 2018). 
Supplementation with antioxidant vitamins (vitamins C 
and E) reduced DEHP-induced testicular damage (Ishihara 
et al. 2000; Madkour 2014; Suna et al. 2007).

All stuffs that contain ascorbic acid, not just the acid but 
also its isomers, can be considered to contain vitamin C 
(Mousavi et al. 2019). With its prominent role in electron 
transfer, immunological response, cell metabolism, enzy-
matic reactions (Ekeh et al. 2019), and oxidation–reduction 
equilibrium in the body, vitamin C is believed to be an 
efficient antioxidant. The vitamin has a broad therapeutic 
effect, has been studied for illness prevention, and has been 
observed in the treatment of health disorders as severe as 
cancer (Nechuta et al. 2011). Vitamin C also helps to keep 
other antioxidants from becoming inactive (Sharma 2013). 
The chemical has been studied for its ability to promote 
iron absorption in the small intestine (Hallberg et al. 1987) 
as well as its ability to reduce oxidative damage in vascular 
walls (Diaz et al. 1997). Because of its low cost and benefi-
cial effects on infection therapy in critically ill or ventilated 
patients, vitamin C has also been investigated as a viable 
treatment for COVID-19 (Hemilä and Chalker 2020). The 
aim of the present study was to determine the detrimental 
effects of DEHP on young female mice and to find possible 
therapeutic role of vitamin C against it.
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Materials and methods

Chemicals

DEHP (> 98% purity), vitamin C (L-ascorbic acid), and corn 
oil were purchased from TCI Chemicals (Tokyo Chemical 
Industry Co., Ltd., Tokyo, Japan). The kits for glucose, cho-
lesterol, triglycerides, and total protein were obtained from 
the Elab science and Meril Diagnostics. The other chemicals 
used in this experiment were of analytical grade.

Experimental animals

Eighteen young female Swiss albino mice, Mus musculus, 
weighing 15–20 g were purchased from the JEEVA LIFE 
SCIENCES, Malkajgiri, Telangana. The mice were housed 
at Animal House of Biosciences Department, Barkatullah 
University, Bhopal, and given period of 1 week for accli-
matization to adjust the laboratory surroundings (tempera-
ture: 22 °C ± 2 °C, relative humidity: 45%; light/dark cycle: 
12 h). The Institutional Ethics Committee of Barkatullah 
University Bhopal authorized all protocols (Ethical Certifi-
cate Number 1885/GO/Re/S/16/CPCSEA/IAEC/BU/24). 
After acclimatization, mice were divided into three groups 
of 6 animals each and given different treatment for 90 days.

• Group 1: Control is fed with normal diet, water ad libi-
tum, and corn oil (vehicle) by oral gavage.

• Group 2: DEHP-treated group is given DEHP (100 mg/
kg body weight) dissolved in corn oil that acts as vehicle.

• Group 3: DEHP + vitamin C: this group received DEHP 
(100 mg/kg body weight) dissolved in corn oil along with 
vitamin C (100 mg/kg body weight) dissolved in double 
distilled water.

After the commencement of 90 days of dosing, whole 
blood was taken directly from the inferior vena cava with 
1 mL syringe, allowed to clot, and the serum was separated. 
The blood samples for hematological analysis were collected 
into complete blood count (CBC) bottles containing ethyl-
enediamine tetraacetate (EDTA). For serum biochemistry 
analysis, blood samples were centrifuged at 2500 × g for 
10 min within 1 h after collection. The sera were stored 
at −80 °C in a freezer before analysis.

Biochemical analysis

Serum glucose and total protein levels were determined calo-
rimetrically using commercially available kits (Elab science). 
Lipid-related indicators, including high-density lipoprotein 
(HDL), triglycerides (TG), and total cholesterol (TC), were 

measured from serum samples using the corresponding kits 
(Meril Diagnostics) in accordance with the manufacturer’s 
instructions. Friedewald equation is used for calculation of 
LDL cholesterol (LDL cholesterol = total cholesterol — HDL 
cholesterol — [triglycerides/5]).

Hematological analysis

The total red blood cell count and the total white blood cell 
count were done with the help of Neubauer counting cham-
ber method (Schalm et al. 1975). The hemoglobin percent-
age was calculated with the help of Sahli’s hemoglobinom-
eter (Sahli’s acid hematin method, Wintrobe 1975).

Enzymological analysis

King and Kings method was used for the determination of 
serum acid phosphatase (ACP) and alkaline phosphatase 
(ALP), whereas aspartate aminotransferase (AST) and ala-
nine aminotransferase (ALT) were determined by using Reit-
man and Frankel method.

Antioxidant assay

Lipid peroxidation assay

Lipid peroxidation (LPO) was measured in ovary and 
expressed as malonaldehyde (MDA) content (Rehman 
1984). Using a glass homogenizer, the ovaries were 
removed, and tissue homogenate (10%) was made in ice-cold 
normal saline. After that, the homogenate was centrifuged 
for 10 min at 3000 rpm. A milliliter of the supernatant was 
incubated for 2 h at 37 ± 0.5 °C. Each sample received 1 mL 
of tris hydrochloric acid (TCA) (10%), which was correctly 
mixed before centrifugation at 2000 rpm for 5 min at 4 °C. 
An equivalent volume of 0.67% of 2-thiobarbituric acid 
(TBA) was added to 1 ml of supernatant, stirred thoroughly, 
and maintained in a boiling water bath for 10 min. After 
cooling, the samples were diluted with 1 mL of distilled 
water. The optical density (OD) was measured at 535 nm 
using a spectrophotometer. The absolute MDA levels were 
measured in nanomoles per gram of moist tissue.

Superoxide dismutase

The activity of superoxide dismutase (SOD) was calculated 
using the Marklund and Marklund method (Marklund and 
Marklund 1974). The absorbance was measured at 420 nm at 
1-min intervals for 3 min using 2.9 ml of tissue homogenate 
supernatant (10%) and 100 ml of pyrogallol (0.2 mM). The 
final result of SOD activity was measured in units per gram 
of moist tissue.
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Pro‑inflammatory/inflammatory biomarkers 
(interleukin‑6)

To measure the quantities of IL-6 in the blood, we used a 
quantitative standard sandwich ELISA technique with mouse 
kits from Elabscience Biotechnology Inc.

Statistical analysis

The differences among groups are presented as 
means ± standard error of mean (SEM) and were ana-
lyzed using one way ANOVA followed by Tukey’s multi-
ple comparison tests with GraphPad Prism 9.3.1 software. 
p-value < 0.05, < 0.001, and < 0.0001 were treated as statis-
tically significant, more significant, and highly significant, 
respectively.

Results

Effect of DEHP and DEHP + vitamin‑C exposure 
on biochemical parameters

Table 1 illustrates the effect of DEHP and DEHP + vitamin C 
on glucose, total protein, and lipid profile. In DEHP-treated 
group, we observed significant increase in the level of blood 
glucose (p < 0.0001), total protein (p < 0.0001), triglycerides 
(p < 0.0001), and VLDL (0.0005), whereas levels of total 
cholesterol (p < 0.0001) and HDL (p < 0.0001) decreased 
and level of LDL (p = 0.06) remained unchanged as com-
pared to control group. The results of group DEHP + vitamin 
C showed reduction in level of blood glucose (p < 0.0001), 
total protein (p = 0.0001), triglycerides (p < 0.0001), and 
VLDL (p < 0.0001) as compared to the DEHP group, 
whereas levels of total cholesterol (p < 0.0001) and HDL 
(p = 0.0007) increased with respect to DEHP group.

Effect of DEHP and vitamin‑C exposure 
on hematological parameters

Figure 1A–C indicates significant decrease in total RBC 
count (p < 0.0001), total WBC count (p < 0.0001), and 
hemoglobin (Hb) level (p < 0.0001) of DEHP-treated group 
as compared to control group, whereas DEHP + vitamin-C 
group showed significant increases in total RBC count 
(p = 0.0004), total WBC count (p = 0.0004), and hemoglobin 
(Hb) level (p = 0.0002) with respect to DEHP group.

Effect of DEHP and vitamin‑C exposure 
on enzymological parameters

Figure  2A, B indicates significant increase in alkaline 
phosphatase (ALP) (p < 0.0001), acid phosphatase (ACP) 
(p < 0.0001), alanine aminotransferase (ALT) (p < 0.0001), 
and significant decrease in aspartate aminotransferase 
(AST) (p < 0.0001) of DEHP-treated group as compared to 
control group. DEHP + vitamin-C group showed significant 
decrease in alkaline phosphatase (ALP) (p < 0.0001), acid 
phosphatase (ACP) (p = 0.0001), alanine aminotransferase 
(ALT) (p = 0.002), and significant increase in aspartate 
aminotransferase (AST) (p = 0.0005) with respect to DEHP 
group.

Effect of DEHP and vitamin‑C exposure 
on antioxidant assay and lipid peroxidation

Figure 3 illustrates effect of DEHP and DEHP + vitamin 
C on antioxidant activity and lipid peroxidation. When 
compared to the control group, DEHP group showed 
a substantial decrease in antioxidant enzyme activity 
SOD (p < 0.0002) and an increase in lipid peroxidation 
MDA (p < 0.0001). However, we discovered a substantial 
increase in SOD (p < 0.0033) activity and decrease in MDA 
(p < 0.0001) levels in DEHP + vitamin-C treatment group.

Table 1  Effect of DEHP and 
DEHP + vitamin-C treatment on 
glucose level, lipid profile, and 
total protein level

Control (corn oil); DEHP (100  mg/kg body weight in corn oil); DEHP (100  mg/kg body weight 
in corn oil) + vitamin C (100  mg/kg body weight in distilled water); a, control vs. DEHP; b, DEHP vs 
DEHP + vitamin C. Data is expressed as mean ± SEM values
ns nonsignificant
** p < 0.01; ***p < 0.001; ****p ≤ 0.0001 (n = 6)

Parameters Control DEHP DEHP + vitamin C

Glucose (mg/dl) 124.78 ± 0.98 178.56 ± 1.06a**** 127.87 ± 1.24b****
Cholesterol (mg/dl) 127.96 ± 1.61 115.69 ± 1.41a**** 123.65 ± 1.67b**
Triglycerides (mg/dl) 129.63 ± 0.72 136.23 ± 1.00a**** 128.12 ± 0.72b****
HDL (mg/dl) 88.92 ± 0.94 80.84 ± 0.67a**** 86.2 ± 0.64b***
LDL (mg/dl) 12.96 ± 0.66 7.61 ± 0.96a*** 11.83 ± 0.8a***
VLDL (mg/dl) 26.08 ± 0.18 27.24 ± 0.20a**** 25.62 ± 0.14b****
Total protein (mg/dl) 7.64 ± 0.31 14.63 ± 1.12a**** 8.56 ± 0.78b****
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Fig. 1  A Effect of different 
treatments on blood hemoglobin 
(Hb) level. Control (corn 
oil); DEHP (100 mg/kg body 
weight in corn oil); DEHP 
(100 mg/kg body weight in corn 
oil) + vitamin C (100 mg/kg 
body weight in distilled water); 
a, control vs. DEHP; b, DEHP 
vs DEHP + vitamin C. Data 
is expressed as mean ± SEM 
values. ****p < 0.0001, 
***p < 0.001 (n = 6). B Effect 
of different treatments on blood 
RBC levels. Control (corn 
oil); DEHP (100 mg/kg body 
weight in corn oil); DEHP 
(100 mg/kg body weight in corn 
oil) + vitamin C (100 mg/kg 
body weight in distilled water); 
a, control vs. DEHP; b, DEHP 
vs DEHP + vitamin C. Data 
is expressed as mean ± SEM 
values. ****p < 0.0001, 
***p < 0.0001 (n = 6). C Effect 
of different treatments on blood 
WBC levels. Control (corn 
oil); DEHP (100 mg/kg body 
weight in corn oil); DEHP 
(100 mg/kg body weight in corn 
oil) + vitamin C (100 mg/kg 
body weight in distilled water); 
a, control vs. DEHP; b, DEHP 
vs DEHP + vitamin C. Data 
is expressed as mean ± SEM 
values. ****p = 0.0001, 
***p < 0.001 (n = 6)
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Effect of DEHP and vitamin‑C exposure on IL‑6

We found there was a significant increase (p < 0.001) in 
IL-6 after administration DEHP when compared to the 
control group. However, we observed a substantial decrease 
(p < 0.0001) in these levels in DEHP + vitamin-C treatment 
group (Fig. 4).

Discussion

Synthetic and natural molecules that interfere with endogenous 
endocrine functioning are known as “endocrine disruptors” or 
“endocrine-disrupting chemicals (EDCs)” (Rosenfeld et al. 
2017; Yoon et al. 2014; Zawatski and Lee 2013). Phthalic 

acid esters, which are major industrial compounds utilized as 
plasticizers in various plastic formulations, have been linked 
to many of the identified endocrine-modulating, deleteri-
ous reproductive, and developmental impacts (Gardner et al. 
2016; Inoue et al. 2002). Because of its widespread use and 
hazardous effects, di(2-ethylhexyl) phthalate (DEHP) has been 
widely explored among phthalates (He et al. 2018; Magdouli 
et al. 2013). DEHP exposure comes mostly by ingestion of 
residues in foods, with less exposure from air and water, but 
occupational exposures via inhalation have the greatest poten-
tial (Fromme et al. 2007). Vitamin-C supplementation has been 
shown to increase the antioxidant capacity in rats indicating 
resistance to oxidative damage in response to DEHP treatment 
(Husain and Somani 1997). Recently, Wang et al. (2017a) dem-
onstrated that vitamin E co-treatment with DEHP is protected 

Fig. 2  A Effect of different 
treatments on serum ALP, ALT, 
and AST levels. Control (corn 
oil); DEHP (100 mg/kg body 
weight in corn oil); DEHP 
(100 mg/kg body weight in corn 
oil) + vitamin C (100 mg/kg 
body weight in distilled water); 
a, control vs. DEHP; b, DEHP 
vs DEHP + vitamin C. Data 
is expressed as mean ± SEM 
values. ****p < 0.0001, 
***p < 0.001, (n = 6). B 
effect of different treatments 
on serum acid phosphatase 
(ACP) levels. Control (corn 
oil); DEHP (100 mg/kg body 
weight in corn oil); DEHP 
(100 mg/kg body weight in corn 
oil) + vitamin C (100 mg/kg 
body weight in distilled water); 
a, control vs. DEHP; b, DEHP 
vs DEHP + vitamin C. Data 
is expressed as mean ± SEM 
values. ****p ≤ 0.0001, 
***p < 0.001, (n = 6)
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against DEHP-induced testicular toxicity via PPAR-dependent 
mechanism. In this study, vitamin E supplementation signifi-
cantly lowered DEHP-induced PPAR upregulation especially 
PPARγ (Wang et al. 2017b). A number of EDC including 
phthalates affect steroidogenic pathway by disturbance with 
LH-stimulated cAMP production, cholesterol transport and 
metabolism in mitochondria, and increasing oxidative stress 
(Wang et al. 2017a, b).

In the current study, we observed increase in the blood 
glucose level in mice which were treated with DEHP. Our 
results are in line with the previous study (Aydemir et al. 
2018). In one more recent investigation, DEHP treatment 
was found to cause high glucose and insulin levels in 
rats, indicating that the rats were suffering from a glucose 

metabolic disease. The disruption in the JAK2/STAT3/
SOCS3 pathway is the cause of this problem (Xu et al. 
2018). EDCs that interact with the endocrine (or hormonal) 
system, such as DEHP, have been linked to the obesity 
epidemic (Wassenaar and Legler 2017; Veiga-Lopez et al. 
2018). Abnormal lipid levels in the blood, such as LDL-
C, HDL-C, TG, and TC, are referred to as lipid metabolic 
disorder (Fulcher et al. 2015). In vitro and in vivo studies 
have shown that DEHP and its primary metabolite MEHP 
change serum lipids (Wang et al. 2019), EDCs that interact 
with the endocrine (or hormonal) system, such as DEHP, 
have been linked to the obesity epidemic (Wassenaar and 
Legler 2017; Veiga-Lopez et al. 2018). In the DEHP-treated 
group, we found an increase in triglycerides and VLDL but 

Fig. 3  Effect of different 
treatments on malondialdehyde 
(MDA) and SOD levels. Control 
(corn oil); DEHP (100 mg/kg 
body weight in corn oil); DEHP 
(100 mg/kg body weight in corn 
oil) + vitamin C (100 mg/kg 
body weight in distilled water); 
a, control vs. DEHP; b, DEHP 
vs DEHP + vitamin C. Data 
is expressed as mean ± SEM 
values. ****p < 0.0001, 
***p < 0.001, **p < 0.01 (n = 6)
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Fig. 4  Effect of different 
treatments on interleukin-6 
(IL-6) levels. Control (corn 
oil); DEHP (100 mg/kg body 
weight in corn oil); DEHP 
(100 mg/kg body weight in corn 
oil) + vitamin C (100 mg/kg 
body weight in distilled water); 
a, control vs. DEHP; b, DEHP 
vs DEHP + vitamin C. Data 
is expressed as mean ± SEM 
values. ****p < 0.0001, 
***p < 0.001 (n = 6)
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a decrease in total cholesterol and HDL. Kwack et al. (2009) 
and Yu et al. (2021), on the other hand, came up with a 
different conclusion. They discovered that the DEHP group’s 
blood levels of LDL-C and TC were considerably higher 
than the control group, implying that DEHP exposure for 
23 weeks could cause lipid metabolic disorder in rats. This 
outcome was also consistent with earlier studies (Jia et al. 
2016). Researchers included reported the raising effects of 
DEHP and MEHP exposure on TG in a systematic analysis 
of early life DEHP exposure and obesity-related outcomes 
in animals (Wassenaar and Legler 2017). Furthermore, our 
findings revealed an elevated level of total protein in serum, 
which is corroborated by Miura et al. (2007), who discovered 
an increase in total protein, ALP, and GPT in DEHP-treated 
mice, indicating dehydration and hepatic insufficiency. 
Our results experimental results indicated a significant 
reduction in glucose, triglycerides, and very-low-density 
lipoproteins (VLDL) in the DEHP + vitamin-C treatment 
group. This conclusion is backed up by studies that show 
vitamin C decreases blood cholesterol and triglycerides 
in humans (Sokoloff et al. 1967). Furthermore, vitamin C 
has been shown to affect glucose metabolism via altering 
glucose metabolites (Park et al. 2018). Even McRae (2008) 
demonstrated that taking at least 500 mg of vitamin C per 
day for at least 4 weeks can result in a considerable reduction 
in blood LDL cholesterol and triglyceride levels. However, 
there was no statistically significant increase in serum HDL 
cholesterol.

In our experiment, we detected a drop in total RBC 
count, total WBC count, and hemoglobin levels when 
focusing on the hematological modifications induced by 
DEHP exposure. David et al. (2000) observed hematologi-
cal changes such as decreased erythrocyte count, hemo-
globin, and hematocrit level, which were similar to our 
findings. Kwack et al. (2009) also discovered that DEHP-
treated rats had significantly lower red blood cell (RBC) 
and hematocrit (Ht) levels while having significantly higher 
mean corpuscular hemoglobin (MCH), mean corpuscular 
hemoglobin concentration (MCHC), and platelet (PLT) 
levels. Erythrocytes are particularly vulnerable to DEHP-
induced ROS and oxidative damage due to their high iron 
and PUFA content (Bulle et al. 2017). By lipid peroxida-
tion of membrane PUFAs, free radicals such as ROS can 
directly damage erythrocyte membranes (Bulle et al. 2017). 
Vitamin C is a water-soluble vitamin and coenzyme whose 
insufficiency has been linked to the aging of several cells 
and tissues (Camarena and Wang 2016). In both in vivo 
and in vitro experiments, it has been shown to reduce vas-
cular dysfunction in a variety of illnesses (Oudemans-van 
Straaten et al. 2014). Vitamin-C supplementation improves 
mesenchymal stem cell (MSC) proliferation and metabolism 
through activating mitochondria (Fujisawa et al. 2018). The 
delivery of vitamin C to the mice had a good overall effect 

on the numerous parameters studied, indicating that it can 
be useful for drug toxicity studies and studying the long-
term effects of pharmaceuticals. In addition, the current 
study suggests that increasing vitamin-C intake may have 
hematological benefits. The outcomes of DEHP + vitamin C 
in our study showed that total RBC count, total WBC count, 
and hemoglobin levels were successfully restored.

According to our blood serum results, DEHP admin-
istration resulted in a considerable increase in the levels 
of serum ALP, ACP, and ALT and a drop in the level of 
AST, implying that DEHP may induce liver injury. In addi-
tion, one study confirmed that DEHP-treated mice showed 
signs of liver disease, including higher ALT and ALP lev-
els. These findings were in line with the prior research, in 
comparison with the control group. Aydemir et al. (2018) 
found a significant increase in ALT and AST levels in DEHP 
treatment group. ALT and AST activities were measured in 
serum samples as a biochemical marker that could indicate 
liver injury at the conclusion of the experiment. Serum ami-
notransferases are sensitive markers of hepatocellular injury, 
and elevated levels of AST and ALT enzymes in the serum 
can detect acute and chronic liver disease before symptoms 
appear (Fraga 2005). DEHP and its metabolites are biochem-
ically processed mostly in the kidney and liver. As a result, 
DEHP metabolism may have chemically induced toxicologi-
cal effects on the liver and kidney at a higher degree. AST 
is present in numerous organs, including the liver, cardiac 
muscle, skeletal muscle, and erythrocytes, whereas ALT is 
found mostly in the liver. These two enzymes’ enzymatic 
activity are markers of parenchymal hepatocyte proliferative 
damage (Sekas and Cook 1979). Vitamin-C supplementation 
reduces the damage of hepatocytes and erythrocytes and aids 
in the rehabilitation of postoperative liver function. Vitamin 
C, we believe, may play an indirect effect in the reduction 
of hepatic markers of parenchymal hepatocyte proliferation 
(Hamden et al. 2009; Zaldi et al. 2005). Vitamin C inhibits 
lipid peroxidation and suppresses the activation of serum 
AST and ALT. Our findings in the DEHP + vitamin-C group 
indicated a promising reversal of ACP, ALP, ALT, and AST 
levels that were close to control.

In tissues, oxidative stress is defined as the production 
of reactive oxygen species (ROS) and/or a decrease in the 
quantity of endogenous antioxidants. As a result, success-
ful techniques to boost intracellular antioxidant defenses in 
tissues may aid in liver injury prevention. Antioxidants are 
necessary for preventing free radical damage to cells. Vita-
mins E and C are antioxidants that protect the body from 
the oxidative damage produced by free radicals. Oxidative 
stress has been proposed as a coexisting pathogenic process 
that has a role in the onset and progression of liver injury. 
Increased peroxidation of membrane lipids is reflected by a 
rise in testicular MDA levels accompanied by a decrease in 
antioxidant defense mechanisms. DEHP-induced increases 
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in testicular MDA show that this EDC compromises tes-
ticular function by causing oxidative stress. Important tes-
ticular activities like steroidogenesis and gametogenesis 
were harmed as a result of the oxidative stress (Choi et al. 
2018). In the rat testes, Kasahara et al. (2002) found that oral 
administration of DEHP increased the formation of reac-
tive oxygen species (ROS)  (O2− and  H2O2) with simultane-
ous reductions in glutathione and ascorbic acid. According 
to one study, DEHP additionally causes oxidative stress in 
granulosa cells by boosting ROS production and inhibiting 
steroid synthesis by altering the expression of steroidogenic 
response genes; it also causes apoptosis by activating the 
Bax/Bcl-2 and caspase-3-mediated mitochondrial apop-
totic pathway (Tripathi et al. 2019). DEHP causes oxidative 
stress in the ovaries and changes ovarian function, resulting 
in female reproductive damage. The particular mechanism 
underlying DEHP’s harmful effects, on the other hand, is 
mostly unknown. To evaluate the damage produced by ROS, 
the MDA, SOD, and IL-6 concentration were determined 
in mice treated with DEHP and DEHP + vitamin C. After 
DEHP exposure in our study, oxidative stress and inflam-
mation increased, as expected. The levels of MDA and IL-6 
were found to be increased, and levels of SOD were detected 
to be reduced in DEHP-treated group as compared to con-
trol group. As a result, it can be concluded that oxidative 
stress in the ovary and systemic inflammation could be the 
primary causes of female reproductive toxicity. Our results 
are supported by Fu et al. (2021). Moreover, the results 
of DEHP + vitamin-C treatment group showed improving 
effects on levels of MDA, SOD, and IL-6 which touched 
nearly the level of control group.

The return of all biochemical, hematological, enzymo-
logical, oxidative stress and inflammatory parameters taken 
into consideration, to approximate control levels, appeared 
to be related to vitamin C, antioxidant supplementation in 
DEHP-treated animals, although the precise mechanisms 
remained to be determined.

Conclusion

The treatment of the mice with vitamin C indicates an over-
all positive effect on the various parameters taken into con-
sideration, so it is evident that the administration of vitamin 
C can be helpful for reversal of DEHP toxicity.
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