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Abstract: Screening of foodborne pathogens is an effective way to prevent microbial food poisoning.
A microfluidic biosensor was developed for rapid and sensitive detection of Salmonella Typhimurium
using quantum dots (QDs) as fluorescent probes for sensor readout and manganese dioxide
nanoflowers (MnO2 NFs) and as QDs nanocarriers for signal amplification. Prior to testing,
amino-modified MnO2 nanoflowers (MnO2-NH2 NFs) were conjugated with carboxyl-modified QDs
through EDC/NHSS method to form MnO2-QD NFs, and MnO2-QD NFs were functionalized with
polyclonal antibodies (pAbs) to form MnO2-QD-pAb NFs. First, the mixture of target Salmonella
Typhimurium cells and magnetic nanoparticles (MNPs) modified with monoclonal antibodies (mAbs)
was injected with MnO2-QD-pAb NFs into a microfluidic chip to form MNP-bacteria-QD-MnO2

complexes. Then, glutathione (GSH) was injected to dissolve MnO2 on the complexes into Mn2+,
resulting in the release of QDs. Finally, fluorescent intensity of the released QDs was measured
using the fluorescent detector to determine the amount of Salmonella. A linear relationship between
fluorescent intensity and bacterial concentration from 1.0 × 102 to 1.0 × 107 CFU/mL was found with a
low detection limit of 43 CFU/mL and mean recovery of 99.7% for Salmonella in spiked chicken meats,
indicating the feasibility of this biosensor for practical applications.

Keywords: Microfluidic biosensor; manganese dioxide nanoflowers; quantum dots; magnetic
nanoparticles; Salmonella Typhimurium

1. Introduction

Food safety has become one of the most important issues in the world. Foodborne
pathogenic bacteria are the main cause of foodborne illnesses, including Escherichia coli O157:H7,
Listeria monocytogenes, and Salmonella etc. At present, available methods for detecting these bacteria
include culture plating, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction
(PCR), etc. However, they either require a long time, need professional operation, or lack sensitivity.
Therefore, simple, fast and sensitive methods for pathogenic bacteria detection are needed to ensure
food safety.
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In recent years, various biosensors have been reported for determination of foodborne bacteria,
such as electrochemical [1,2], quartz crystal microbalance [3,4] and surface plasmon resonance [5,6],
etc. They have attracted great attention because of their simple operation, short time, miniaturized
size, and high sensitivity. Optical biosensors mainly rely on the measurement of absorbance [7,8],
fluorescence [9,10] or Raman scattering [11,12]. Among them, fluorescent biosensors have shown their
characteristics of contactless detection, high sensitivity, and inexpensive instrumentation. To date,
many fluorescent materials have been employed to develop various fluorescent biosensors, including
organic dyes [13,14], up-converting nanoparticles [15,16] and fluorescent microspheres [17,18], etc.
As is well known, quantum dots (QDs) are an excellent fluorescent probe with the advantages of
wide excitation range, strong fluorescent signal and long fluorescent lifetime, and are often used for
fluorescent biosensing [19–21].

To make better use of QDs, they are often combined with other functional nanomaterials, such
as Graphene and TiO2, to improve the sensitivity [22,23]. As an easy-to-synthesize and non-toxic
nanomaterial with high specific surface area, manganese dioxide nanoflowers (MnO2 NFs) have
been used to develop biosensors for detection of different targets, such as Tumor cells, GSH and
glucose [24–26]. Besides, MnO2 can be easily reduced to Mn2+ using glutathione (GSH) [27], H2O2 [28],
thiocholine [29], etc., resulting in decomposition of MnO2 NFs.

In the past decades, microfluidic chips have drawn numerous attentions in biochemical analysis
field due to high integration, complete automation and small size [30,31], and have been applied
for detecting tumor cells [32], proteins [33] and pathogens [34–37], etc. An interesting study was a
microfluidic chip containing a passive micromixer with triangular baffles and circular obstructions,
which was demonstrated with a high mixing index of 0.99 under optimal conditions [38]. Therefore,
the combination of QDs labeling, MnO2 decomposition and microfluidic chip might be a promising
method to detect foodborne pathogens with higher sensitivity, easier operation and shorter time.

In this study, we developed an optical biosensor using QDs for fluorescent labeling, MnO2 NFs
for signal amplification, and microfluidic chip for automatic operation to rapidly and sensitively
determine Salmonella Typhimurium. As shown in Scheme 1, the bacterial sample was first injected with
MnO2-QDs-pAb NFs and magnetic nanoparticles (MNPs) modified with monoclonal antibody against
Salmonella Typhimurium into the microfluidic chip. Then, the MNP-bacteria-QD-MnO2 complexes
were formed after efficient mixing and sufficient incubation. After the complexes were captured in the
separation chamber using the external magnetic field, GSH was finally injected into the chamber to
decompose the MnO2 NFs into Mn2+ for releasing the QDs, whose fluorescent intensity was measured
by the optical detector to determine the amount of the Salmonella cells.
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Scheme 1. (a) The schematic of the microfluidic chip; (b) The principle of the fluorescent biosensor for
rapid and sensitive detection of Salmonella Typhimurium.

2. Materials and Methods

2.1. Materials

Phosphate buffered saline (PBS, 10 mM, pH 7.4) from Sigma Aldrich (St. Louis, MO,
USA) was used as a buffer solution. KMnO4 from Sinopharm chemical (Beijing, China), and
HCl and polyvinylpyrrolidone (PVP) from Sigma Aldrich (St. Louis, MO, USA) were used to
synthesize MnO2 NFs. (3-aminopropyl) triethoxysilane (APTES) from Aladdin (Shanghai, China)
was used to modify MnO2 NFs with amino groups. The carboxylated CdSe/ZnS core/shell QDs
(emission wavelength: 651 nm, concentration: 1 µM) from Mesolight (Suzhou, China) were
used as fluorescent probes. The monoclonal antibodies against Salmonella (mAbs, 1 mg/mL)
from Meridian (Memphis, TN, USA) and the polyclonal antibodies against Salmonella (pAbs,
2.5 mg/mL) from Fitzgerald (Acton, MA, USA) were used to specifically recognize the Salmonella
Typhimurium cells. N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC·HCl) and
N-Hydroxysulfosuccinimide sodium (NHSS) from Sigma Aldrich (St. Louis, MO, USA) were used to
prepare theMnO2-QD-pAb NFs. The biotin labeling kit from Elabscience (Wuhan, China) was used
to biotinylate the mAbs. The streptavidin-modified MNPs with diameters of 150 nm from Ocean
Nanotech (MHS-150-10, San Diego, CA, USA) were used to magnetically separate the Salmonella cells.
Bovine serum albumin (BSA) from Coolaber (Beijing, China) was used for blocking. Luria-Bertani (LB)
medium from Aoboxing Biotech (Beijing, China) was used for bacterial culture. The silicone elastomer
kit (Sylgard 184) from Dow Corning (Midland, MI, USA) was used to fabricate the poly (dimethoxy)
silane (PDMS) channel. The Objet24 3D printer from Stratasys (Eden Prairie, MN, USA) was used
to fabricate the mold of the channel. The NdFeB magnets (grade: N52) bought locally were used to
generate the external magnetic field. Deionized water produced by Advantage A10 from Millipore
(18.2 MΩ·cm, Billerica, MA, USA) was used to prepare all the solutions.

2.2. Design and Fabrication of the Microfluidic Chip

The design of the microfluidic chip with the convergence-divergence mixing channel was inspired
by a previous report [37]. The microfluidic chip mainly consisted of three parts: (1) the mixing channel
with the structure of convergence-divergence with a width of 1 mm and height of 400 µm for mixing the
bacterial sample with the MNPs and the MnO2-QD-pAb NFs; (2) the incubating channel with the same
width and height for forming the MNP-bacteria-QD-MnO2 complexes; and (3) the separation chamber
with a length of 11 mm, width of 3 mm and height of 1 mm for capturing the MNP-bacteria-QD-MnO2

complexes with the external magnetic field and reducing MnO2 NFs into Mn2+ with GSH.
The microfluidic chip was fabricated based on 3D printing and surface plasma bonding. As

shown in Scheme 1b, the 3D mold was drawn in stl format using the Solidworks software (Dassault
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Systèmes SolidWorks Corporation, Waltham, MA, USA) and printed by the Objet24 3D printer. Prior
to use, the mold was thoroughly washed by deionized water to remove residual supporting materials.
The prepolymer of PDMS and the curing agent were mixed at the ratio of 10:1 and poured into the
mold, followed by curing at 65 ◦C for 12 h after degassing for 15 min in vacuum to remove bubbles.
The PDMS replica was peeled off and bonded onto the glass slide to form the microfluidic chip after
surface plasmon treatment (Harrick Plasma, Ithaca, NY, USA) and baked at 65 ◦C for aging to finally
obtain the microfluidic chip.

2.3. Synthesis of the MnO2-QD-pAb NFs

The MnO2-QD-pAb NFs were synthesized based on our previous study [39]. First, 10 mg of
MnO2 NFs were centrifuged at 10,000 rpm for 10 min to remove the supernatant and resuspended
with 2 mL of ethanol. Then, 1 mL of APTES was added and incubated at 37 ◦C with gentle stirring for
12 h to obtain NH2-MnO2 NFs in deionized water. After 5 µL of QDs (1 µM), 48 µL of EDC (1 mg/mL)
and 11 µL of NHSS (1 mg/mL) were transferred into a centrifuge tube containing 1 mL of PB (pH 6.0,
0.01 M) and incubated for 1 h, 700 µL of NH2-MnO2 NFs (1 mg/mL) were added and incubated for
2 h at room temperature, followed by centrifugation to obtain the MnO2-QD NFs. Finally, 14 µL of
polyclonal antibodies (2.5 mg/mL) and 500 µL of MnO2-QD NFs (1 mg/mL) were incubated with
10 µg of EDC (1 mg/mL) for 30 min, and 210 µL of 10% BSA (w/v) and 30 µL of EDC were added and
incubated for another 1 h, followed by centrifugation and resuspending in 500 µL of PB containing 1%
BSA to obtain the MnO2-QD-pAb NFs, which were stored at 4 ◦C for further use.

2.4. Detection of the Target Bacteria in Pure Cultures

The detection of the target bacteria was based on the forming of the MNP-bacteria-QD-MnO2

sandwich complexes and the release of the QDs from the MnO2 NFs on the complexes. First,
1 mL of the bacterial culture containing Salmonella Typhimurium at each concentration of
1.0× 102–1.0× 107 CFU/mL was mixed with 20 µg of MNPs modified with monoclonal antibody against
Salmonella Typhimurium and 50 µg of the MnO2-QD-pAb NFs, and injected into the microfluidic chip
through inlet 1 (bacterial culture and MNPs) and inlet 2 (MnO2-QD-pAb NFs) at the flow rate of
25 µL/min using two precise syringe pumps (Pump 11 elite, Harvard Apparatus, Holliston, MA, USA),
respectively. The MNP-bacteria-QD-MnO2 complexes were formed and captured in the separation
chamber by applying the magnetic field generated by two repelling NdFeB magnets at the bottom of
the chamber. Then, 500 µL of PBST (PBS containing 0.05% Tween 20) was injected into the chamber to
remove the residual background and excessive MnO2-QD-pAb NFs. After 100 µL of GSH (20 mM) was
injected to the chamber through inlet 3 and incubated for 15 min to release the QDs from the MnO2

NFs, the released QDs were finally flushed out and measured by the optical detector to determine
the amount of target bacteria. The portable optical detector from Ocean Optics (Dunedin, FL, USA)
consisted of a USB4000-UV-VIS spectrophotometer with a spectral range of 200–850 nm for fluorescence
detection, a USB-LS-450 blue LED pulsed light source for fluorescence excitation, a QR400-7 UV-Vis
optical probe for optical transmission, and a Spectra-Suite software for data analysis.

2.5. Detection of the Target Bacteria in Spiked Samples

The chicken samples were purchased from a local supermarket. First, 25 g of chicken sample
was added into 225 mL of sterile PBS and homogenized (BagMixer, Interscience, Mourjou, France) for
4 min, followed by standing for 5 min to obtain the supernatant. Then, different concentrations of the
Salmonella Typhimurium cells were added into the supernatant to obtain the spiked chicken samples
with bacterial concentrations ranging from 1.0 × 102 to 1.0 × 107 CFU/mL. Finally, the spiked chicken
samples were detected using this biosensor.
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3. Results

3.1. Simulation of the Microfluidic Chip

The micromixer is the key to the microfluidic chip, which has a great impact on the detection
time and sensitivity of this biosensor. COMSOL software (COMSOL Inc., Stockholm, Sweden)
was used to simulate the mixer with a convergence-divergence structure and evaluate its mixing
efficiency. As shown in Figure 1a, the mixing efficiency reaches 50%, 70% and 90%, when the
number of the convergence-divergence structures is 7, 16 and 28, respectively. This indicates that the
convergence-divergence mixer has an excellent mixing efficiency. To ensure complete mixing of MNPs
modified with monoclonal antibody against Salmonella Typhimurium, the MnO2-QD-pAb NFs, and
the target bacteria, 32 convergence-divergence structures and a serpentine incubating channel were
used. As shown in Figure 1b, the microfluidic chip has a length of ~6 cm and width of ~4 cm. To
further verify the mixing efficiency of the chip, red and blue inks were injected into the chip at the same
rate of 25 µL/min. As can be seen from Figure 1b, blue and red inks were fully mixed after flowing
through the mixing channel.
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3.2. Characterization of the MnO2 NFs and MnO2-QD NFs

The MnO2 NFs and their derivates are the key materials of this biosensor. Thus, transmission
electron microscopy (TEM) was used to characterize the MnO2 NFs and MnO2-QD NFs. As shown in
Figure 2a, the MnO2 NFs have many flakes deriving from their backbones, and their average size is
~200 nm. As shown in Figure 2b, there are many small dots with an average size of ~10 nm on the
MnO2 NFs, which is consistent with the size of QDs (see the insert of Figure 2b), indicating successful
synthesis of the MnO2-QD NFs. Besides, to verify the basic concept of this biosensor, the fluorescent
intensities of the MnO2 NFs, the MnO2-QD NFs and the mixture of MnO2-QD NFs and GSH were
measured using the optical detector. Figure 2c shows that only the mixture of MnO2-QD NFs and GSH
has a fluorescent signal due to the decomposition of the MnO2 NFs, resulting in the release of the QDs.
The MnO2 NFs do not have fluorescent signals, indicating that there are only little background noises
from the MnO2 NFs. The MnO2-QD NFs also do not have fluorescent signals since the fluorescence of
the QDs is absorbed and/or blocked by MnO2. To further investigate the release of the QDs from the
MnO2-QD NFs, twofold dilutions of the MnO2-QD NFs were prepared and incubated with 100 µL
of 20 mM GSH for 15 min. The fluorescent intensity of the released QDs was detected and shown in
Figure S1. It shows that there is a good linear relationship between the fluorescent intensity of the
released QDs and the concentration of the MnO2-QD NFs.
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Figure 2. (a) The TEM image of the MnO2 NFs; (b) The TEM image of the MnO2-QD NFs. The inset is
the TEM image of the QDs; (c) The fluorescent spectra of the QDs, MnO2 NFs, MnO2-QD NFs, and the
mixture of the MnO2-QD NFs and GSH.
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3.3. Optimization of the Microfluidic Biosensor

The amount of QDs, the amount of MnO2-QD-pAb NFs, and the flow rate have a great impact on
the sensitivity of this microfluidic biosensor. The detailed procedures for their optimization can be
found in the Supplementary Materials. As shown in Figure S2, the optimal amount of 50 pmol for the
QDs, the optimal amount of 50 µg for the MnO2-QD-pAb NFs, and the optimal flow rate of 25 µL/min
could be obtained and were used in this study.

3.4. Simulation of the Magnetic Field

The magnetic field for capturing the MNP-bacteria-QD-MnO2 complexes in the separation
chamber is important in the development of this biosensor. To better investigate the distribution of
the magnetic field in the microfluidic chip, the Finite Element Method Magnetics (FEMM) Software
(Developed by David Meeker, and available from the website: http://www.femm.info/) was used
to simulate the magnetic field generated by two repelling magnets (material: NdFeB, grade: N52,
dimension: 9 × 4 × 2 mm). Figure 3a shows the distribution of the magnetic field at the chip. The
strength of the magnetic field in the separation chamber changes from 0.10 T to 0.26 T at the vertical
horizontal direction (Point 2 to 1, Figure 3b) and from 0.25 to 0.39 T at the horizontal direction (Point 2
to 3, Figure 3c), which was strong enough to capture the MNPs with the size of 150 nm. Besides, to
check if the magnetic field has an impact on the MNPs and their conjugates when they flowed through
the incubation channel, the strength of the magnetic field at the horizontal direction from the right
magnet was obtained from FEMM simulation. As shown in Figure 3d, the strength of the magnetic
field at the closest position (point B) of the incubation channel is only 0.05 T, which is not strong enough
to capture the flowing MNPs or their conjugates [40]. To further verify this, 20 µg of the MNPs in 1 mL
of PBS were injected into the chip with the flow rate of 25 µL/min. As shown in Figure S3, when the
magnetic field is applied, almost all MNPs are captured in the separation chamber other than in the
incubation channel.
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Figure 3. (a) The distribution of the magnetic field; (b) The strength of the magnetic field in the
separation chamber at the vertical direction; (c) The strength of the magnetic field in the separation
chamber at the horizontal direction; (d) The strength of the magnetic field from the separation chamber
to the incubation channel.
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3.5. Calibration Model of This Biosensor

The calibration model of this biosensor is the basis for quantitative determination of unknown
concentrations of target bacteria. Different concentrations of the Salmonella Typhimurium cells ranging
from 1.0 × 102 CFU/mL to 1.0 × 107 CFU/mL were detected using this biosensor under optimal
conditions. As shown in Figure 4a, the fluorescent intensity at the characteristic wavelength of
661 nm increases from about 200 counts to about 700 counts when the bacterial concentration changes
from 102 CFU/mL to 107 CFU/mL. As shown in Figure 4b, a good linear relationship between the
fluorescent intensity (I) at 661 nm and the bacterial concentration (C) is found and can be expressed as
I = 41.107 ln(C) − 1.221 (R2 = 0.984). Based on three times the signal-to-noise ratio, the low detection
limit of this biosensor was calculated to be 43 CFU/mL. To further confirm the formation of the
MNP-bacteria-MnO2-QD complexes, transmission electron microscope was conducted and the image
is shown in Figure 4c, indicating successful formation of the complexes. The high sensitivity of this
biosensor could be attributed to these reasons: (1) the high load of the MnO2 NFs with the QDs,
resulting in stronger fluorescent signals; (2) the effective release of the QDs by GSH into aqueous
solution, resulting in much less absorption of the fluorescence by the MnO2 NFs and no blocking of the
fluorescence; (3) the good control of the background noise by automatic operations and continuous-flow
washing in the microfluidic chip, resulting in less background noise; (4) the efficient concentration of
the MNP-bacteria-MnO2-QD complexes in the separation chamber by the magnetic field, resulting in
stronger fluorescent signals.
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1.0 × 102 CFU/mL to 1.0 × 107 CFU/mL; (b) The linear relationship between the fluorescent intensity
and the bacterial concentration; (c) The TEM image of the MNP-bacteria-MnO2-QD complexes.

3.6. Applicability of This Biosensor

To evaluate the applicability of this biosensor for detection of Salmonella Typhimurium in food
samples, chicken meats were purchased from the local supermarket and used as a real sample model.
Prior to testing, 25 g of a chicken meat was added into 225 mL of PBS to obtain the supernatant.
Different concentrations of target Salmonella Typhimurium cells were added into the supernatant
to prepare the spiked chicken samples with the bacterial concentrations ranging from 1.0 × 102 to
1.0 × 107 CFU/mL, which were detected by this biosensor. As shown in Figure 5a, there are only slight
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differences on the fluorescent intensity between the spiked chicken sample and the pure culture at
each concentration, which are mainly caused by non-specific binding of the impurities in the spiked
samples. The recoveries (the ratio of the readout of the biosensor to the original concentration) for the
concentrations from 1.0 × 102 to 1.0 × 107 CFU/mL were 111.5%, 104.0%, 90.6%, 94.7%, 105.0%, and
92.6%, respectively, and the mean recovery was 99.7%, verifying the applicability of this fluorescent
biosensor for detection of Salmonella Typhimurium in real samples.
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of L. monocytogenes, E. coli O157:H7, S. aureus, B. cereus, and S. Typhimurium at the same concentration
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The specificity of this biosensor was evaluated using L. monocytogenes, E. coli O157:H7, S. aureus
and B. cereus as non-target bacteria. The negative control (PBS) and the same concentration
(1.0 × 105 CFU/mL) of the target and non-target bacteria were detected using this biosensor. As
shown in Figure 5b, it was obvious that the fluorescent intensity of the target bacteria is much higher
than those of the non-target bacteria, which are close to that of the negative control, indicating that this
biosensor has a good specificity. This could be attributed to the good specificity of the monoclonal and
polyclonal antibodies against the target bacteria.

4. Conclusions

In summary, a microfluidic biosensor using MNPs for separation and enrichment, QDs for
fluorescent labeling, MnO2 NFs for signal amplification, and GSH for QDs release was successfully
developed for rapid and sensitive detection of Salmonella Typhimurium. Under the optimal conditions,
this biosensor had a wide linear detection range from 1.0 × 102 to 1.0 × 107 CFU/mL and was able
to detect Salmonella Typhimurium as low as 43 CFU/mL in spiked chicken meats. The MnO2 NFs
were demonstrated to have high specific surface area to load more QDs for signal amplification to
improve the sensitivity of the biosensor. More importantly, this biosensor integrated the mixing,
immune reaction, magnetic separation, and QDs release onto one single microfluidic chip, which
was promising for in-field applications in foodborne pathogen detection. This biosensor also has the
potential to be extended for the detection of other foodborne pathogens by changing the biological
recognition elements.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/3/281/s1,
Figure S1: The fluorescence of the released QDs on 2-fold dilutions of the MnO2-QD NFs, Figure S2: (a) Optimization
of the amount of the QDs; (b) Optimization of the amount of the MnO2-QD-pAb NFs; (c) Optimization of the
flow rate, Figure S3: (a) Difference in separation chamber with or without magnets; (b) The color of supernatant
of MNPs, suspended MNPs after separating and original MNPs. Procedure 1: Preparation of the bacteria,
Procedure 2: Preparation of the MnO2 NFs.
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