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A B S T R A C T

In order to integrate mole balances (partial differential equations) of an Axial Dispersion Plug Flow Reactor
(ADPFR) model, the overall superficial velocity is usually considered constant, a hypothesis which fits well only
null or negligible variations of volumetric flow rate, e.g. feeding flow strongly diluted by inert species. This work
proposes a numerical-integration approach (based on the method of lines) for ADPFR dynamic modelling, applied
to simulate the CO2 capture in an isothermal-isobaric packed bed, made of purposely synthesized and experi-
mentally characterized CaO-mayenite sorbent particles. This approach proved to be suitable for both constant and
variable superficial velocity with respect to time and space. With the latter option, velocity profiles agreed with
simulated reactive phenomena, while discrepancies between solutions from the two options became increasingly
evident as dilution of inlet CO2 decreased. N2 flow rate and CO2 mole balances obtained from numerical-
integrations with variable superficial velocity appeared as the most physicochemically reasonable.
1. Introduction

In chemical reactors engineering, the introduction of axial dispersion
is a recognized tool to implement real flow conditions in an ideal Plug
Flow Reactor (PFR) model, which assumes fluid molecules to have a flat
velocity profile at any given position along the tubular reactor axis, i.e.
no element of fluid overtakes or mixes with any other element ahead or
behind [1, 2, 3]. Nonideality brought in by axial dispersion consists of
considering mixing and diffusion within the fluid, along the axial di-
rection: eddies and slippage occur a considerable number of times while
fluid flows through the reactor, therefore these disturbances with respect
to ideal plug flowmay be considered as statistical in nature, somewhat as
in molecular diffusion [3]. In the resulting Axial Dispersion Plug Flow
Reactor (ADPFR) model, for each fluid species i, axial dispersion is
superimposed on its bulk flow u⋅S⋅Ci, by a form in analogy with Fick's law
for molecular diffusion –DR(∂Ci/∂z)⋅S (see Table 1 for the menaning of
symbols used in this paper) [1, 2, 3]. The resulting molar flow rate of i in
an ADPFR is defined as in Eq. (1) [1].
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∂z þ uCi

�
(1)

Concentration profiles inside a PFR and an ADPFR are compared in
Fig. 1: in the former (Fig. 1 a), at a given axial position each molecule
moves exactly at the same velocity, developing a flat front on cross-
sectional area S (i.e. the plug flow); in the latter (Fig. 1 b), some mole-
cules jump forward, ahead of the molar average velocity front, while
others lag behind, developing a non-uniform actual velocity front on S
[1].

When Eq. (1) is introduced in the dynamic mole balance for i in a
tubular reactor – in which i reacts with the rate ri – Eq. (2) is obtained,
defining the general ADPFR mole balance in unsteady state:

∂Ci

∂t ¼DR
∂2Ci

∂z2 � ∂ðuCiÞ
∂z þ ri (2)

In Eq. (2), both factors in the first-order derivative with respect to z
are functions of z and t, in principle. Nonetheless, as often done in
chemical reaction engineering textbooks [1, 3], the implicit assumption
019
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Table 1
Notation.

Acronyms

ADPFR Axial Dispersion Plug Flow Reactor
BC Boundary Condition(s)
CBN Carbonation
CSCM Combined Sorbent-Catalyst Material(s)
IC Initial Condition(s)
ICDD International Centre of Diffraction Data
MOL Method Of Lines
ODE Ordinary Differential Equation(s)
PDE Partial Differential Equation(s)
PDF Powder Diffraction Files data
PFR Plug Flow Reactor
PGM Particle Grain Model
SESMR Sorption-Enhanced Steam Methane Reforming
TGA Thermo-Gravimetric Analysis
XRD X-Ray Diffraction

Symbols

a parameter in Equation 15, dimensionless
b parameter in Equation 15, dimensionless
C molar concentration, kmol m-3

C(K) constant coefficients defined in Table 3 with (K) ¼ 1, 2, 3, 4, 5
D molecular diffusion coefficient, m2 s-1

dp particle diameter, m
DPL product layer diffusivity coefficient, m2 s-1

DR axial dispersion coefficient, m2 s-1

DKnu Knudsen diffusivity, m2 s-1

F molar flow rate, kmol s-1

h mass transfer coefficient, m s-1

H height of the active packed bed, m
I number of discretized steps in t*, dimensionless
J number of discretized steps in z* direction, dimensionless
kS kinetic constant for surface reaction, m4 kmol-1 s-1

m mass, kg
M molecular weight, kg kmol-1

nCaO CaO moles per unit particle volume, kmol m-3

O(xk) error of order k with respect to the variable x
P pressure, atm
R particle radius, m
ℛ ideal gas constant, kJ kmol-1 K-1

r particle radial coordinate, m
r rate of reaction, kmol m3 s-1

S reactor cross-sectional area, m2

T temperature, K
t time, s
u superficial velocity, m s-1

v molar volume, m3 kmol-1

V overall volume, m3

w weight fraction, dimensionless
X sorbent conversion, dimensionless
y molar fraction, dimensionless
z reactor axial coordinate, m

Greek letters

α parameter in Equation 14, dimensionless
Γ sorption capacity, gCO2 g calcined material

-1

Δ difference
δCaO CaO grain diameter, m
ε packed bed void fraction, dimensionless
εp internal particle void fraction, dimensionless
ζ CaCO3/CaO molar volumes ratio, dimensionless
ρ density, kg m-3

σCaO CaO grain surface per unit of particle volume, m-1

τ characteristic time, s

Subscripts and superscripts

(i) progressive index of discretized steps on z*
0 initial
b packed bed
CaO calcium oxide
eff effective
eq equilibrium
fin final
i generic chemical species
in inlet
(j) progressive index of discretized steps on t*

Table 1 (continued )

out outlet
p particle
tot total
* dimensionless
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is considered of constant superficial velocity, obtaining Eq. (3):

∂Ci

∂t ¼DR
∂2Ci

∂z2 � u
∂Ci

∂z þ ri (3)

This simplified form of ADPFR mole balance (Eq. (3)) usually appears
in modelling studies for tubular reactors [1, 3, 4, 5, 6, 7] or fluidized beds
reactors (especially in two-phase modelling of turbulent fluidization) [8,
9, 10, 11, 12, 13, 14, 15]. However, even at constant temperature and
pressure, when chemical reactions cause an overall variation of molar
flow, as far as gaseous media are concerned, applicability of Eq. (3) is
limited to reacting species i sufficiently diluted in inert gases; in fact, the
overall molar flow rate and superficial velocity do not vary markedly in
these conditions, independently on species i conversion. This could not
be the case of industrial reactors, where reactants dilution may be
avoided so to contain operating and construction costs. A similar issue
was posed in studies about non-isothermal and non-isobaric fluidized bed
industrial reactors, considering the variations of the overall superficial
velocity along the reactor height, which can influence fluidization quality
[16].

These observations pose an interesting problem about modelling of
chemical reactors, since the mathematical differences between ADPFR
mole balances which consider (Eq. (2)) or not (Eq. (3)) a variable su-
perficial velocity may determine the success or failure of a given
numerical-integration method, when applied to the related model. Fro-
ment [17], in his relevant study about modelling of packed bed reactors,
had already referred as a serious problem the numerical integration of
nonlinear, second-order Partial Differential Equations (PDE) as Eqs. (2)
and (3), because of mathematical stability of the solution [17]. To the
best of our knowledge, the issue of ADPFR modelling with variable su-
perficial velocity is just mentioned in well-spread, even recent chemical
reaction engineering textbooks [1, 2, 3], without the bridging approach
used in this work towards numerical applications. In fact, we aimed to
contribute to fill this gap, considering the applicability of a
numerical-integration method for an ADPFR model with the generalized
form of the mole balance on gaseous species i (Eq. (2)), as well as with its
form involving constant superficial gas velocity (Eq. (3)).

The chosen case of study is the CO2 capture from a N2/CO2 stream by
carbonation of CaO (Reaction 1), in a packed bed reactor filled with a
granular CaO-mayenite sorbent, actually synthesized and characterized;
this case is suitable to test the influence of a variable superficial velocity,
as it deals with an unsteady state process in which a gas-solid reaction
causes a decrease of gaseous flow rate:

CBN: CaO(s) þ CO2(g) ↔ CaCO3(s) ΔH0
298 K ¼ - 175.7 kJ mol�1 Reaction 1

Previous publications described the development and validation of a
Particle Grain Model (PGM) to simulate CO2-capture within porous
particles of a CaO-based sorbent [6, 7, 18, 19], and of an ADPFR dynamic
model to simulate Sorption Enhanced Steam Methane Reforming
(SESMR) in a bench scale packed bed made of combined sorbent-catalyst
bifunctional particles [6, 7]. The assumption of constant gas superficial
velocity was made in [6, 7], justified by a large fraction of inert species in
the gas mixture flowing through the reactor in those laboratory tests, and
numerical-integration of the resulting ADPFR dynamic model was per-
formed by “pdepe” tool in MATLAB® [6, 7], developed for
parabolic-elliptic PDE in one dimension [20].

In this work, a different numerical-integration approach is proposed,
since the ADPFR model with superficial velocity as unknown, dependent



Fig. 1. Representation of concentration profiles within a fluid flowing through a tubular reactor: (a) PFR case; (b) ADPFR case.
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function contains PDE with more complex mathematical features: an ad
hoc routine was developed in MATLAB®, based on the Method Of Lines
(MOL) [21]. The structure of ADPFR model and the application of MOL
are fully described in Section 3, commenting both successful and un-
successful numerical-integrations implemented in MATLAB®;. The
working integration algorithm based on MOL is presented (Section 3),
proving that it works with and without the hypothesis of constant su-
perficial velocity by simulations for the chosen case of study (Section 4).
Further insights into physicochemical effects brought about by assump-
tions on superficial velocity are provided (Section 4), by comparing three
process quantities at different inlet CO2 concentrations: outlet CO2 con-
centration, outlet inert flow rate and overall cumulative CO2 mole
balance.

2. Materials and methods

2.1. Description of the case of study

The case of study assumed to apply the numerical-integration method
for the ADPFR dynamic model is the CO2 capture from a N2/CO2 stream.
The test rig and process conditions are those described in [6, 22]: the
packed bed reactor has an internal diameter of 7 mm, contains 0.5 g of
particles with diameters in the range 100–125 μm, is fed with 20 Nml
min�1 of a mixture of CO2 in N2. The process occurs at constant pressure
and temperature: 1 atm and 650 �C, respectively.

2.2. Experimental methods

An actual CaO-mayenite material – synthesized by the wet mixing
method validated in [23, 24] – was assumed as the CO2 sorbent of the
ADPFR modelling study. From here on, this material is named CaOMAY.

All the physicochemical properties needed as inputs for the modelling
study were experimentally measured. Particle density and porosity (i.e.
void fraction) of the calcined sorbent were determined by GEOPYC 1360
and ACCUPYC 1330 devices, respectively, as done in [7]. Crystalline
phases were identified by X-Ray Diffraction (XRD) and crystallites
average dimensions of detected phases were estimated by Scherrer
equation [23, 25, 26], according to methods fully described elsewhere
[23].

A long-term CO2 capture test was carried out on CaOMAY by Thermo-
Gravimetric Analysis (TGA) measurements, according to the same
method and by means of the same device described in [27] (capture
conditions: 1 atm, 650 �C, 15 vol% CO2 in N2): sample mass variation
(Δm(t)) with respect to totally calcined sample mass (m0) was recorded
during the whole test duration (7 h), so to determine actual maximum
sorption capacity of CaOMAY (Γ ¼ Δm(7 h)/m0) and the related CaO
conversion as a function of time (X ¼ Δm(t)/(Γ m0)).

2.3. Carbonation kinetics and TGA data fitting by PGM

The PGM detailed by Di Giuliano et al. [7] (Table 2), deriving from [6,
7, 18, 19], was used in this work to interpret the behaviour of CaOMAY
3

with regard to carbonation (Reaction 1), on the basis of TGA experi-
mental data.

The PGM is based on the following considerations: (i) the sorbent
particle is pictured as an aggregate of spherical grains made of inert
(mayenite) or sorbent (CaO) materials, with interstitial voids consti-
tuting the particle porosity (εp0); (ii) each of these particles is exposed to
a stagnant CO2/N2 atmosphere (Eq. (6)), with CO2 moving through
particle pores by diffusion (Eqs. (5), (14)); (iii) CO2 reacts with CaO at
the sorbent grain surface (Eq. (4)), so that a shell of CaCO3 grows on
that shrinking core of CaO; (iv) this product layer, becoming progres-
sively more thick and compact as CaO conversion increases, is pene-
trated with greater resistance by CO2 directed towards the reacting
surface of CaO shrinking core (Eq. (15)); (v) internal porosity decreases
as the CaO conversion increases, because of the ratio of CaCO3 molar
volume to CaO one (ζ ¼ 2.18 in Eq. (7)). By virtue of these hypotheses,
the whole sorption mechanism is modelled by the shrinking core
approach applied to CaO grains, according to the first-order surface
reaction kinetics by Bhatia and Perlmutter [28] and with a product layer
diffusion coefficient decreasing exponentially as a function of CaO
conversion (Eq. (15)) [18]; the resulting rate for carbonation (Reaction
1) is defined in Eq. (13) [7].

More in detail, the PGM described in Table 2 was used in order to find
values of parameters a, b and δCaO

0 (Eq. (13), (15)), able to make the PGM
output fit faithfully the experimental carbonation data from CaOMAY
TGA test, both expressed as CaO conversion as a function of time (X). On
the basis of findings and experimental validations from Di Giuliano et al.
[7] and Aloisi et al. [6], these parameters can be reasonably used to
simulate the behaviour of CaOMAY in an ADPFR carrying out carbon-
ation (Reaction 1).

Values of a, b and δCaO
0 , together with data from experimental char-

acterization described in Section 2.2, complete the information set
needed to describe CaOMAY in the ADPFR dynamic reactor model.

3. Model

As far as a steady state PFR with gaseous species is concerned, the
usual approach to compile mole balances consists of using molar flow
rates Fi as unknown functions of z and t [1].

With ADPFR modelling, because of the definition of Fi in Eq. (1) and
under the hypothesis of unsteady state, molar concentrations Ci neces-
sarily appear as unknown functions in second-order PDE: their substi-
tution with the term (Fi/Ftot)⋅(P/ℛT) does not result in a simplifying
method to rewrite Eq. (2) or Eq. (3), especially when multiple reactions
are concerned. Therefore, the set of Ci is the most convenient choice to
represent chemical species as unknown functions in the formulation of
an ADPFR dynamic model, with the addition of variable superficial
velocity u when the more general Eq. (2) is considered.

The CO2 capture case of study, described in Section 2.1, was
modelled according to considerations just above. For particles in the
packed bed, dependencies on z and t of CaO dynamic conversion (X) and
consequent evolution of particles void fraction (εp) were expressed by
Eqs. (4) and (7), respectively. With regard to the gas phase inside the



Table 2
PGM equations, initial conditions, boundary conditions and dimensionless variables [7].

∂X
∂t ¼ rCBN

n0CaO

Mole balance on sorbent phase (CaO) (4)

∂ðεp ⋅ CCO2 Þ
∂t

¼ 1
r2

∂
∂r

�
DCO2 ;eff r

2 ∂CCO2

∂r

�
� rCBN

Mole balance on CO2 within εp (5)

CN2 ¼ Ctot � CCO2 ¼ P
R T

� CCO2

Congruence on inert gas (N2) (6)

∂εp
∂t ¼ � ðζ� 1ÞvCaO n0CaO

∂X
∂t

Dynamic evolution of εp due to CBN (7)

Initial conditions (IC):
Xð0 � r � Rp; t ¼ 0Þ ¼ 0 Completely calcined particle (8)

CN2 ð0 � r � Rp; t ¼ 0Þ ¼ Ctot ¼ P
R T

εp filled by inert (9)

Boundary conditions (BC), 8 t > 0:
∂CCO2

∂r

����
r¼0

¼ 0
Radial symmetry of concentration profiles (10)

DCO2 ;eff ⋅
∂CCO2

∂r

����
r¼Rp

¼ hCO2 ⋅ ðCCO2 ;bulk � CCO2 ðr ¼ RpÞÞ No accumulation on particle external borders (11)

where:
X ¼ Xðr; tÞ; CCO2 ¼ CCO2 ðr; tÞ; εp ¼ εpðr; tÞ Functions of time (t) and particle radius (r) (12)

rCBN ¼ kSn0CaOσ
0
CaOð1� XÞ2=3ðCCO2 � CCO2 ;eqÞ

1þ ksn0CaO
2 DPL

δ0CaO
ffiffiffiffiffiffiffiffiffiffiffiffi
1� X3

p  
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X

1� X þ ζX
3

s ! CBN kinetic law (13)

DCO2 ;eff ¼ 1
ð1� yCO2 Þ=DCO2 ;N2 þ 1=DKnu;CO2

εp
α CO2 effective diffusivity within εp (14)

DPL ¼ DPL;0expð� aXbÞ CO2 diffusivity through CaCO3 layer (15)
The above conservation equations, congruence, boundary and initial conditions are made dimensionless by introducing the following variables:

yCO2 ¼ CCO2

R T
P

; r* ¼ r
R
; t* ¼ t

τCBN
with τCBN ¼ δ0CaO

ks ⋅ n0CaO

Dimensionless variables

The dimensionless system of equations is integrated numerically by the MATLAB®
“pdepe” algorithm.
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entire void volume of the packed bed (i.e. packed bed void faction ε plus
internal particles void fraction (1- ε)εp), the mole balance on CO2 was
compiled on the basis of Eq. (2) (superficial velocity as a function of z
and t) or Eq. (3) (constant superficial velocity); from here on, the former
option is called ADPFRu(z,t), the latter is labelled as ADPFRu(const).

Intraparticle diffusive phenomena were negligible in the examined
case (packed bed made of fine sorbent particles), so that CO2 concen-
tration on the sorbent grain surface in Eq. (13) was assumed to be the
same as that in the approaching gaseous phase and uniform inside the
Table 3
ADPFRu(z,t) and ADPFRu(const) equations, initial conditions, boundary conditions a

ADPFRu(z,t)

ADPFR mole balance on CO2 in ε and εp ∂
∂t fðε þ ð1� εÞεpÞCCO2 g ¼ DR

∂2CCO2

∂z2 � u
∂CCO2

∂z �
rCBNð1� εÞ

Overall ADPFR mole balance on gas in ε
and εp

∂u
∂z ¼ � rCBN

ð1� εÞ
Ctot

� ð1� εÞ ∂εp∂t
CaO dynamic conversion ∂X

∂t ¼ rCBN
n0CaO

Dynamic evolution of εp due to CBN ∂εp
∂t ¼ � ðζ� 1ÞvCaO n0CaO

∂X
∂t

Initial conditions (IC):
Completely calcined particle Xð 0 � z � H; t ¼ 0Þ ¼ 0
ε and εp filled by inert CN2 ð0 � z � H; t ¼ 0Þ ¼ Ctot ¼ P

R T
Inert molar flow equal to inlet process
one

uð0 � z � H; t ¼ 0Þ ¼ uin ¼ Fin;tot
Ctot S

Boundary conditions (BC), 8 t* > 0:
Danckwerts closed-closed vessel
boundary conditions [1]

FCO2 ;in ¼ S uinCCO2 ;in ¼ S
�
uCCO2 � DR

∂CCO2

∂z

�����
z¼0

∂CCO2

∂z

����
z¼H

¼ 0

Left boundary condition on u uðz ¼ 0; tÞ ¼ uin ¼ Fin;tot
Ctot S

Unknown functions: X ¼ Xðz; tÞ ; CCO2 ¼ CCO2 ðz; tÞ ; εp ¼ εpðz; tÞ
The above conservation equations, boundary and initial conditions are made dimensionless b

Dimensionless variables yCO2 ¼ CCO2

Ctot
¼ CCO2

R T
P

; u* ¼ Ftot τb
Ctot Vb

; z* ¼ z
H

; t* ¼ t
τb

4

particle (its change with particle radius, Eq. (5), was neglected).

3.1. Development of ADPFRu(z,t) numerical-integration

Table 3 summarizes the whole set of equations, initial and boundary
conditions associated with the ADPFRu(z,t) option.

Eq. (2) was used to represent the heterogeneous gas/solid Reaction 1,
occurring inside the packed bed reactor between flowing CO2 and porous
particles of CaOMAY; Eq. (16) resulted, i.e. the mole balance for CO2 in
nd dimensionless variables.

ADPFRu(const)

CCO2

∂u
∂z�

(16) ∂
∂t fðε þ ð1� εÞεpÞCCO2 g ¼ DR

∂2CCO2

∂z2 � u
∂CCO2

∂z � rCBNð1�
εÞ

(17)

(18) uðz; tÞ ¼ uin ¼ Fin;tot
Ctot S

¼ constant (19)

(4) ∂X
∂t ¼ rCBN

n0CaO

(4)

(7) ∂εp
∂t ¼ � ðζ� 1ÞvCaO n0CaO

∂X
∂t

(7)

Initial conditions (IC):
(20) Xð 0 � z � H; t ¼ 0Þ ¼ 0 (20)
(21) CN2 ð0 � z � H; t ¼ 0Þ ¼ Ctot ¼ P

R T
(21)

(22) /

Boundary conditions (BC), 8 t* > 0:

;
(23)

FCO2 ;in ¼ S uinCCO2 ;in ¼ S
�
uinCCO2 � DR

∂CCO2

∂z

�����
z¼0

;

∂CCO2

∂z

����
z¼H

¼ 0

(24)

(25) /

; u ¼ uðz; tÞ X ¼ Xðz; tÞ ; CCO2 ¼ CCO2 ðz; tÞ ; εp ¼ εpðz; tÞ
y introducing the following variables:

with τb ¼ H
uin



A. Di Giuliano, E. Pellegrino Heliyon 5 (2019) e02040
the whole volume portion filled by gases.
In order to take into account variation of superficial gas velocity,

Eq. (16) was summed with its analogue for inert N2, considering that
total molar concentration of gas phase (Ctot) is constant at constant
pressure and temperature: the overall gaseous mole balance in that
same volume (Eq. (18)) was obtained. It is worth to examine the
general physicochemical meaning of Eq. (18), focusing on its right-
hand side. Since temperature and pressure are constant, superficial
velocity decreases because of carbonation, which subtracts gaseous
moles (Reaction 1), while it grows as solid internal void fraction de-
creases. The latter influence can be further explained by Eqs. (7) and
(4): CaO conversion causes an increase of solid volume and a decrease
of pore volume within particles (because of ζ), which locally expels
gases, increasing their net flow. Ultimately, Reaction 1 has two
competing opposite effects on superficial velocity, a direct subtraction
of gaseous moles and an indirect boost related to solid volume variation
inside particles.

As far as initial conditions are concerned, CaOMAY particles were
considered as completely calcined (Eq. (20)) with pure N2 filling the
whole void volume of the packed bed (Eq. (21)), flowing with an inlet
superficial velocity equal to that of the reacting mixture (Eq. (22)).
Danckwerts closed-closed vessel boundary conditions [1] were assumed
(Eq. (23)), with the additional condition for the superficial velocity at
the left boundary, derived from the overall molar inlet flow rate (Eq.
(25)).

The formulation of ADPFRu(z,t) as a PDE problem (Table 3) resulted
unsuitable for a numerical-integration as a unique system in MATLAB®

by “pdepe” algorithm (developed for parabolic-elliptic PDE in one
dimension [20]). Then, equations were algebraically manipulated so to
obtain a new set of dimensionless equations (Table 4), more suitable to
develop and apply ad hoc numerical-integration algorithms in
MATLAB®;.

In general, PDE problems may appear in a large variety, depending on
many factors (constant or variable coefficients; coordinate system; geo-
metric classification; number of independent variables, which de-
termines the number of dimensions; number of dependent variables,
Table 4
Dimensionless ADPFRu(z,t) and ADPFRu(const) equations, initial conditions, bounda

ADPFRu(z,t)

Dimensionless ADPFR mole balance on CO2 in ε and
εp

∂yCO2

∂t* ¼ D*
R

AðXÞ
∂2yCO2

∂z*2
� u*

AðXÞ
∂yCO2

∂z* � ð

yCO2 Þ
C3
AðXÞrCBN

Dimensionless overall ADPFR mole balance on gas
in ε and εp

∂u*
∂z* ¼ C4 rCBN

Dimensionless CaO dynamic conversion ∂X
∂t* ¼ C1 rCBN

Initial conditions (IC):
Completely calcined particle Xð 0 � z* � 1; t* ¼ 0Þ ¼ 0
ε and εp filled by inert yCO2 ð0 � z* � 1; t* ¼ 0Þ ¼ 0
Inert molar flow equal to inlet process one u*ð0 � z* � 1; t* ¼ 0Þ ¼ u*in ¼ Fin;tot τ

Ctot Vb

Boundary conditions (BC), 8 t* > 0:
Dimensionless Danckwerts closed-closed vessel
boundary conditions [1]

u*inyCO2 ;in ¼
�
u*yCO2 � D*

R
∂yCO2

∂z*
	���

z*¼0
;

0
Left boundary condition on u u*ðz* ¼ 0; t*Þ ¼ u*in ¼ Fin;tot τb

Ctot Vb
¼ 1

Unknown functions X ¼ Xðz*; t*Þ ; yCO2 ¼ yCO2 ðz*; t*Þ ;

Constant coefficients C1 ¼ τb
n0CaO

; C2 ¼ ðζ� 1ÞvCaO n0CaO

Variable coefficients
rCBNðyCO2 ;XÞ ¼

σ0CaOn
0
CaOksð1�

1þ n0CaOks
2DPL;0 expð�aXbÞδ

5

which determines the number of equations; kinds and features of
boundary and initial conditions) [29]. The nonlinear, time dependent
PDE problem compiled for ADPFRu(z,t) (Table 4) was defined in the
dimensionless domain, and involved:

� a convection-diffusion-reaction hyperbolic-parabolic PDE (Eq. (26))
[29];

� two first-order PDEs with generative functions of z* and t* (Eqs. (28)
and (30));

� initial conditions at t* ¼ 0 (Eqs. (31), (32), (33));
� boundary conditions on z* ¼ 0, 1 (Eqs. (34), (36))

Ad hoc numerical-integration algorithms were developed in MAT-
LAB® for the ADPFRu(z,t) problem in Table 4, according to the Method of
lines (MOL) [21, 29]. The basic concept in MOL involves the following
steps [21]:

1. Partitioning of the solutions domain with respect to the space variable
(z* in our case), so to consider solutions only on the resulting straight
lines, parallel to the time variable axis (t* in our case);

2. Discretization, in all PDE, of partial derivatives with respect to the just
partitioned space variable, so to obtain a set of Ordinary Differential
Equations (ODE) in the remaining time independent variable; this
ODE set approximates the original PDE problem;

3. Specification of ODE on the boundary lines of partitioned domain, by
incorporating original boundary conditions into the discretization
with respect to space variable (method of false boundaries);

4. Numerical solution of the initial values ODE problem, with original
initial conditions specified onto the partitioned domain (finite dif-
ferences methods were considered in this work to solve ODE system).

Derivatives with respect to z* in Eq. (26) were discretized by second-
order central difference approximations with a constant step-size Δz* ¼
1/I (I as the number of steps), so to obtain a three-point discretization
scheme of order two:
ry conditions.

ADPFRu(const)

1 � (26) ∂yCO2

∂t* ¼ D*
R

AðXÞ
∂2yCO2

∂z*2
� u*

AðXÞ
∂yCO2

∂z* � ð1 �

C5 yCO2 Þ
C3
AðXÞrCBN

(27)

(28) u* ¼ u*in ¼ Fin;tot τb
Ctot Vb

¼ 1 ; 8 z*; t* (29)

(30) ∂X
∂t* ¼ C1 rCBN

(30)

Initial conditions (IC):
(31) Xð 0 � z* � 1; t* ¼ 0Þ ¼ 0 (31)
(32) yCO2 ð0 � z* � 1; t* ¼ 0Þ ¼ 0 (32)

b ¼ 1 (33) /

Boundary conditions (BC), 8 t* > 0:
∂yCO2

∂z*
���
z*¼1

¼ (34)
u*inyCO2 ;in ¼

�
u*inyCO2 � D*

R
∂yCO2

∂z*
	���

z*¼0
;
∂yCO2

∂z*
���
z*¼1

¼ 0
(35)

(36) /

u* ¼ u*ðz* ; t*Þ X ¼ Xðz*; t*Þ ; yCO2 ¼ yCO2 ðz*; t*Þ
; C3 ¼ ð1� εÞ τb

Ctot
; C4 ¼ ð1� εÞC1C2� C3 ; C5 ¼ ðζ� 1ÞvCaOCtot ; D*

R ¼ DRτb
H2

XÞ2=3Ctot ðyCO2 � yCO2 ;eqÞ
0
CaO

ffiffiffiffiffiffiffiffiffiffiffiffi
1� X3

p  
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X

1� X þ X ζ
3

s ! ; AðXÞ ¼ εþ ð1� εÞ ½ε0p � C2 X�
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∂2yCO2 ðz*; t*Þ
*2

���� ¼ yði�1Þ
CO2

ðt*Þ � 2yðiÞCO2
ðt*Þ þ yðiþ1Þ

CO2
ðt*Þ

*2
∂z z*¼z*ðiÞ
Δz

þ O


Δz*2

� with
i ¼ 0;…; I

(37)

∂yCO2 ðz*; t*Þ
∂z*

����
z*¼z*ðiÞ

¼ yðiþ1Þ
CO2

ðt*Þ � yði�1Þ
CO2

ðt*Þ
2Δz*

þ O


Δz*2

� with
i ¼ 0;…; I

(38)

In Eqs. (37) and (38), the value yCO2(i)(t*) approximates the solution
yCO2(z(i)* , t*) on the line of spatial coordinate z*¼ z*(i)¼ i⋅Δz* belonging to
the discretized domain. By replacing Eqs. (37) and (38) in Eq. (26),
neglecting error terms, a set of Iþ1 dimensionless CO2 mole balances was
obtained (Eq. (39)):

∂yðiÞCO2
ðt*Þ

∂t* ¼
 

D*
R

A


XðiÞðt*Þ� 1

Δz*2
� u*ðiÞðt*Þ
A


XðiÞðt*Þ� 1

2Δz*

!
yðiþ1Þ
CO2

ðt*Þ

� 2
D*

R

A


XðiÞðt*Þ� 1

Δz*2
yðiÞCO2

ðt*Þ þ
 

D*
R

A


XðiÞ� 1

Δz*2
þ u*

ðiÞ ðt*Þ
A


XðiÞ� 1

2Δz*

!
yði�1Þ
CO2

ðt*Þ

�
�
1� yðiÞCO2

ðt*Þ
	 C3
A


XðiÞðt*Þ�rCBN

�
yðiÞCO2

ðt*Þ;XðiÞðt*Þ
	 with

i ¼ 0; …; I

(39
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

∂yð0ÞCO2
ðt*Þ

∂t*
¼
 

2D*
R

A


Xð0Þðt*Þ� 1

Δz*2

!�
yð1ÞCO2

ðt*Þ � yð0ÞCO2
ðt*Þ
	
þ

�
 

2

A


Xð0Þ� 1

Δz*
þ u*ð0Þðt*Þ
A


Xð0Þ�D*

R

!�
u*ð0Þðt*Þ yð0ÞCO2

ðt*Þ � u*in yCO2 ;in

	
þ

�
�
1� yð0ÞCO2

ðt*Þ
	 C3

A


Xð0Þðt*Þ�rCBN

�
yð0ÞCO2

ðt*Þ;Xð0Þðt*Þ
	

∂yðiÞCO2
ðt*Þ

∂t*
¼
 

D*
R

A


XðiÞðt*Þ� 1

Δz*2
� u*ðiÞðt*Þ
A


XðiÞðt*Þ� 1

2Δz*

!
yðiþ1Þ
CO2

ðt*Þþ

�
 

2D*
R

A


XðiÞðt*Þ� 1

Δz*2

!
yðiÞCO2

ðt*Þ þ
 

D*
R

A


XðiÞ� 1

Δz*2
þ u*ðiÞðt*Þ

A


XðiÞ� 1

2Δz*

!

�
�
1� yðiÞCO2

ðt*Þ
	 C3

A


XðiÞðt*Þ�rCBN

�
yðiÞCO2

ðt*Þ;XðiÞðt*Þ
	

∂yðIÞCO2
ðt*Þ

∂t*
¼
 

2D*
R

A


XðIÞðt*Þ� 1

Δz*2

!�
yðI�1Þ
CO2

ðt*Þ � yðIÞCO2
ðt*Þ
	
þ

�
�
1� yðIÞCO2

ðt*Þ
	 C3

A


XðIÞðt*Þ�rCBN

�
yðIÞCO2

ðt*Þ;XðIÞðt*Þ
	

∂XðiÞ
t*�
∂t*

¼ C1 rCBN
�
yðiÞCO2

ðt*Þ;XðiÞðt*Þ
	

XðiÞðt* ¼ 0Þ ¼ 0

yðiÞCO2
ðt* ¼ 0Þ ¼ 0
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In Eq. (39), functions yCO2(i) (t*), u*(i)(t*) and X(i)(t*) approximate
solutions yCO2(z(i)* , t*), u*(z(i)* , t*), X(i)(z(i)* , t*) on the line of spatial
coordinate z* ¼ z*(i) ¼ i⋅Δz* belonging to the discretized domain.
When Eq. (39) is evaluated in i ¼ 0, I (i.e. the boundary points), it
involves yCO2(-1) (t*) and yCO2(Iþ1)(t*), which lay on lines outside the dis-
cretized z* domain: these functions were calculated by Eqs. (40) and
(41), resulting from an approximation of boundary conditions (Eqs.
(34) and (36)) by the central finite difference in Eq. (38) (method of
false boundaries [21]).

yð�1Þ
CO2

ðt*Þ¼ yð1ÞCO2
ðt*Þ þ 2Δz*

D*
R

h
u*in yCO2 ;in � u*ð0Þðt*Þ yð0ÞCO2

ðt*Þ
i

(40)

yðIþ1Þ
CO2

ðt*Þ ¼ yðI�1Þ
CO2

ðt*Þ (41)

Substitution of Eqs. (40) and (41) into Eq. (39) gives a set of ODE in
the independent variable t*, which must be integrated together with Eq.
(30), defined on the Iþ1 lines of the space-discretized domain, all needed
initial conditions being provided (Eqs. (31) and (32)). As a consequence,
the resulting overall initial value problem counts 2Iþ2 ODE in t* and as
many initial conditions (Eq. (42)).
yði�1Þ
CO2

ðt*Þþ
with

i ¼ 1;…; I � 1

with

i ¼ 0;…; I

with

i ¼ 0;…; I

(42)
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Whatever the method chosen to numerically integrate the ODE sys-
tem in Eq. (42), one must know u*(i)(t*), for which there is not an
equation with a first-order derivative with respect to t* to be included in
that integration. This issue was worked out by discretizing Eq. (28): its
first order derivative with respect to z* was approximated with the for-
ward finite difference defined in Eq. (43), so to obtain the algebraic
problem in Eq. (44) (explicit Euler method [21]).

∂u*ðz*; t*Þ
∂z*

����
z*¼z*ðiÞ

¼ u*ðiþ1Þðt*Þ � u*ðiÞðt*Þ
Δz*

þ OðΔz*Þ with
i ¼ 0;…; I

(43)

8>><
>>:

u*ðiþ1Þðt*Þ ¼ u*ðiÞðt*Þ þ Δz* C4 rCBN
�
yðiÞCO2

ðt*Þ;XðiÞðt*Þ
	

u*ð0Þðt* ¼ 0Þ ¼ u*in

with
i ¼ 0;…; I � 1

(44)

The problem in Eq. (44) must be solved at the beginning of each step
of the chosen integration procedure on independent variable t* for the
overall ODE system (Eq. (42)), so to provide needed u*(i)(t*) values at that
step.

In principle, numerical integration with respect to t* could be carried
out by explicit or implicit Euler methods, or any of the higher-order finite
differences methods for initial values ODE problems [21, 30].

Stability constraints do exist in the application of explicit methods to
compute numerical approximations of solutions of initial values ODE
problems [30]: the need to lower Δz*, in order to achieve a better accu-
racy on the space variable, demands to decrease at the same time the
step-size Δt* ¼ tfin* /J adopted to discretize t* (with J as the number of
steps).

When the explicit Euler method [21] was chosen for the solution of
the ODE system in Eq. (42), relevant numerical instabilities appeared in
its numerical-integration by MATLAB®. In fact, assuming tfin ¼ 1 h, the
dimensionless time step-size Δt* had to be reduced very drastically
(minimum J in the order of 105) to fulfil the standard stability criterion of
Courant-Friederich-Levy specified for our case of study (Eq. (45)) [31, 32,
33], even with a rough discretization on z* (e.g. I ¼ 10, 30). In other
words, with explicit Euler computation procedure applied to our ODE
system, efforts to minimize truncation errors require a great number of
calculations and therefore long computational time (in the order of
several hours with an ordinary up-to-date computer), furthermore
involving at the same time the risk of an increase of roundoff error. As a
consequence, more refined numerical-integration methods were consid-
ered, so to get accurate solution approximations in a reasonable time and
with a fair computational burden.

Δt*

Δz*2
⋅max

���� D*
R

AðXÞ
���� � 1

2
(45)

Implicit methods can circumvent stability issues; anyway, they
generally bring in more onerous algebraic elaborations [30], a problem
even more emphasized by the complexity of the ODE system for the
investigated case of study (Eq. (42)). Consequently, other explicit in-
tegrators, more elaborate than explicit Euler method, were considered
among ODE solvers provided by MATLAB® [34]. All these MATLAB®

functions automatically determine the step-size required to obtain a
prescribed accuracy. With regard to simulations of the case of study
discussed in Section 4, the “ode23tb” solver was used, which compares
trapezoidal rule with backward differentiation method, to estimate the
suitable Δt*.

The just described procedure is schematized by the flowchart in
Fig. 2.
3.2. Development of ADPFRu(const) numerical-integration

Table 3 summarizes the whole set of equations, initial and boundary
7

conditions for ADPFRu(const) option.
It was obtained by imposing the simplifying hypothesis of constant

superficial velocity in ADPFRu(z,t), here set identically equal to its inlet
value (Eq. (19)); Eq. (17) resulted as the mole balance for CO2, a direct
application of Eq. (3) to the current case of study.

Initial and boundary conditions were the same used for ADPFRu(z,t),
with the only exception of those about superficial velocity, not needed in
this case.

Even though the hypothesis of constant superficial velocity would
have allowed the use of “pdepe” in MATLAB® (as done in [6, 7]), the
same ad hoc numerical-integration developed for ADPFRu(z,t) was
applied to ADPFRu(const), in order to fairly compare results from the two
options. Equations in Table 3 were rearranged as shown in Table 4, so to
be discretized as explained in Section 3.1, considering u*(i)(t*) identically
equal to its initial value (Eq. (29)). As a consequence, the related further
numerical integration by the explicit Euler method (Eqs. (43) and (44))
was not required in this case.

The flowchart describing the ADPFRu(const) option can be obtained
by modifications in Fig. 2, substituting equations with those related to
ADPFRu(const) option (correspondingly reported in Tables 3 and 4) and
omitting all steps concerning calculations of variable u*.

4. Results and discussion

4.1. Physicochemical characterization

XRD spectrum for CaOMAY confirmed the presence of main desired
crystalline phases, mayenite (Ca12Al14O33) and CaO (Fig. 3 a), identified
by comparison with PDF (Powder Diffraction Files) from the database of
the ICDD (International Centre of Diffraction Data). The composition
detected by XRD corroborates the usage of PGM to interpret CAOMAY
behaviour. Average crystallite dimensions calculated by Scherrer equa-
tion [23, 25, 26] were respectively 30.6 nm and 33.1 nm. Measured
particle density and void fraction of CaOMAY are in Table 5.

4.2. TGA data fitting by PGM

The experimental value of Γ for CaOMAY, obtained from the 7 h TGA
experiment, was 0.24 gCO2 per g of calcined material, assumed to
correspond to 100 % CaO conversion (X). Fig. 3 b shows experimental
values of X from TGA test, compared with the corresponding output of
PGM set with constants and parameters in Table 5 and with a¼ 22.7, b¼
0.35, δCaO0 ¼ 69.5 nm (2.1 times the Scherrer average crystallite dimen-
sion): these values gave a very good agreement between CaOMAY
experimental behaviour and simulations by the PGM.

4.3. ADPFR simulations: results and their physicochemical evaluation

The values of parameters a, b and δCaO
0 found in Section 4.2 were

assumed for simulations by means of ADPFRu(z,t) and ADPFRu(const),
presented in Section 3. Since the simulated reactor is the same studied in
[6], the same values for packed void fraction (ε ¼ 0.5) and axial
dispersion coefficient (DR ¼ 10-5 m2 s-1) were used in this study. They
completed the set of parameters (Table 5) utilized in all simulations; this
set can be considered as representative of the studied system thanks to
comparisons between related numerical outputs and experimental data,
already performed in this work by TGA/PGM fitting or elsewhere for
packed bed reactor features [6].

The comparison between the performances of both ADPFR numerical
integrations was carried out by simulating the case of study described in
Section 2.1, assuming different CO2 concentrations in the inlet stream
(mole fraction yCO2,in ¼ 0.15; 0.45; 0.70; 0.90).

To help comparing outputs of different simulations one to each other,
as well as evaluating their coherence with actual physicochemical phe-
nomena, numerical results were expressed in terms of outlet CO2 molar
fraction (yCO2,out), relative deviation of inert flow rate (ΔFN2,out(t), Eq.



Fig. 2. Flowchart describing development and solution of ADPFR model for the case of study, according to ADPFRu(z,t) option.
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Fig. 3. Characterization of CaOMAY: (a) XRD spectrum with detected crystalline phases (Ca12Al14O33 PDF: 00-009-0413; CaO PDF: 00-037-1497); (b) Experimental
data of CO2-capture TGA test and corresponding PGM simulation of CaO conversion (X) as a function of time (a ¼ 22.7, b ¼ 0.35, δCaO0 ¼ 69.5 nm).
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(47)) and cumulative CO2 mole balance (ΔNCO2(t), Eq. (53)). ΔFN2,out(t)
represents the percentage deviation of N2 outlet flow rate with respect to
the corresponding inlet value. ΔNCO2(t) is the percentage deviation be-
tween total moles of CO2 fed to the reactor until a given time instant t,
(NCO2,in(t), Eq. (49)) and the sum of CO2 moles that have left the reactor
until t (NCO2,out(t), Eq. (50)), have been captured by the sorbent until t
(NCO2,capt(t), Eq. (51)) and are in the reactor void volume at the very
same instant t (NCO2,Vb(t), Eq. (52)); theoretical evaluations of the actual
physicochemical process suggest that ΔNCO2(t) should be zero in real
cases.

FN2 ðz; tÞ¼ u*ðz; tÞVb Ctot

τb
� SCtot

�
� DR

∂yCO2 ðz; tÞ
∂z þ u*ðz; tÞH

τb
yCO2 ðz; tÞ

�
(46)

ΔFN2 ;outðtÞ ¼
FN2 ðz* ¼ 1; tÞ � FN2 ;in

FN2 ;in
100 (47)
9

FCO2 ðz; tÞ ¼ SCtot

�
� DR

∂yCO2 ðz; tÞ
∂z þ u*ðz; tÞH

τb
yCO2 ðz; tÞ

�
(48)

NCO2 ;inðtÞ¼
Z t

0
FCO2 ;inðtÞdt ¼ FCO2 ;in t (49)

NCO2 ;outðtÞ ¼
Z t

0
FCO2 ðz* ¼ 1; tÞdt (50)

NCO2 ;captðtÞ ¼
w0

CaO m0
b

MCaO H

Z z

0
Xðz; tÞdz (51)

NCO2 ;Vb ðtÞ ¼ SCtot

Z z

0

�
εb yCO2 ðz; tÞþ ð1� εbÞ εpðz; tÞ yCO2 ðz; tÞ


dz (52)



Table 5
Constant parameters assumed for PGM and ADPFR simulations.

Process conditions and physical parameters:

PGM ADPFR

Temperature, T [�C] 650 650
Pressure, P [atm] 1 1
CO2 molar fraction in the gaseous bulk, yCO2,bulk
[mol/mol]

0.15 /

CO2 molar fraction in the inlet gas, yCO2,in [mol/
mol]

/ 0.15; 0.45; 0.75;
0.90

Total inlet flow rate, Ftot,in [Nml min�1] / 20
Reactor diameter [m] / 7 ∙ 10�3

Average particle diameter, dp [μm] 72 112.5
Sorption capacity, Γ [gCO2 gCaOMAY-calcined

�1 ]^ 0.24 0.24
Initial particle density, ρ0p [kg m�3]^^ 1693 1693
Initial particle void fraction, ε0p [#]^^^ 0.40 0.40

Model parameters:

PGM ADPFR

CBN rate constant, ks [m4 kmol�1 s�1] [28] 5.95 ⋅
10�7

5.95 ⋅ 10�7

α [#] [35, 36] 1.65 1.65
a [#] 22.7 22.7
b [#] 0.35 0.35
Initial CaO grain diameter, δCaO0 [nm] 69.5 69.5
Axial dispersion coefficient, DR [m2 s�1] / 10–5

Packed bed void fraction, ε [#] / 0.5

^ experimentally determined by TGA measurement.
^^ experimentally determined by GEOPYC 1360.
^^^ experimentally determined by ACCUPYC 1330 pycnometer.
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ΔNCO2 ðtÞ ¼
NCO2 ;inðtÞ � NCO2 ;outðtÞ þ NCO2 ;captðtÞ þ NCO2 ;Vb ðtÞ

N ðtÞ 100 (53)
� 
CO2 ;in

Fig. 4 shows the main outputs of simulations from the two ADPFR
numerical integrations, with yCO2,in ¼ 0.15 and process duration of 1800
s. Main differences between the two models appeared clearly. In fact, the
ADPFRu(z,t) integration was capable of computing superficial velocity as
a function of z and t, producing a quantitative trend in agreement with
the expected progression of CO2 capture phenomena (Fig. 4 a): where
and when Reaction 1 occurred preferentially (reduction of yCO2(z,t) and
increase of CaO conversion X(z,t)), a corresponding decrease of the
dimensionless superficial velocity u*(z,t)was evident. On the other hand,
the ADPFRu(const) integration could not provide a variable superficial
velocity, even though it calculated similar trends for yCO2(z,t) and X(z,t)
(Fig. 4 b). It is worth to make further comment on superficial velocity
surface in Fig. 4: with regard to the discussion about Eq. (18) made in
Section 3.1, the shape of this surface clearly showed that the prevailing
effect of carbonation (Reaction 1) on u* was the subtraction of CO2 from
the gas phase.

Fig. 5 represents values of yCO2,out as a function of time, resulting from
simulations with both ADPFR numerical options. For each yCO2,in, both
models agreed in predicting: (i) the qualitative shape of yCO2,out curves;
(ii) the beginning of packed bed breakthrough (the moment at which CO2
molar fraction breaks away from the initial plateau equal to 0.0096, the
equilibrium value at 1 atm and 650 �C for Reaction 1 [37]); (iii) the
post-breakthrough plateau, which tends to the corresponding value of
yCO2,in. The only discrepancies between yCO2,out from ADPFRu(z,t) and
ADPFRu(const) occurred in the shape of the breakthrough curve: the
higher yCO2,in, the steeper the breakthrough trend for ADPFRu(z,t) in
comparison to that predicted by ADPFRu(const); the lower yCO2,in, the
closer the breakthrough curves from the two options.

For a given sorbent material, Di Giuliano et al. [7] and Aloisi et al. [6]
demonstrated that carbonation kinetic parameters from PGM/TGA fitting
allow an ADPFR dynamic model to faithfully predict the CO2 capture
performance carried out by a packed bed of that material during SESMR,
with flowing reactants diluted in inert gas and then under the assumption
of constant superficial velocity in numerical-integration. The same
10
PGM/TGA fitting procedure was used in this work to provide specific
parameters to simulate CaOMAY behaviour with both ADPFRu(z,t) and
ADPFRu(const) options. Based on this, the high similarity of yCO2,out
curves, for a given yCO2,in, constituted a validation of ADPFRu(z,t) option,
at least for the most diluted cases (Fig. 5, yCO2,in ¼ 0.15, 0.45). In addi-
tion, in the light of points (i), (ii), (iii) listed just above, for each given
yCO2,in the two yCO2,out curves from ADPFRu(z,t) and ADPFRu(const)
resulted similar in many respects, which moreover corresponded to
correct physicochemical conclusions: yCO2,out before breakthrough was
extremely close to the CO2 equilibrium molar fraction at 1 atm and 650
�C (according to [37]), i.e. both ADPFRu(z,t) and ADPFRu(const) options
predicted that the completely calcined packed bed was fully active and
made carbonation approach equilibrium, a first reasonable conclusion;
yCO2,out after breakthrough resulted very close to yCO2,in, i.e. the model
predicted, again with both ADPFRu(z,t) and ADPFRu(const) options, that
the saturated packed bed left the flowing gas unchanged, a second
reasonable conclusion.

Fig. 6 shows the most relevant difference in computations between
ADPFRu(z,t) and ADPFRu(const), linked to the ability of the former to
compute superficial velocity as a function of z and t, differently from the
latter, exploiting a simplified numerical treatment. In the ADPFRu(const)
integration, because of the assumption of constant superficial gas ve-
locity, the decrease of CO2 concentration due to Reaction 1 (yCO2,in(z,t))
was unrealistically balanced by an increase of N2 molar flow rate (Fig. 6 b
and d). On the other hand, ADPFRu(z,t) option allowed to keep outlet
inert flow rate close to more conceivable values as long as carbonation
occurred (Fig. 6 a and c). In fact, for a given yCO2,in, absolute values of
ΔFN2,out(t) were definitely greater in simulations with ADPFRu(const)
(Fig. 6 b, d, f) than in those with ADPFRu(z,t) (Fig. 6 a, c, e), with a
difference of at least one order of magnitude at any given time. As we get
from Fig. 6, as long as reactive gaseous species CO2 is converted into
CaCO3, the more concentrated the inlet CO2 stream, the greater
ΔFN2,out(t). From the physicochemical point of view, this systematic and
abnormally high increase of N2 flow rate during carbonation, imposed by
ADPFRu(const) option, is definitely less reasonable than corresponding
predictions of ADPFRu(z,t). This highlights an inherent vice in the
ADPFRu(const) option, due to the hypothesis of constant superficial ve-
locity: a fictitious variation of inert moles is forced in contradiction with
principle of mass conservation, in order to fulfil just that very same
hypothesis.

The ability of ADPFRu(z,t) in computing superficial velocity as a
function of z and t determined better performances than ADPFRu(const)
also in terms of ΔNCO2(t), as shown in Fig. 7. ADPFRu(z,t) gave values for
ΔNCO2(t) within the range �3 % (Fig. 7 a, c, e), systematically smaller
than those obtained by ADPFRu(const), as long as carbonation occurs and
yCO2,in being equal. During CO2 conversion, the ADPFRu(z,t) option
provided solutions decidedly closer to the condition ΔNCO2(t) ¼ 0 (a
direct consequence from principle of mass conservation) with respect to
those from ADPFRu(const), therefore the former were in better agree-
ment with the expected physicochemical phenomena. As far as ADP-
FRu(const) results for ΔNCO2(t) are concerned, the trend with respect to
yCO2,in was inverse than what observed for ΔFN2,out(t): the lower yCO2,in
the higher ΔNCO2(t).

Similarities in yCO2,out numerical predictions from the two options
suggest that ADPFRu(const), thanks to its lower numerical complexity,
may be a sensible choice in the case of diluted reactants or when yCO2,out
qualitative evolution is the only information of interest. However, mass
conservation biases identified for the ADPFRu(const) option, thanks to
evaluations on ΔFN2,out(t) and ΔNCO2(t), highlighted that inferences from
its solutions might lead to very conspicuous quantitative errors in terms
of moles balances, beyond possible numerical roundoff errors or ap-
proximations, albeit in the face of reasonable predictions of yCO2,out; in
this regard, ADPFRu(z,t) appeared by far as the most reliable option, with
the most coherent moles balances, in better agreement with expected
trends of the actual physicochemical process. This constitutes a good
point in terms of validation, to the benefit of ADPFRu(z,t) option.



Fig. 4. Results from simulations of the case of study (with inlet CO2 molar fraction yCO2,in ¼ 0.15 and process duration of 1800 s) by both integration options: (a)
ADPFRu(z,t) CO2 molar fraction; (b) ADPFRu(z,t) CaO conversion; (c) ADPFRu(z,t) dimensionless superficial gas velocity; (d) ADPFRu(const) CO2 molar fraction; (e)
ADPFRu(const) CaO conversion; (f) ADPFRu(const) dimensionless superficial gas velocity.
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5. Conclusions

Numerical integration of ADPFR dynamic models with variable su-
perficial velocity is still a little explored issue in chemical reactors en-
gineering. This work presented a method which aims to make a
contribution to fill this gap.

The case of study of CO2 capture from a CO2/N2 stream on a solid
sorbent, by means of a CaO-mayenite packed bed reactor, was modelled
as an ADPFR with two approaches, the former involving variation of the
overall superficial gas velocity as a function of time and reactor length
(named ADPFRu(z,t)), the latter assuming the often applied hypothesis to
neglect any change in the volumetric flow rate (named ADPFRu(const)).

A numerical-integration approach was proposed, based on the MOL
associated with the MATLAB® ODE solver “ode23tb” to guarantee nu-
merical stability, and with the explicit Euler method to compute super-
ficial velocity function at a given time in the case of ADPFRu(z,t). This
approach was successful in approximating solutions of both ADPFRu(z,t)
and ADPFRu(const) sets of partial differential equations; this represents a
11
relevant achievement, considering the little deepening dedicated so far to
ADPFR modelling with variable superficial velocity. Moreover, it could
be further extended to multiple reaction systems, also thanks to the
choice of concentrations in the gas phase as dependent functional
variables.

Functions of superficial gas velocity in the ADPFRu(z,t) case (nu-
merical-integration by MOL, “ode23tb” and explicit Euler method), were
in agreement with expected trends of actual reactive phenomena of the
case of study.

A comparative analysis between results from ADPFRu(z,t) and ADP-
FRu(const) was focused on predictions of outlet CO2 molar fraction,
outlet N2 molar flow rate and cumulative CO2 mole balance, for the
whole process duration and with variation of inlet CO2 concentration;
some distortions arose from the simplifying hypothesis of constant su-
perficial gas velocity:

� As the inlet CO2 concentration increased, more and more different
predictions were obtained on the shape of CO2 concentration as a



Fig. 5. ADPFRu(z,t) and ADPFRu(const) simulations of outlet CO2 molar fraction (yCO2,out) as a function of time, for different values of inlet CO2 molar fraction (yCO2,in
¼ 0.15; 0.45; 0.70; 0.90): (a) whole simulated process duration (60 min); (b) magnification of the first 30 min; (c) magnification of the first 15 min. Legend in (a) is
valid for all pictures.
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function of time in outlet stream; this corroborates the introductive
statement about suitability of simplified ADPFR models only for
tubular reactors fed with diluted reactants.

� As long as CO2 (reactive species) was captured, ADPFRu(const)
determined a relevant fictitious increase of inert N2 flow rate (which
12
cannot actually occur), in order to keep the overall flow rate equal to
its inlet value; this may involve wrong estimations on process vari-
ables, if pressure drops in the packed bed would be considered, for
instance. On the other hand, ADPFRu(z,t) appeared as a more reliable



Fig. 6. Simulations of outlet N2 flow rate as a function of time, expressed as ΔFN2,out(t), for different values of inlet CO2 molar fraction (yCO2,in ¼ 0.15; 0.45; 0.70; 0.90):
(a) ADPFRu(z,t) results; (b) ADPFRu(const) results; (c) magnification of the first 10 min from ADPFRu(z,t) results; (d) magnification of the first 10 min from ADP-
FRu(const) results; (e) magnification of the last 10 min from ADPFRu(z,t) results; (f) magnification of the last 10 min from ADPFRu(const) results. Legend in (a) is valid
for all pictures.
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Fig. 7. Cumulative CO2 mole balance as a function of time, expressed as ΔNCO2(t), for different values of inlet CO2 molar fraction (yCO2,in ¼ 0.15; 0.45; 0.70; 0.90) (a)
ADPFRu(z,t) results; (b) ADPFRu(const) results; (c) magnification of the first 10 min from ADPFRu(z,t) results; (d) magnification of the first 10 min from ADP-
FRu(const) results; (e) magnification of the last 10 min from ADPFRu(z,t) results; (f) magnification of the last 10 min from ADPFRu(const) results. Legend in (a) is valid
for all pictures.

A. Di Giuliano, E. Pellegrino Heliyon 5 (2019) e02040

14



A. Di Giuliano, E. Pellegrino Heliyon 5 (2019) e02040
tool, in terms of compliance with the principle of mass conservation,
as it keeps outlet N2 flow rate close to its inlet value.

� Additionally, ADPFRu(z,t) was more reliable than ADPFRu(const) on
predicting the CO2 cumulative moles balance.

All this considered, the simplifying assumption of uniform superficial
velocity in ADPFR modelling should be carefully evaluated. It brings in a
less sophisticated mathematical model, so that it is reasonable to use
when allowed by process features and according to the output informa-
tion needed. Otherwise, the combination of MOL with a proper ODE
integration method and the explicit Euler method was proved to be a
valuable option to solve numerically complex PDE systems, associated
with convection-diffusion-reaction phenomena which make the hy-
pothesis of constant superficial velocity an unrealistic approximation.
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