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ABSTRACT Here, we present a 16S rRNA gene amplicon sequence data set and
profiles demonstrating the bacterial diversity of larval and adult Calliphora vicina, col-
lected from Ashhurst, New Zealand (May 2020). The three dominant genera among
the adult male and female C. vicina blowflies were Serratia and Morganella (phylum
Proteobacteria) and Carnobacterium (phylum Firmicutes), while the larvae were also
dominated by the genera Lactobacillus (phylum Firmicutes).

Ectoparasitic flies (blowflies) are a significant animal welfare and production issue for
farmers worldwide (1). Control of blowflies is problematic because the flies are

unpredictable and highly mobile, and strike (or myiasis) is difficult to see initially but
has an immediate impact on animal production and welfare. Currently, control relies
heavily on the prophylactic application of long-acting chemicals to all sheep, but this
approach is increasingly under threat due to the development of resistance to current
treatments (2, 3). Calliphora vicina NZ_CalVic_NP (4, 5) was selected for microbiome
assessment as a representative of a New Zealand field strain of C. vicina. In this study,
we investigated the larval and adult male and female bacterial microbial profiles of C.
vicina for the future development of new interventions such as probiotics, bioactive
compounds, vaccines, or insecticides.

The C. vicina specimen larvae were collected from a farm site in the Ashhurst area
of New Zealand (40°189S, 175°459E). Lab-reared blowflies were maintained on beef liver
as the protein source and a 10% sugar solution, with the procedures for blowfly propa-
gation and sample preparation based on those of Dear (6). To remove surface adherent
bacteria from lab-reared C. vicina, pools of larvae and entire adult males and females
were separated and washed twice in sterile phosphate-buffered saline (PBS; pH 7.4),
snap-frozen in liquid nitrogen, and transferred to 280°C storage prior to DNA extrac-
tion. High-molecular-weight genomic DNA was isolated from C. vicina pooled samples
of 100 larvae as well as 10 entire adult males and females per replicate (n = 5 for each),
using a modified phenol-chloroform protocol recently applied to difficult samples
(7–13). A DNA library was prepared using the Illumina (San Diego, CA) 16S V3 and V4
rRNA library preparation method according to the manufacturer’s instructions (14) and
sequenced on the Illumina MiSeq platform with the 2� 250-bp paired-end (PE) rea-
gent kit v2, producing a total of 3,017,007 PE raw reads.

The processing of the amplicon reads followed a modified version of the pipeline
described in reference 15. Default parameters were used for all software unless otherwise
specified. The reads produced by the sequencing instrument were paired using the pro-
gram FLASH2 v2.2.00 (16). The paired reads were then quality trimmed using Trimmomatic
v0.38 (17). The trimmed reads were reformatted as fasta files, and the read headers were
modified to include the sample name. Mothur v1.45.2 (18) was used to remove reads with
homopolymers longer than 10nucleotides (nt) and to collapse the reads into unique repre-
sentatives. The collapsed reads were clustered using Swarm v2 (19). The clustered reads
were filtered based on their abundance, keeping representatives that were (i) present in
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one sample with a relative abundance of.0.1%, (ii) present in.2% of the samples with a
relative abundance of.0.01%, or (iii) present in 5% of the samples at any abundance level
(Fig. 1). The selected representatives were annotated using Qiime 2 v2017.4 (20) with the
Silva database v138 (21). The metagenomic 16S rRNA gene amplicon sequencing of C.
vicina field strain NZ_CalVic_NP reported here is a valuable resource for future studies
investigating the bacterial genetic mechanisms associated with flystrike.

Data availability. The 16S rRNA gene amplicon sequence data have been depos-
ited in the GenBank Sequence Read Archive (SRA) under the BioProject accession num-
ber PRJNA667961.
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