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Abstract: Biomass pre-treatment is a key step in achieving the economic competitiveness of biomass
conversion. In the present work, an imidazole pre-treatment process was performed and evaluated
using wheat straw and eucalyptus residues as model feedstocks for agriculture and forest-origin
biomasses, respectively. Results showed that imidazole is an efficient pre-treatment agent; however,
better results were obtained for wheat straw due to the recalcitrant behavior of eucalyptus residues.
The temperature had a stronger effect than time on wheat straw pre-treatment but at 160 ◦C and
4 h, similar results were obtained for cellulose and hemicellulose content from both biomasses
(ca. 54% and 24%, respectively). Lignin content in the pre-treated solid was higher for eucalyptus
residues (16% vs. 4%), as expected. Enzymatic hydrolysis, applied to both biomasses after different
pre-treatments, revealed that results improved with increasing temperature/time for wheat straw.
However, these conditions had no influence on the results for eucalyptus residues, with very low
glucan to glucose enzymatic hydrolysis yield (93% for wheat straw vs. 40% for eucalyptus residues).
Imidazole can therefore be considered as a suitable solvent for herbaceous biomass pre-treatment.

Keywords: pre-treatment; imidazole; hardwood; biomass; biorefinery

1. Introduction

There is a growing demand for solutions providing integration and flexibility in the
European energy system. These solutions should create flexibility between intermittent
electricity and sustainable fuel production and, at the same time, enable production under
economically competitive conditions from alternative carbon sources [1–4]. To accomplish
this objective, it is essential to develop flexible, selective, robust and less energy-demanding
integrated pre-treatments with the simultaneous separation of contaminants, as well as
optimization of pre-treatment technologies compatible with the use of multiple feedstocks.
This includes the efficient utilization of resources to produce purified fractions of carbo-
hydrates, lignin and other compounds for further processing and conversion into a wide
spectrum of products, such as proteins, biopolymers, organic acids, and furfural and its
derivatives [5–7].

The selection of the pre-treatment method depends on the biomass type as well as the
desired product, e.g., the delivery of upgradable sugars or lignin-derived commodities.
Several pre-treatment technologies are currently employed to overcome the recalcitrance
of lignocellulose, to increase hydrolysis efficiency and to improve the yields to monomeric
sugars [8–11]. Among them are mostly chemical methods, e.g., with acids or alkali. Nev-
ertheless, novel biomass pre-treatment protocols, such as those based on non-hazardous
catalysts and/or green solvents that simultaneously enable a reduction in the number of
hydrolytic enzymes needed for cellulose hydrolysis and for the fermentation inhibitors, are
still required. At the same time, these are the core options to obtain lignin (or its derivatives)

Molecules 2021, 26, 7591. https://doi.org/10.3390/molecules26247591 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1562-6658
https://orcid.org/0000-0002-5376-8430
https://orcid.org/0000-0002-7805-5744
https://doi.org/10.3390/molecules26247591
https://doi.org/10.3390/molecules26247591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26247591
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26247591?type=check_update&version=1


Molecules 2021, 26, 7591 2 of 14

and pure sugar streams [12–15]. Subsequently, these streams can work as feedstock for
fermentation into biofuels and other value-added applications.

Imidazole, along with ionic liquids [16–19], high-pressure fluids [20–22], and deep
eutectic solvents [23,24], belongs to these new pre-treatment options and, up until now, has
demonstrated considerable potential in the valorization of biomass, especially in the context
of biorefinery [4] focused on value-added products. Imidazole, being an environmentally
benign and non-hazardous solvent, turns the process of biomass pre-treatment into an
attractive alternative, offering the possibility of delivering a depolymerized lignin and
highly hydrolyzable polysaccharide fraction [25,26]. As such, the imidazole processing of
biomass is similar to that presented by organosolv pre-treatment [27,28].

The present work describes the application of imidazole pre-treatment in two repre-
sentative feedstocks of lignocellulosic residues, one of agricultural origin (wheat straw) and
the other of forest origin (eucalyptus residues). Wheat straw and eucalyptus residues are
two major lignocellulosic feedstocks for sustainable bioeconomic development in Europe.
Subsequently, pre-treated solids of both biomasses rich in polysaccharides are scrutinized
for the ability to originate concentrated reducing sugar streams, obtained in the enzymatic
saccharification process.

2. Experimental Section
2.1. Materials

The wheat straw sample was delivered by ECN (Energy Research Center of the
Netherlands), from The Netherlands. The eucalyptus residues were kindly provided
by The Navigator Company from their papermill in Cacia, Portugal. Wheat straw and
eucalyptus residues moisture contents were found to be 9.8 and 8.4 wt %, respectively,
and were determined using an AMB-50 moisture analyzer (Adam Equipment Inc., Oxford
CT, USA).

Both feedstocks were ground with a knife mill, IKA® WERKE, MF 10 basic (Staufen,
Germany), into particles smaller than 0.5 mm, homogenized in a defined lot, and stored in
plastic containers at room temperature prior to further use.

For the pre-treatment experiments and post-reaction processing, the following reagents
were used: imidazole with a purity of 99% w/w, purchased from Alfa Aesar, (Karl-
sruhe, Germany), NaOH pellets (99% purity) supplied by Eka Chemicals/Akzonobel
(Bohus/Sweden); 25% HCl aqueous solution prepared from 37% HCl solution (VWR Chem-
icals/AnalaR NORMAPUR®, Alfragide, Portugal)) using ultrapure water (18.2 MΩ/cm)
produced via the PURELAB Classic of Elga system; HCl solution with a pH of 2, pre-
pared from distilled water and a 25% HCl solution; 96% ethanol (v/v) and acetonitrile
at 99.9% purity, both from the Carlo Erba Group, Aresa, Italy. For filtration, cloth (made
from a cotton shirt), paper (ø = 150 mm, n. 1238, acquired from Filter-Lab®, Filtros Anoia,
S.A. Barcelona, Spain) and nylon filters (0.45 µm, also from Filter-Lab®, Filtros Anoia, S.A.
Barcelona, Spain) were used.

Glucose (≥98 wt %, Merck, Darmstadt, Germany), xylose (≥98 wt %, Merck, Ger-
many), arabinose (≥98 wt %, Merck, Germany), furfural (99 wt %, Sigma-Aldrich, Ger-
many), 5-hydroxymethylfurfural (99 wt %, Sigma-Aldrich, Taufkirschen, Germany) and
acetic acid (glacial, 99.8 wt %, Merck, Darmstadt, Germany) were used for the qualitative
and quantitative HPLC analyses of the obtained liquids and solids. Sulfuric acid (96 wt %,
Panreac, Barcelona, Spain) was used to prepare the mobile phase for the HPLC analyses
(5 mM sulfuric acid).

For the enzymatic hydrolysis assays, 0.1 M sodium citrate buffer (pH 4.8) prepared
from citric acid monohydrate (99.7% purity) and tris-sodium citrate (>99% purity), both
from VWR International Ltd. (Leicester, England), and 2 wt % sodium azide solution were
used. Celli®CTec2 (Cellulase, enzyme blend) solution, kindly provided by Novozymes
Europe, Denmark, was employed in the enzymatic reaction.
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2.2. Biomass and Pre-Treated Solid Characterization

Both biomasses and pre-treated solids were characterized according to the NREL
method [29], to determine the total moisture, total lignin and polysaccharide contents.
Acid-insoluble lignin was determined gravimetrically, while the acid-soluble lignin content
was established using UV spectrophotometry. The content of glucan and hemicelluloses
(xylan, arabinan, and acetyl groups) was determined using high-performance liquid chro-
matography (HPLC). Furthermore, for native biomasses, total extractives, ash and protein
contents were determined according to the standard methods—NREL/TP-510-42619 [30],
NREL/TP-510-42622 [31] and ISO 8968-1:2014 [32], respectively. All analyses were con-
ducted in duplicate and are presented as mean values.

2.3. Biomass Processing

The pre-treatment of biomass with imidazole was carried out on the basis of a pre-
viously developed method presented elsewhere [15] and is outlined in Figure 1. For all
the experiments, 5 g of air-dried biomass and 45 g of imidazole were placed into a 100 mL
Schott flask. The reaction vessel was then placed in an oil bath to guarantee continuous
and controlled stirring and heating. Reaction time started from the moment when the
desired temperature was reached. The reaction temperature and time were in the range
of 130–160 ◦C and 2 to 4 h. When the process ended, the flask containing the mixture
was removed from the bath and cooled down to 90 ◦C; then, 90 mL distilled water was
added slowly. Next, the obtained mixture was transferred to a 500 mL Erlenmeyer flask
and stirred for 1 h. This step promoted the precipitation of pulp, which was collected and
oven-dried at 45 ◦C for 24 h.
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2.4. Enzymatic Hydrolysis of Solids

Enzymatic hydrolysis assays were performed to evaluate the effect of pre-treatment
on glucan and xylan conversion to their corresponding monomers. The adopted procedure
was based on the standard NREL protocol [33]. For this purpose, native biomasses and
pre-treated materials were subjected to enzymatic hydrolysis at a 2% w/v total solids (dry
weight basis) concentration in 50 mL vials, with 5 mL of 0.05 M sodium citrate buffer (pH of
5), prepared from citric acid monohydrate and tris-sodium citrate, and 100 µL of a 2 wt %
sodium azide solution to prevent the undesired growth of microorganisms. Distilled water
was added to reach the 5.0 mL total volume, taking into account the volume of enzyme
added. The enzyme loading was 60 FPU/g glucan of Celli®CTec2 (199.9 FPU/mL). The
enzymatic hydrolyses were performed in a shaking incubator (Optic Ivymen system—
Madrid, Spain) at 180 rpm and 50 ◦C. Reaction blanks for both the substrate and the
enzyme solution were carried out under the same experimental conditions.

At the desired reaction time points (1, 4, 6, 24, 48 and 72 h), a 0.1 mL sample was taken,
diluted, filtered through a 0.45 mm filter and analyzed via HPLC. All enzymatic hydrolysis
assays were performed in duplicate.

The glucose and xylose yields were calculated according to the following formulas:

Glucose yield (%) =
162
180 × [glucose]×V

xcellulose−rich solid × glucan content × 100 and Xylose

yield(%) =
132
150 × [xylose]×V

xcellulose−rich solid × xylan content × 100, where the [glucose] and [xylose] concen-

trations were measured in g/L obtained in the hydrolysate, the values 162
180 and 132

150 are
the dehydration factors, V is the volume of solution in L, xcellulose−rich solid refers to the
cellulose-rich fraction in dry weight biomass, used in the enzymatic hydrolysis and ex-
pressed in g, and glucan or xylan contents refer to their contents in the solid fraction used
for the enzymatic hydrolysis.

2.5. Chemical Analysis

HPLC Analysis
The liquid phases obtained from the pre-treatment of biomass with imidazole and

enzymatic hydrolyses were analyzed using an Agilent 1100 series machine with a Bio-Rad
Aminex HPX-87H column (Bio-Rad, Hercules, CA, USA). The liquids obtained from the
characterization of native and pre-treated biomass were also analyzed by HPLC. Analyses
were performed at 65 ◦C, with 5 mmol/L H2SO4 used as the mobile phase, at a flow rate
of 0.6 mL/min. The detection was performed using an RID (refractive index detector)
for monosaccharides (glucose, xylose and arabinose) and acetic acid, and a DAD (diode
array detector) at 280 nm wavelength for furans (furfural (furan-2-carbaldehyde) and
5-HMF ≡ 5-hydroxymethylfurfural (5-(hydroxymethyl)-2-furaldehyde)). The quantitative
analyses were performed using the external calibration method with standard solutions.

3. Results and Discussion
3.1. Biomass Composition

The composition of both biomasses in their native form was determined, and the
obtained results are summarized in Table 1.

The obtained results demonstrate that the eucalyptus residues contain almost 20% more
cellulose than wheat straw. However, in the case of cellulose and hemicellulose, the content
of these polysaccharide fractions was very similar for both biomasses, above 60% that of
native feedstocks. On the other hand, the difference in lignin content in both biomasses was
more noticeable. Eucalyptus residues contained twice the lignin of wheat straw. Regarding
ash, wheat straw was significantly richer in ash than eucalyptus residues (11.4 wt % vs.
1.0 wt %). Similarly, the content of water extractives was much higher in wheat straw than
in eucalyptus residues (9.4 wt % vs. 3.3 wt %). The observed differences are typical, as
wheat straw is a form of herbaceous residue, whereas Eucalyptus globulus is an example of
hardwood; the composition of both types of biomasses presented in this work are similar
to those described in the literature [34–37].
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Table 1. Feedstock composition (wheat straw and eucalyptus residues).

Components (Dry Weight %) Wheat Straw Eucalyptus Residues

Glucan 35.9 ± 0.3 44.1 ± 0.9
Hemicellulose 26.7 19.6

Xylan 22.1 ± 0.6 15.7 ± 0.2
Arabinosyl group 2.0 ± 0.7 0.5 ± 0.1

Acetyl group 2.6 ± 0.9 3.4 ± 0.9
Lignin 16.7 33.8

Acid-insoluble 15.5 ± 0.4 26.4 ± 0.1
Acid-soluble 1.2 ± 0.1 7.4 ± 0.1

Ash 11.4 ± 0.1 1.0 ± 0.1
Extractives

Water 9.4 ± 1.3 3.3 ± 0.4
Ethanol 1.4 ± 0.1 1.5 ± 0.1

3.2. Pre-Treatment with Imidazole
3.2.1. Wheat Straw

All performed experiments resulted in two solid fractions composed mainly of polysac-
charides (cellulose and hemicellulose). The macromolecular composition of cellulose pro-
duced in the pre-treated wheat straw, as well as the percentage of recovered solid fraction,
are shown in Figure 2 and Table S1 in the Electronic Supplementary Information.
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Figure 2. Native wheat straw and solid fraction compositions (wt %), obtained from pre-treatment
with imidazole at varied reaction temperatures and times. The black line represents the recovered
solids (wt %). The cellulose amount, depicted as a grey bar, was measured in terms of glucan content,
and hemicellulose, represented as a white bar with a pattern, was measured as the sum of the xylan
and arabinosyl group content. Lignin is depicted as a grey bar with a pattern. Ash and other minor
components are not shown, for clarity in the figure.

It can be observed that at the mildest temperature studied (130 ◦C), the highest solid
recovery was obtained, with a value of 73.7 ± 0.6 wt %. An increase in the reaction
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temperature led to a gradual decrease in solids recovery, achieving only 60.7 ± 0.7 wt %
for the most severe reaction conditions (160 ◦C/4 h).

The obtained results also demonstrate that temperature is a dominant variable for
cellulose recovery. An increase in temperature for the same reaction time, e.g., 2 h, en-
ables enhancing the cellulose content by almost 15%, from 48.2 ± 0.1 wt % at 130 ◦C
to 55.1 ± 0.1 wt % at 160 ◦C. On the other hand, an increase in the reaction time from
2 to 4 h, at the same temperature, showed no influence on the cellulose content in the
pre-treated solids.

Regarding the hemicellulose content, an increase in either temperature or reaction
time had no influence, changing the hemicellulose content by far less than 15%; e.g., for
130 ◦C/2 h, it was 25.6 ± 0.5 wt %, while for 160 ◦C/2 h, it was 24.2 ± 0.7 wt %.

The third main fraction of the pre-treated solid is lignin. Similarly, the lignin con-
tent was significantly affected by temperature. For example, for 2 h, an increase in the
reaction temperature from 130 ◦C to 160 ◦C resulted in a reduction in lignin content from
9.6 ± 0.0 wt % to 5.3 ± 0.1 wt %. For a double-reaction time and the same range of reaction
temperatures, the decrease was even more pronounced; it dropped by almost 60%, i.e.,
from 9.6 ± 2.4 wt % to 4.1 ± 0.0 wt %.

The alkaline pre-treatment including imidazole disrupts the ester bonds between
lignin and hemicellulose, and breaks the hydrogen bonds between lignin, cellulose, and
hemicellulose, as demonstrated elsewhere [38]. This makes imidazole a good delignification
agent [26,39]. The same finding was observed in the present work because the delignification
yield, depending on the process conditions, varied from 59.6 ± 0.5 wt % to 85.9 ± 0.3 wt %.
At the same time, the cellulose recovery was very high, being 85.4 ± 3.0 wt % at 160 ◦C/4 h,
and, at 130 ◦C/2 h, it was 91.5 ± 1.8 wt %.

The obtained results are in agreement with the previous work presented in the litera-
ture. For example, Morais et al. [15] obtained 62.4 wt % of cellulose in the solid fraction with
a lignin removal of 91.4 wt %, at 170 ◦C/2 h. This is a significant increase when compared
to the results obtained at 110 ◦C/2 h, i.e., 42.2 wt % of cellulose content and 54.5 wt % of
lignin removal. Furthermore, they also reported a reduction in solids and hemicellulose
recovery with an increase in the reaction temperature. It is worth emphasizing that the
temperatures used in the referred work were higher than those reported here. This may ex-
plain the differences in the obtained results. Toscan et al. [39] also reported that in the case
of elephant grass, the cellulose content increased from 40.3 (114.4 ◦C/57 min) to 52.5 wt %
(135.6 ◦C/308 min), whereas the lignin content dropped from 9.4 wt % at 125.0 ◦C/5.0 min
to 4.6 wt % at 135.6 ◦C/308 min (increase in delignification from 50.7 to 81.8 wt %). Simi-
larly to this work, they also reported a reduction in the solid recovery yield with an increase
in temperature, with an 82.4 wt % yield for experiments performed at 114.4 ◦C/57 min,
while for 140 ◦C/182.5 min the solid recovery yield was only 59.9 wt % [39].

Comparing the obtained results to those reported in the literature for different biomass
pre-treatment technologies, (e.g., organosolv), it can be stated that the imidazole process is
very effective for the delignification of biomass. Salapa et al. (2017) analyzed the organosolv
pre-treatments of wheat straw [40]. They reported a production of a polysaccharide-rich
fraction with 66.6 wt % of cellulose and 60 wt % lignin removals for pre-treatment with 50%
(v/v) ethanol at 180 ◦C/20 min and 23 mM H2SO4. However, pre-treatment with 50% (v/v)
acetone at 180 ◦C/40 min and 23 mM H2SO4 allowed to achieve 76.4 wt % delignification
with 67.2 wt % cellulose. The same authors also studied the biomass processing at 160 ◦C. At
this temperature, the maximum delignification achieved was 65 wt %, with acetone as the
solvent, 23 mM H2SO4 and 40 min of reaction time. These results are considerably poorer
than the delignification achieved in the present work at the same temperature. In addition,
Wildschut et al. (2013) studied organosolv pre-treatment of wheat straw [41] and obtained
a high-purity polysaccharide fraction with 75 wt % of cellulose and a delignification of
75 wt % at 190 ◦C/1 h 60% aqueous ethanol, with 30 mM H2SO4. Although these results
seem to be better than those reported herein, it is important to emphasize that in both
abovementioned works, the temperature used was much higher and additional external
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catalysts were used. Wildschut et al. (2013) studied the influence of temperature on pre-
treatment without any catalyst and achieved a delignification of only 4.7 and 14.4 wt %
for 160 and 170 ◦C, respectively [41]. It is also worth mentioning that novel organosolv
pre-treatments have been studied at lower temperatures. Park et al. [42] pre-treated corn
stover and achieved a 90.3 wt % delignification with a flow-through process including a
150 ◦C/60 min reaction with an aqueous solution of 30 wt % ethanol and 10 wt % H2O2.

It is also important to compare the data obtained in the present work to those reported
using ionic liquids (ILs). As a precursor of ILs, imidazole can also be considered a cheaper al-
ternative to ILs in biomass processing [40]. Ren et al. [43] studied the pre-treatment of wheat
straw with nine novel renewable cholinium-based ILs and reported a maximum delignifi-
cation of 68.8 wt % with cholinium taurate under N2 stirred at 90 ◦C/6 h, which is a lower
temperature than those applied herein. In their study, da Costa Lopes et al. reported a solid
fraction with 83.4 wt % cellulose and only 2.8 wt % residual lignin, obtained with 1-butyl-
3-methylimidazolium thiocyanate at 120 ◦C for 6 h with a 5 wt % biomass/IL ratio [44].
The same authors also studied biomass fractionation with 1-ethyl-3-methylimidazolium
acetate, under the abovementioned conditions, and obtained carbohydrate-rich materials
and a separated lignin fraction with 87 wt % purity [45]. Brandt et al. [46] tested a different
1-butyl-3-H-imidazolium hydrogen sulfate ionic liquids and found that this IL was able to
remove up to 93 wt % of the lignin present in the raw material in a process carried out at
120 ◦C/20 h. Even though ILs allowed achieving similar results at similar temperatures
to those used in this work, imidazole has the advantage of being a much cheaper reagent
than most of the ILs tested so far.

3.2.2. Eucalyptus Residues

To compare the pre-treatment efficiency of both biomasses, the same procedure was
applied for the pre-treatment of eucalyptus residues. The macromolecular composition
of solid fractions produced during pre-treatment, as well as the percentage of recovered
solids from the initial biomass content in the respective fraction, are shown in Figure 3 and
Table S2 in the Electronic Supplementary Information. The solids recovery decreased with
temperature, from 95.9 ± 0.1 wt % at 130 ◦C/4 h to 92.0 ± 0.7 wt % at 160 ◦C/4 h; however,
the decrease was very low. The eucalyptus residues processing with imidazole under
different conditions had almost no effect on the selectivity of this biomass fractionation.
The solid fraction composition was almost constant for all the experimental conditions
tested. The cellulose content changed from 50.3 ± 1.2 wt % to 54.3 ± 0.2 wt % for 130 ◦C/2 h
and 160 ◦C/4 h, respectively. This means that in pre-treatment of eucalyptus residues with
imidazole, cellulose was almost not affected because a quantitatively similar recovery of
this macromolecule under all conditions tested was achieved.

When analyzing the lignin recovery, it can be stated that the pre-treatment of eucalyp-
tus residues with imidazole has little, if any, apparent effect in experimental conditions on
the lignin content. For all tested conditions, the lignin content varied from 17.1 ± 0.9 to
15.9 ± 0.4 wt %. Consequently, almost no change in the delignification yield was observed.
In the range of studied conditions, the removal of lignin was between 52.6 wt % and
56.6 wt % for the least and the most severe reaction conditions, respectively.

Other studies of the pre-treatment of eucalyptus residues with acidic ionic liquids
also demonstrated that delignification is very limited, and that cellulose can be recovered
in quantitative amounts. Only in the switch to a hydrogen-bond alkaline ionic liquid,
namely, 1-ethyl-3-methylimidazolium acetate, were the eucalyptus residues pre-treated
more efficiently; as little as 0.7 or 1.0 wt % of lignin was found in the solid fractions
produced at 120 ◦C/2 h and 140 ◦C/2 h [34].
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Figure 3. Native eucalyptus residues and solid fraction compositions (wt %), obtained from pre-
treatment with imidazole at varied reaction temperatures and times. The black line represents the
recovered solids (wt %). The cellulose amount depicted as the grey bar was measured as the glucan
content. The hemicellulose amount represented as the white bar with a pattern was measured as
the sum of xylan and arabinosyl group contents. Lignin content is depicted as the grey bar with a
pattern. The contents of ash and other minor components are not shown for the clarity of the figure.

3.2.3. Comparison between Wheat Straw and Eucalyptus Residues Pre-Treatments

Both biomasses were subjected to the same pre-treatment procedure, where two
variables (temperature and time) were studied. This protocol enables the comparison of
the pre-treatment efficiency in two different feedstock origins: agriculture and forest. The
efficiency was evaluated in terms of purity of the solid fraction and hemicellulose and
lignin removal.

In general, the temperature had a similar effect on the solid yields, as with an in-
crease in temperature, the solids recovery decreased for both biomasses. Regarding
the solid fraction, the lowest cellulose content was achieved under the mildest condi-
tions (48.2 ± 0.1 wt % at 130 ◦C), for wheat straw. By contrast, in terms of eucalyptus
residues, the lowest cellulose content was achieved for pre-treatment with imidazole
after 3 h at 145 ◦C (52.7 ± 0.4 wt %). The highest cellulose content was achieved for
the most severe conditions used in this study, i.e., at 160 ◦C/4 h, and was similar for
both biomasses – 55.1 ± 0.1 wt % and 54.3 ± 0.2 wt %, for wheat straw and eucalyptus
residues, respectively.

Analyzing the data presented above, it can also be concluded that for wheat straw,
lignin and hemicellulose recoveries decrease with temperature, while the cellulose recovery
showed negligible changes. Therefore, this difference indicates that the purity of cellulose
in the solid fraction increases with temperature, and this conclusion is valid for both
biomasses studied.

A significant difference between both biomasses was observed in terms of lignin
removal. The lignin content in the solid fraction of wheat straw decreased considerably
with temperature, while in the processed eucalyptus residues, the lignin content showed
negligible changes under pre-treatment conditions. In addition, wheat straw pre-treatment
reached delignification yields as high as 85.9 ± 0.3 wt % at 160 ◦C/4 h, indicating that



Molecules 2021, 26, 7591 9 of 14

imidazole is more efficient in the delignification of wheat straw than of eucalyptus residues,
for which the delignification yield was only 56.6 ± 0.3 wt % under the same conditions.
One of the reasons for this might be that hardwoods are more recalcitrant than herbaceous
and agricultural residues, making their pre-treatment more challenging. This is probably
attributed to their more rigid structure and higher lignin content, compared to the two oth-
ers [47]. Most of the lignin in wood is bonded to hemicellulose components like a cementing
agent, resulting in a complex and inaccessible structure. The differences observed in this
work could also be due to variations in the lignin-carbohydrate association, the lignin
distribution, or the lignin structure itself in agricultural residues and softwoods, which is
mostly composed of guaiacyl units, while agricultural wastes contain not only guaiacyl
but also syringyl and p-hydroxyphenyl units [48]. Thus, it can be concluded that although
biomass fractionation with imidazole is possible, the process is less efficient with wood
than with herbaceous biomass and others, as is also described in the literature [45,48,49].

Comparing the results of both biomasses pre-treated with imidazole to those presented
in the literature for ionic liquid pre-treatment [34], some similarities can be noted. For
example, the pre-treatment of both biomasses with 1-ethyl-3-methylimidazolium acetate
at 120 ◦C/2 h produced solids with a very similar cellulose content, i.e., 65.8 wt % and
66.7 wt % for wheat straw and eucalyptus residues, respectively. Furthermore, the observed
higher lignin content in processed eucalyptus residues was also found for the same ionic
liquid. The lignin content in pre-treated eucalyptus residues was as high as 23.1 wt %,
while for the pre-treated wheat straw, it was 17.2 wt % [34].

3.3. Enzymatic Hydrolysis

To evaluate the influence of a pre-treatment method on reducing sugars production,
the native biomasses and recovered solids were subjected to enzymatic hydrolysis. The
results are depicted in Figures 4 and 5 and Tables S3 and S4 in the Electronic Supplemen-
tary Information for wheat straw and Figures 6 and 7 Tables S5 and S6 in the Electronic
Supplementary Information for eucalyptus residues.
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Figure 4. Glucan to glucose yields of wheat straw pre-treated solids that were produced by im-
idazole pre-treatment. The enzymatic hydrolyses were performed at 2% (w/v) total solids with
60 FPU/g glucan of Cellic CTec2. The dashed lines are only used as a guide for the eye and have no
physical meaning.
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Figure 5. Glucan to glucose (grey bar) and xylan to xylose saccharification (white bar) yields, over
72 h of enzymatic hydrolysis time of wheat straw pre-treated solids, as a function of the pre-treatment
conditions. The enzymatic hydrolysis yields for native wheat straw are presented for comparison.
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Figure 6. Glucan to glucose yields that were produced by an imidazole pre-treatment of eucalyptus
residues. The enzymatic hydrolyses were performed at 2% (w/v) total solids with 60 FPU/g glucan
of Cellic CTec2. The dashed lines are only used as a guide for the eye and have no physical meaning.
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Figure 7. Glucan to glucose (grey bar) and xylan to xylose saccharification (white bar) yields for 72 h
of enzymatic hydrolysis of eucalyptus residues as a function of the pre-treatment conditions. The
enzymatic hydrolysis yields for native wheat straw are presented for comparison.

In general, the glucan to glucose yield increased for all the samples obtained after
pre-treatment with imidazole; however, the enzymatic digestibility of the polysaccharide
was strongly dependent on the pre-treatment conditions and the biomass used. For both
biomasses, an increase in the hydrolysis time resulted in an increase in either glucose or
xylose released for all samples tested.

Figures 4 and 5 demonstrate that with an increase in the severity of pre-treatment
conditions (temperature and time of reaction), an increase in the enzymatic digestibility of
pre-treated wheat straw was observed. These results were expected since either tempera-
ture or time affect the composition of the recovered solids, as discussed above. A maximum
glucan to glucose yield was achieved after 72 h of enzymatic hydrolysis for the solids sub-
jected to the most severe pre-treatment conditions (160 ◦C/4 h), obtaining 93.3 ± 1.6 mol%
and 77.3 ± 1.0 mol% for glucan to glucose and xylan to xylose yields, respectively. In a
previous report [15], it was demonstrated that temperature played an important role in
improving the enzymatic hydrolysis of solids obtained in the pre-treatment of wheat straw
with imidazole. An increase in process temperature from 130 to 160 ◦C for 2 h pre-treatment
time resulted in an increase in the glucose yield from 62.6 ± 1.5 to 84.3 ± 0.8 mol %, an
increase by 193% and 294%, respectively, in comparison to native biomass.

Pre-treatment time also affects enzymatic hydrolysis and an increase in the reaction
time leads to an increase in the glucan to glucose yield. However, in this case, the difference
is less pronounced. For both temperatures, 130 ◦C and 160 ◦C, an increase in pre-treatment
time from 2 to 4 h enabled an increase in the glucan to glucose yield by 11.6% and 10.8%,
respectively. Hence, in the case of wheat straw, the main factor influencing the enzymatic
hydrolysis is the pre-treatment temperature.

The enzymatic digestibility of polysaccharide fractions is strongly dependent on sev-
eral factors and one of the main factors influencing the enzymatic hydrolysis is the lignin
content. The obtained results demonstrated that a linear relation exists (Glucan to glucose
yield (mol%) = 122.97 ∗ delignification (% (w/w) − 9.465, R2 = 0.94) between the
biomass delignification and the efficiency of enzymatic digestibility. The extensive re-
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moval of lignin favors enzymatic hydrolysis, confirming that lignin is one of the most
important inhibitors of efficient enzymatic hydrolysis.

Analogous to wheat straw, the pre-treatment of eucalyptus residues with imidazole
improved the enzymatic hydrolysis, especially when compared to the native biomass, as
demonstrated in Figures 6 and 7. However, in this case, the yield of enzymatic hydrolysis
was almost independent of pre-treatment conditions, obtaining 40 mol% for the glucan to
glucose yield after 72 h of enzymatic hydrolysis for all conditions tested. Even an increase
in hydrolysis time to 144 h allowed only a small increase in the glucan to glucose yield, to
merely 47.6 ± 0.9%.

Although imidazole pre-treatment resulted in a four-fold increase in glucose yields
in comparison to native biomass, the hydrolysis yields detected were lower than those
observed for wheat straw (2.3-fold lower). This difference again confirms that the biomass
type is crucial in efficient biomass processing for obtaining a high enzymatic hydrolysis
yield. Similar conclusions were drawn in the case of ionic liquid pre-treatment with the
same biomasses [34], where it was demonstrated that, besides the lignin removal, a change
in cellulose crystallinity is fundamental to achieve the efficient release of reducing sugar.

4. Conclusions

The performed studies demonstrated that imidazole can be considered a potential
solvent for biomass pre-treatment. Imidazole allowed us to separate the main fractions
of wheat straw and to produce pre-treated solids. Such solids were shown to be suitable
feedstock for reducing sugar production. On the other hand, eucalyptus residues were
demonstrated to be much more resistant to imidazole processing; very limited delignifica-
tion of this residue was achieved in the range of studied conditions. This, in turn, resulted
in a very low enzymatic hydrolysis yield.

Therefore, imidazole was shown to be efficient for the treatment of herbaceous
residues, whereas for hardwood, within the range of studied conditions, imidazole was
not the best choice. These results confirm that the efficiency of pre-treatment, as well
as subsequent enzymatic hydrolysis yield, are dictated by the reaction solvent and the
properties of the processed biomass.

Supplementary Materials: The following are available online, Table S1: Composition of solid frac-
tions obtained from wheat straw pre-treated with imidazole, Table S2: Composition of solid fractions
obtained from eucalyptus residues pre-treated with imidazole, Table S3: Glucan-to-glucose yield
(mol%) of wheat straw pre-treated solids that were produced by imidazole pre-treatment, Table S4:
Glucan to glucose and xylan to xylose saccharification yield (mol%) for 72 h of enzymatic hydrol-
ysis time of wheat straw pre-treated solids as a function of the pre-treatment conditions, Table S5:
Glucan-to-glucose yield (mol%) of eucalyptus residues pre-treated solids that were produced by
imidazole pre-treatment, Table S6: Glucan to glucose and xylan to xylose saccharification yield
(mol%) for 72 h of enzymatic hydrolysis time of wheat straw pre-treated solids as a function of the
pre-treatment conditions.
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