
An HMM-Based Comparative Genomic Framework for
Detecting Introgression in Eukaryotes
Kevin J. Liu1,2*, Jingxuan Dai1, Kathy Truong1, Ying Song3, Michael H. Kohn2, Luay Nakhleh1,2*

1 Department of Computer Science, Rice University, Houston, Texas, United States of America, 2 Department of Ecology and Evolutionary Biology, Rice University,

Houston, Texas, United States of America, 3 The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of

Agricultural Sciences, Beijing, China

Abstract

One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the
integration of genetic material from one species into the genome of an individual in another species. The evolution of
several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been
already established. In this work, we report on PhyloNet-HMM—a new comparative genomic framework for detecting
introgression in genomes. PhyloNet-HMM combines phylogenetic networks with hidden Markov models (HMMs) to
simultaneously capture the (potentially reticulate) evolutionary history of the genomes and dependencies within genomes.
A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of
our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus) genome detected a recently
reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly
detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome
7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes). Further, our model detected
no introgression in a negative control data set. We also found that our model accurately detected introgression and other
evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and
migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously
accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism.
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Introduction

Hybridization is the mating between species that can result in the

transient or permanent transfer of genetic variants from one species

to another. The latter outcome is referred to as introgression. Mallet

[1] recently estimated that "at least 25% of plant species and 10% of

animal species, mostly the youngest species, are involved in

hybridization and potential introgression with other species."

Introgression can be neutral and go unnoticed in terms of

phenotypes but can also be adaptive and affect phenotypes. Recent

examples of adaptation through hybridization include resistance to

rodenticides in mice [2] and mimicry in butterflies [3]. Detecting

regions with signatures of introgression in eukaryotic genomes is of

great interest, given the consequences of introgression in evolution-

ary biology, speciation, biodiversity, and conservation [1]. With the

increasing availability of genomic data, it is imperative to develop

techniques that detect genomic regions of introgressive descent.

Let us consider an evolutionary scenario where two speciation

events result in three extant species A, B, and C, with A and B

sharing a most recent common ancestor. Further, some time after

the splitting of A and B, hybridization occurs between B and C

(that is, sexual reproduction of individuals from these two species).

This scenario is depicted by the phylogenetic network in Fig. 1.

Immediately upon hybridization, approximately half of the hybrid

individual’s genome comes from an individual in species B,

whereas the remainder comes from an individual in species C.

However, in homoploid hybridization, where the hybrid offspring

has the same ploidy level as the two parental species, hybridization

is often followed by back-crossing (further mating between the

hybrid population and either of the two parental populations).

Repeated back-crossing, followed by the effects of genetic drift and

natural selection, results in genomes in the hybrid individuals that

are mosaics of genomic material from the two parental species, yet

not necessarily with a 50–50 composition. Thus, detecting

introgressed regions requires scanning across the genome and

looking for signals of introgression.

In a comparative framework, detecting introgressed regions can

be achieved by evolutionary analysis of genomes from the parental

species, as well as genomes from introgressed individuals. In such

an analysis, a walk across the genomes is taken, and local

genealogies are inspected; incongruence between two local
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genealogies can be taken as a signal of introgression [4]. (Here, we

focus on topological incongruence; see [5] for a related discussion

on local variation of coalescence times.) However, in reality, the

analysis is more involved than this, owing to potentially

confounding signal produced by several factors, a major one of

which is incomplete lineage sorting (ILS). As recombination breaks

linkage across loci in the genome, the result is that independent

loci might have different genealogies by chance, which is known as

ILS. ILS is common to several groups of eukaryotic taxa where

species diverged with insufficient time for all genomic loci to

completely sort, resulting in a scenario where introgression and

ILS effects need to be distinguished [3,6–9]. Fig. 1 illustrates this

issue, where local genealogies across recombination breakpoints

differ due to ILS, but also differ inside vs. outside introgressed

regions. While other factors, such as gene duplication and loss

[10], could potentially add to the complexity of the phylogenetic

and genomic patterns, we focus here on introgression and ILS.

Recently, new methods were proposed to detect introgression in

the presence of ILS. Durand et al.’s D statistic allows for a sliding-

window analysis of three-taxon data sets, while accounting for

introgression and ancestral polymorphism [11]. However, this

statistic assumes an infinite-sites model and independence across

loci. Yu et al. [5] proposed a new statistical model for the likelihood

of a species phylogeny model, given a set of gene genealogies,

accounting for both ILS and introgression. However, this model

does not work directly from the sequences; rather, it assumes that

gene genealogies have been estimated, and computations are

based on these estimates. Further, the model assumes indepen-

dence across loci. Of great relevance to our work here is an array

of hidden Markov model (HMM) based techniques that were

introduced recently for analyzing genomic data in the presence of

recombination and ILS [12–14]; however, these methods do not

account for introgression. A recent extension [15] was devised to

investigate the effects of population structure and migration.

Finally, Saguaro is a recent method that combines HMMs with

artificial neural networks to annotate genomic regions into

different classes based upon local phylogenetic incongruence

[16]. The classes are meant to categorize local genealogies, but the

method is not aimed at elucidating the cause of incongruence.

In this paper, we devise a novel model based on integrating

phylogenetic networks with hidden Markov models (HMMs). The

phylogenetic network component of our model captures the

relatedness across genomes (including point mutation, recombi-

nation, ILS, and introgression), and the HMM component

captures dependence across sites and loci within each genome.

Using dynamic programming algorithms [17] paired with a

multivariate optimization heuristic [18], the model can be trained

on genomic data, and allows for the identification of genomic

regions of introgressive descent. We applied our model to

chromosome 7 genomic variation data from three mouse data

sets. Our analysis recovered an introgression event involving the

rodenticide resistance gene Vkorc1, which was recently reported in

the literature [2]. Based on the analysis, 9% of sites within

chromosome 7 are in fact of introgressive origin, which is a novel

finding in that previously only a localized region (that included

Vkorc1) had been identified, with no further regions scanned. When

applied to the negative control data set, our model did not detect

any introgression, further attesting to its robustness. Our software

is publicly available as part of the open-source PhyloNet

distribution [19]. The method and software will enable new

analyses of eukaryotic data sets where introgression is suspected,

and will further help shed light on the Tree of Life—or, Network

of Life.

Materials and Methods

Problem definition
Let G be a set of aligned genomes g1,g2, . . . ,gm, and Gi denote

the ith site in the alignment (if we view the alignment as a matrix

where the rows are the genomes and the columns are the sites,

then Gi is the ith column in the matrix). Since the genomes are

aligned, every Gi has evolved down a local genealogy, and since we

assume that hybridization has occurred, each local genealogy has

evolved within the branches of a parental tree. This is illustrated in

Fig. 2.

It is important to note that for each Gi, any tree could be the

local genealogy. That is, if we denote by D(m) the set of rooted

binary trees on m leaves, then for each Gi, it is the case that

P(Gijt,l)w0, for every tree t[D(m) along with its branch lengths l.

However, the set of parental species trees is always constrained by

the actual evolutionary history of species. For example, in Fig. 2,

only the two shown trees y1 and y2 are the possible parental

species trees. Given a set G of m aligned genomes, each of length n,

and a set Y of parental species trees, we define a set of n random

variables pi each of which takes values in the set

f(t,y) : t[D(m),y[Yg. We are now in position to define the

problem for which we provide a solution:

N Input: A set G of m aligned genomes, each of length n, and a

set Y of parental species trees.

N Output: For each site 1ƒjƒn, the probability

P(pj~(tx,yy)jG) ð1Þ

for every tx[D(m) and yy[Y.

Once this problem is solved and the method is run on a set of

aligned genomes, we will be able to deduce the evolutionary

Author Summary

Hybridization is the mating between individuals from two
different species. While hybridization introduces genetic
material into a host genome, this genetic material may be
transient and is purged from the population within a few
generations after hybridization. However, in other cases,
the introduced genetic material persists in the popula-
tion—a process known as introgression—and can have
significant evolutionary implications. In this paper, we
introduce a novel method for detecting introgression in
genomes using a comparative genomic approach. The
method scans multiple aligned genomes for signatures of
introgression by incorporating phylogenetic networks and
hidden Markov models. The method allows for teasing
apart true signatures of introgression from spurious ones
that arise due to population effects and resemble those of
introgression. Using the new method, we analyzed two
sets of variation data from chromosome 7 in mouse
genomes. The method detected previously reported
introgressed regions as well as new ones in one of the
data sets. In the other data set, which was selected as a
negative control, the method detected no introgression.
Furthermore, our method accurately detected introgres-
sion in simulated evolutionary scenarios and accurately
inferred related population genetic quantities. Our method
enables systematic comparative analyses of genomes
where introgression is suspected, and can work with
genome-wide data.
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history of every site, thus answering questions such as (1) which

regions in the genomes are of introgressive descent (these would be

the ones whose parental species tree, for the example in Fig. 2, is

y2; (2) is there recombination within introgressed regions (these

would be indicated by switching among local genealogies in a

region yet all genealogies evolved within y2); and, (3) what is the

distribution of lengths of introgressed regions.

The PhyloNet-HMM model: A simple case first
Let us consider the scenario of Fig. 2, where only one individual

is sampled per species. We propose a hidden Markov model

(HMM) for modeling the evolution of the three genomes. The

HMM for this simple case would consist of 7 states: a start state s0,

and six additional states: qi (1ƒiƒ3), corresponding to three

possible local genealogies within parental tree y1, and ri (1ƒiƒ3),

corresponding to three possible local genealogies within parental

tree y2. We denote by g(qi) and g(ri) the local genealogies to

which states qi and ri correspond, respectively; see Fig. 3.

In this model, transition between two q states or two r states

corresponds to switching across recombination breakpoints. The

probabilities of such transitions have to do with population

parameters (e.g., population size, recombination rates, etc.).

Transition from a q state to an r state indicates entering a

introgressed region, while transition from an r state to a q state

indicates exiting an introgressed region. The probabilities of such

transitions have to do, in addition, with introgression and

evolutionary forces (back-crossing, selection, etc.). Each state emits

a triplet of letters that corresponds to a column in the three-

genome sequence alignment. The probability of emitting such a

triplet can be computed using a standard phylogenetic substitution

model [20].

Following the approaches of [12,21], the transition probabilities

in our model do not represent parameters in an explicit

evolutionary model of recombination and introgression. Our

choice was made to ease analytical representation and to permit

tractable computational inference. We contrast our choice with

alternative approaches: examples include (in order of increasing

tractability of computational inference at the cost of more

simplifying assumptions) methods incorporating the coalescent-

with-recombination model [22], the sequentially Markovian

Figure 2. Local genealogies and parental species trees. The set G~fg1,g2,g3g of genomes (a) have a reticulate evolutionary history, where
individuals in B have some genetic material from the common ancestor of B and A, and other genetic material from C (b). In particular, the "blue
locus" in the genomes has t1 as its local genealogy and the "red locus" in the genomes has t2 as its local genealogy (c). Further, genealogy t1 for the
blue site evolved within the parental species tree y1 , whereas genealogy t2 for the red locus evolved within the parental species tree y2.
doi:10.1371/journal.pcbi.1003649.g002

Figure 1. Evolutionary and genomic views of three genomes involving introgression. Hybridization between species B and C results in
individuals of species B with genomes that are mosaics with regions of "vertical" descent from B and others of introgressive descent from C. Walking
along the genomes from left to right, local genealogies are observed, and when a recombination breakpoint is crossed, the local genealogy changes.
(Here, the term local genealogy refers to the local tree describing the evolutionary history of a single site in the alignment.) Switching of local
genealogies of unlinked (broken by recombination) loci is known as incomplete lineage sorting (ILS). Further, the walk enters regions of introgressive
descent (II and IV), where the genealogies switch due to hybridization. The complexity of the model stems from the co-occurrence of ILS and
introgression, and the need to tease them apart. Within the phylogenetic network of the species (leftmost), three possible local genealogies are
shown: one that agrees with how species split and diverged (red), one that is reflective of the introgression event (blue), and another that is a
signature of ILS (brown).
doi:10.1371/journal.pcbi.1003649.g001

An HMM-Based Framework for Detecting Introgression
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coalescent-with-recombination model [14] (which adds the single

assumption that coalescence cannot occur between two lineages

that do not share ancestral genetic material), and the discretized

sequentially Markovian coalescent-with-recombination model [23]

(which additionally discretizes time).

Assuming that the probability of a site (or locus) in the genome

of B being introgressed (in this case, inherited from C) is c, we

follow the model of [5] and use this parameter to constrain the

transition probabilities. Furthermore, we capture topological

changes in local genealogies due to recombination using param-

eters s—the probability of switching from a local genealogy

congruent with its containing parental tree to one that is

incongruent—and u—the probability of switching from a gene

genealogy incongruent with its containing parental tree to one that

is congruent. Finally, we model incomplete lineage sorting by

allowing every local genealogy with the probability of observing it

given its containing parental tree [24].

For example, assume a site is emitted by state q1 and consider

the next site. If the next site is in an introgressed region, the HMM

should switch, with probability c, to an r state. If the next site is not

in an introgressed region, then the HMM should stay in the q

states, with probability 1{c, and the next HMM state depends

upon whether or not the two sites are separated by a

recombination breakpoint that causes a change in local genealogy

incongruence (with respect to the containing parental tree y1): if

they are, then the HMM should switch from state q1 to a different

state qi (i=1) with probability s; otherwise, the HMM should stay

in state q1 with probability 1{2s. Thus, the transition probability

from q1 to any other qi (1ƒiƒ3) state is (1{c)f (q1,qi) and to any

ri (1ƒiƒ3) state is cz(ri), where

f (q1,qi)~
z(qi)d(q1,qi)P
j z(qj)d(q1,qj)

,

d(q1,qi) is either s or 1{2s depending on whether or not the

HMM transition corresponds to a change in local genealogy

incongruence, z(qi) is the probability of genealogy g(qi)’s topology

given the parental tree in y1, and z(ri) is the probability of

genealogy g(ri)’s topology given the parental tree y2. The z
quantities are computed under the coalescent using the technique

of [24].

If we denote by S the set fq1,q2,q3,r1,r2,r3g of (non-start) states,

then a transition from the start state s0 to a state s[S occurs

according to the the normalized gene tree probability

ts~
z(s)P

s’[S

z(s’)
:

For s1,s2[S such that s1 and s2 correspond to the same parental

tree, let ns1,s2
~(1{c)f (s1,s2). Furthermore, for s1[S, let

is1
~cz(s1). Then, the full transition probability matrix, with rows

labeled s0,q1,q2,q3,r1,r2,r3 from top to bottom, and similarly for

columns (from left to right), is

Figure 3. Illustrating PhyloNet-HMM. The structure of the HMM (only states are shown) that PhyloNet-HMM builds for the simple scenario of one
individual sampled per species in Fig. 2. The three q states correspond to genomic regions whose evolution follows the parental tree y1 , and there is
a state for each of the three possible local genealogies. The three r states correspond to genomic regions whose evolution follows the parental tree
y2 , and there is a state for each of the three possible local genealogies. s0 is the start state. See text for emission and transition probabilities.
doi:10.1371/journal.pcbi.1003649.g003

Figure 4. From a phylogenetic network to a MUL-tree. Illustration of the conversion from a phylogenetic network to a MUL-tree, along with all
allele mappings associated with the case in which single alleles a, b, c and d were sampled from each of the four species A, B, C and D, respectively.
doi:10.1371/journal.pcbi.1003649.g004
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:

Given that

X3

i~1

z(qi)~
X3

i~1

z(ri)~1,

and

X3

k~1

f (qi,qk)~
X3

k~1

f (rj ,rk)~1

for every pair of indices i and j, it follows that the entries in each

row of the matrix add up to 1. Further, the HMM always starts in

state s0; that is the initial state probability distribution is given by 1
for state s0 and 0 for every other state.

Once in a state s[S, the HMM emits an observation

O[fA,C,T ,Ggm|1
, which is a vector in the genomic sequence

alignment. Emissions occur according to a substitution model h

(we used the generalized time-reversible (GTR) model [25]),

yielding the emission probability

es,h(O)~P½Ojs,h�

~P½Ojg(s),bg(s),h�,

where bg(s) are the branch lengths of the gene tree associated with

state s. (It is straightforward to extend our model to other

substitution models, including models nested within the GTR

model and the GTR+C model, where C is an additional

parameter for rate variation across sites.)

The PhyloNet-HMM model: The general case
Modeling a phylogenetic network in terms of a set of parental

trees fails for most cases [26]. For example, if two individuals are

sampled from species B in Fig. 1, then one allele of a certain locus

in one individual may trace the left parent (to C), while another

allele of the same locus but in the other individual may trace the

right parent (to A). Neither of the two parental trees in Fig. 3 can

capture this case. Similarly, if one individual is sampled per

species, but multiple introgression events occur or divergence

events follow the introgression, the concept of parental trees

collapses [5].

To deal with the general case—where multiple introgressions

could occur, multiple individuals could be sampled, and

introgressed species might split and diverge (and even hybridize

again later) —we propose the following approach that is based on

MUL-trees [5].

The basic idea of the method is to convert the phylogenetic

network N into a MUL-tree T and then make use of some existing

techniques to complete the computation on T instead of on N . A

MUL-tree [27] is a tree whose leaves are not uniquely labeled by a

set of taxa. Therefore, alleles of individuals sampled from one

species, say x, can map to any of the leaves in the MUL-tree T
that are labeled by x. For network N on taxa X , we denote by Ax

the set of alleles sampled from species x (x[X ), and by cx the set of

leaves in T that are labeled by species x. Then an allele mapping is a

function f : (|x[XAx)?(|x[Xcx) such that if f (a)~d, and d[cx,

then a[Ax [5]. Fig. 4 shows an example of converting a

phylogenetic network into a MUL-tree along with all allele

mappings when a single allele is sampled per species. The branch

lengths and inheritance probabilities c are transferred from the

phylogenetic network to the MUL-tree in a straightforward

manner (see [5] for details).

Now, two changes to the PhyloNet-HMM given for the simple

case above are required. While in the simple case above, we used

two classes of states (the q and r states), in the general case, the

PhyloNet-HMM will contain k classes of states, where k is the

number of all possible allele mappings. As above, the transitions

within a class of states corresponds to local phylogeny switching

due to recombination and ILS, whereas transitioning between

classes corresponds to introgression breakpoints. Second, the

probability of observing a genealogy’s topology given a containing

parental tree is now computed using the method of [5], since the

methods of [24,28] are not applicable to MUL-trees.

Learning the model and conducting inference
We used a hill-climbing heuristic to infer model parameters l

that maximize the likelihood of the model P(GjM). Here, the

model M consists of

N the parental trees (topologies and branch lengths);

Figure 5. Model used for simulation of introgression. Migration
from population B to population A proceeds at rate M , beginning at
time tm2 and ending at time tm1 . Times t1 and t0 correspond to the split
of populations A and B and the split of the outgroup population from
the ancestral population of A and B, respectively.
doi:10.1371/journal.pcbi.1003649.g005

An HMM-Based Framework for Detecting Introgression

PLOS Computational Biology | www.ploscompbiol.org 5 June 2014 | Volume 10 | Issue 6 | e1003649



N local genealogies (topologies and branch lengths);

N the DNA substitution model parameters h;

N the parental tree switching probability, c; and.

N the parameters s and u, which contribute to local genealogy

switching within a containing parental tree.

Notice that the z() values are completely determined by the

parental tree branch lengths and gene tree topology; hence, they

are not free parameters in this model.

The standard forward and backward algorithms [17] were used

to compute the model likelihood for fixed l. We used Brent’s

method [18] as a univariate optimization heuristic during each

iteration of the hill-climbing search heuristic. To reduce the

possibility of overfitting during optimization, branch length

parameters were optimized for each topologically distinct parental

tree, and similarly for each topologically distinct unrooted

gene genealogy (since we use a reversible substitution

model). States therefore "shared’’ branch length parameters

based on topological equivalence of parental trees and gene

genealogies.

To evaluate the effectiveness of our optimization heuristic, we

utilized different starting points for the model inference phase. We

found that our heuristics were robust to the choice of starting point

since the searches all converged to the same solution (data not

shown). We found that the choice of starting point only affected

search time.

After model parameter values were inferred, Viterbi’s algorithm

[17] was used to compute optimal state paths and, thus,

annotations of the genomes. More formally, using Viterbi’s

Table 1. Previously reported population genetic estimates upon which our simulation parameter settings were based.

Population genetic quantity Estimate Source

Divergence time to MRCA of M. musculus and M. spretus At least 1.5 Mya bp [31]

Number of M. m. domesticus generations per year 1–2 [41]

Number of M. spretus generations per year 2 [41]

M. m. domesticus effective population size 8 � 104 to 2 � 105 [42]

M. m. domesticus effective population size 1 � 105 to 2 � 105 [43]

M. m. domesticus effective population size 105 [41]

M. m. domesticus effective population size

(using mutation rate estimate most similar to [33]) 3:3 � 105 to 5:7 � 105 [44]

The branch lengths (in coalescent units) used for our simulation were based upon the previously reported quantities. See text for more details.
doi:10.1371/journal.pcbi.1003649.t001

Table 2. Mouse samples and data sets.

Sample name Species/ssp. Alias

Spanish-mainland-domesticus M. m. domesticus MWN1287

Georgian-domesticus M. m. domesticus DGA

A-spretus M. spretus SPRET/EiJ

B-spretus M. spretus SEG/Pas

A-musculus M. m. musculus Yu2097m

B-musculus M. m. musculus Yu2120f

Sample name Origin Gender Source

Spanish-mainland-domesticus Roca del Valles, Catalunya, Spain Female [37]

Georgian-domesticus Adjaria, Georgia Male [31,37]

A-spretus Puerto Real, Cadiz Province, Spain Male This study

B-spretus Sante Fe, Granada Province, Spain Male [38]

A-musculus Urumqi, Xinjiang, China Male [37]

B-musculus Hebukesaier, Xinjiang, China Female [37]

Data set Set of samples used

M. m. domesticus Spanish-mainland-domesticus, Georgian-domesticus, A-spretus, B-spretus

M. m. musculus control A-musculus, B-musculus, A-spretus, B-spretus

We obtained a new mouse sample and also used existing mouse samples from previous studies. The array CEL files for existing mouse samples are available online
(http://cgd.jax.org/datasets/diversityarray/CELfiles.shtml and by request from the authors of [38]). The introgression scans examined patterns of local phylogeny
switching involving an M. m. domesticus sample from the region of sympatry with two M. spretus strains and a baseline M. m. domesticus sample from far away. The
control scans utilized the two M. spretus strains along with two wild M. m. musculus mice that were known to not have introgressed with M. spretus.
doi:10.1371/journal.pcbi.1003649.t002
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algorithm, we computed

p�/argmaxpP(G,p):

Further, we used the forward and backward algorithms to

conduct posterior decoding and assess confidence for the states on

a path p:

P(pi~kjG)~
fk(i)bk(i)

P(G)
,

where fk(i) is the probability of the observed sequence alignment

up to and include column i, requiring that pi~k (computable with

the forward algorithm); bk(i) is the probability of the last L{i

columns (L is the total number of columns in the alignment),

requiring that p~k (computable with the backward algorithm);

and, P(x) is the probability of the alignment (computable with

either the forward or backward algorithms).

In the Results section, we show results based on both the

optimal path, p�, as well as posterior decoding, as the latter

provides the probabilities in Eq. (1) in the problem formulation

above.

Simulated data
To evaluate the performance of PhyloNet-HMM in scenarios

where the true history of evolutionary events are known, we

simulated data under the coalescent model [29] with recombina-

tion, isolation, and migration [22] using ms [30]. The specific

model used for our simulation (Fig. 5) is based upon the consensus

phylogeny for the species in our empirical study [31], to which we

added migration processes. It is important to note that the model

differs in one aspect compared to the one in the empirical study:

the empirical data sets were sampled so that one Mus musculus

sample had a very low chance of being introgressed, whereas both

M samples in the simulation may be involved in introgression.

The simulation conditions were based upon consensus estimates

from relevant prior literature (summarized in Table 1). We used a

divergence time between in-group taxa of 1.5 Mya, generation

time of 2 generations per year, and an effective population size Ne

of 50,000, which implies divergence time t1~1:5 between the M

Figure 6. Comparison of the percentage of introgressed sites inferred by PhyloNet-HMM versus two lower bounds on simulated
data sets. The percentage of sites is the number of sites i for which pi , based on Eq. (2), is §0:75, divided by the total number of sites in the
simulated genomes, which is 100,000. The lower bounds on the true percentage of introgressed sites are based on the frequency that one of the two
lineages from population A coalesced with lineages in population B between times tm2 and t1. (See Materials and Methods for additional discussion.)
Six model conditions are shown, encompassing three migration rates and two different dates of migration. A migration rate M~0 corresponds to a
pure isolation model, whereas a migration rate Mw0 corresponds to an isolation-with-migration model. Standard error bars are shown, and the
number of replicates for each model is 20.
doi:10.1371/journal.pcbi.1003649.g006
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and S populations. The outgroup population split from the

ancestral population of A and B at time t0~10. We used a cross-

over rate r~1000, corresponding to 1:0 cM/Mb (compare with

the 0:6 cM/Mb reported for mice and the 1:3 cM/Mb reported

for humans [32]). We explored multiple migration scenarios

hypothesizing either no migration (M~0) or migration at one of

two different rates (M~0:4 or M~0:8). For scenarios including

migration, we utilized two different sets of relatively recent

migration times (either between tm2~0:015 and tm1~0:15 or

between tm2~0:015 and tm1~0:3) compared to the divergence

time between A and B. Finally, substitutions occurred according to

h~0:02, corresponding to 10{8 substitutions/site/year based on

the Ne estimate above (compared with 4 � 10{9 substitutions/site/

year reported by [33]).

A simulation condition consisted of a setting for each simulation

parameter (in 4Ne units, as required by ms [30]). For each

condition, we repeated simulation to produce twenty replicate

datasets per condition. The simulation of an individual dataset

proceeded in two steps. First, ms was used to simulate local gene

genealogies given the the coalescent model specified by the

simulation condition. Then, using seq-gen [34], DNA sequence

evolution was simulated on each local genealogy under the Jukes-

Cantor model of substitution [35]. Sequences were simulated with

total length of 100 kb distributed across the local genealogies.

Mouse sample selection and data sets
Our study utilizes six mice that were either newly sampled or

from previous publications. Details for the six mice are listed in

Table 2.

Newly sampled mice were obtained as part of a tissue sharing

agreement between Rice University and Stefan Endepols at

Environmental Science, Bayer CropScience AG, D-40789 Mon-

heim, Germany and Dania Richter and Franz-Rainer Matuschka

at Division of Pathology, Department of Parasitology, Charité-

Universitätsmedizin, D-10117 Berlin, Germany (reviewed and

exempted by Rice University IACUC).

The M. m. domesticus data set was constructed as follows. We

included a wild M. m. domesticus sample from Spain, part of the

sympatry region (i.e., where the species co-occur geographically)

between M. m. domesticus and M. spretus. To help maximize genetic

differences as part of the design goals of our pipeline, we also

selected a "baseline’’ M. m. domesticus sample that originated from a

region as far from the sympatry region as possible. Thus, we chose

a mouse from the country of Georgia in Asia where M. spretus does

not occur, and, presumably, M. m. domesticus there are ancestral to

those M. m. domesticus that are part of derived populations in

Western Europe, including Spain, and that encountered M. spretus

during their westward dispersal. We utilized two M. spretus

samples. The samples came from different parts of the sympatry

region in Spain. The M. m. musculus control data set contained two

wild M. m. musculus samples from China and the above two M.

spretus samples.

The Mouse Diversity Array was used to obtain the empirical

data used in our study [36]. Data for previously published samples

were obtained from [31,37,38]. Since the probe sets in these

studies differed slightly, we used the intersection of the probe sets

in our study. A total of 535,988 probes were used.

We genotyped all raw reads using MouseDivGeno version 1.0.4

[38]. We utilized a threshold for genotyping confidence scores of

0.05. We phased all genotypes into haplotypes and imputed bases

for missing data using fastPHASE [39]. Less than 15.1% of

genotype calls were heterozygous or missing and thus affected by

the fastPHASE analysis. The genotyping and phasing analyses

were performed with a larger superset of samples. The additional

samples consisted of the 362 samples used in [38] that were

otherwise not used in our study. After genotyping and phasing was

completed, we thereafter used only the samples listed in Table 2 in

the Appendix.

Genomic coordinates and annotation in our study were based

on the GRCm38.p2 reference genome (GenBank accession

GCA_000001635.4). MouseDivGeno also makes use of data from

the MGSCv37 reference genome (GenBank accession

GCA_000001635.1).

Results/Discussion

To assess confidence in our method’s detection of regions of

introgressive origin, we used a modified version of the posterior

decoding. In our simulations as well as biological data analyses,

there are 15 states corresponding to the "introgressed" parental

tree: r1,r2, . . . ,r15. As we are interested in assessing confidence in

whether a column i in the alignment G falls within an introgressed

region, we computed for column i the quantity

pi~
X

k[fr1,...,r15g
P(pi~kjG): ð2Þ

Figure 7. Empirical base frequencies inferred by PhyloNet-HMM on simulated data sets. Panels (a) and (b) show model conditions with
migration times tm2~0:015,tm1~0:15 and tm2~0:015,tm1~0:3, respectively, and different migration rates. Standard error bars are shown, and n~20.
doi:10.1371/journal.pcbi.1003649.g007
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Simulation study
We evaluated the performance of PhyloNet-HMM using

simulated data sets. Here, we focus on results concerning inferred

probabilities (computed using Eq. (2)) on simulations with different

migration processes.

In Fig. 6, we plot the percentage of sites i for which pi§0:75 (pi

is computed using Eq. (2)) as a function of the migration rate. For

the isolation-only model (M~0), the method effectively infers no

introgression for any of the sites. For the isolation-with-migration

models (Mw0), the inferred percentages of introgressed sites were

greater than zero and increased as a function of the migration rate

M. A potentially more informative comparison would be between

the inferred percentages of introgressed sites and the percentages

of sites in the simulation that involved migrant lineages. However,

the simulation software that we used does not support annotating

lineages in this way, nor is it a simple task to modify it to achieve

this goal. (Furthermore, as noted above, we were unable to exactly

simulate evolution under the evolutionary scenario in the

empirical study since the simulation software did not permit us

to constrain lineage evolution so that one of the samples from

population A was not introgressed.)

On the other hand, for all simulated sites, the simulation

software outputs the simulated gene genealogy under which the

site evolved, along with branch lengths in coalescent units. This

output from simulation can be used to obtain lower bounds on the

true percentage of introgressed sites. Specifically, if a site evolved

under a gene genealogy where one of the two A lineages and any

subset of the B lineages are monophyletic and the lineages have a

simulated coalescence time greater than tm2 and smaller than t1,

then migration must have occurred for those lineages to coalesce

in that time span, based on the model used for simulation (Fig. 5).

As shown in Fig. 6, for all simulated model conditions, the

introgression frequency reported by PhyloNet-HMM is greater

than or equal to lower bounds on the true introgression frequency,

obtained using this observation.

Clearly, when the duration of the migration period increases,

the variation in the estimates of our method increases, which

results in a pattern that seemingly does not change from migration

rate 0:4 to 0:8. However, it is important to note that the extent of

variability in this case precludes making a conclusion on the lack of

increase in the percentage of sites. Nonetheless, the important

message here is that the estimates of our method start varying

more as the duration of the migration period increases.

We also found that the probability of observing a gene

genealogy conditional on a containing parental tree differed

between the two parental trees (results not shown). Under all

simulation conditions, the inferred gene tree distribution (condi-

tional on the containing parental tree) had multiple genealogies

with non-trivial posterior decoding probabilities, suggesting that

within-row transitions were capturing switching in local genealo-

Figure 8. Empirical substitution rates inferred by PhyloNet-HMM on simulated data sets. Otherwise, figure layout and description match
Fig. 7.
doi:10.1371/journal.pcbi.1003649.g008

Figure 9. The phylogenetic network used in our analyses and the two parental trees. The phylogenetic network (a) captures introgression
from M. spretus to M. m. domesticus. The red and blue lines illustrate two possible gene genealogies involving no introgression (blue) and
introgression (red). The parental tree in (b) captures genomic regions with no introgression, while the parental tree in (c) captures genomic regions of
introgressive descent.
doi:10.1371/journal.pcbi.1003649.g009
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Figure 10. Introgression scans of chromosome 7 from the Mus musculus domesticus data set. Results in panels (a) through (c) are based on
posterior decoding (Eq. 2). Panel (a) gives the probability that PhyloNet-HMM is in one of the introgressed (r) states. Panel (b) shows the probability
that PhyloNet-HMM is in an introgressed (r) state corresponding to a particular gene genealogy, where each gene genealogy is displayed in a
separate row and pixel intensity varies from white to blue to represent probabilities from 0 to 1. Panel (c) is identical to panel (b) except that non-
introgressed (q) states are shown. Results in panels (d) through (f) are based upon a Viterbi-optimal trajectory. In panel (d), genomic regions are
classified as having introgressed origin or not based on the hidden state that the Viterbi-optimal trajectory is in (either an r or q state, respectively).
Panel (e) show the rooted gene genealogy inferred for each locus classified as introgressed in panel (d). Each distinct rooted gene genealogy is
represented using a distinct color and row. Panel (f) shows the rooted gene genealogy inferred for the remaining loci (which were not classified as
introgressed). Panel (g) shows loci sampled by the Mouse Diversity Array [36], which we used to genotype our samples. The dashed vertical line
indicates the location of the Vkorc1 gene, which was shown by [2] to be a driver gene in an introgression event between ( M. m. domesticus and Mus
spretus) and leading to the spread of rodenticide resistance in the wild. The grey bars indicate regions with missing data that were approximately
100 kb or longer.
doi:10.1371/journal.pcbi.1003649.g010
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gies due to ILS. That is, the simulated data sets clearly had

evidence of incongruence due to both introgression and ILS.

Finally, Fig. 7 and Fig. 8 show that in training our PhyloNet-

HMM model on the simulated data, base frequencies were

accurately estimated at 0.25 (which are the base frequencies for all

four nucleotides we used in our simulations) and substitution rates

were estimated generally between 0:8 and 1 (we used 1 in our

simulations). Further, the results were robust to the migration rates

and durations of migration periods.

Empirical study
We applied the PhyloNet-HMM framework to detect intro-

gression in chromosome 7 in three sets of mice, as described

above. Each data set consisted of two individuals from M. m.

domesticus and two individuals from M. spretus. Thus the phyloge-

netic network is very simple, and has only two leaves, with a

reticulation edge from M. spretus to M. m. domesticus; see Fig. 9(a). As

we discussed above, the evolution of lineages within the species

network can be equivalently captured by the set of parental trees in

Fig. 9(b-c). Since in each data set we have four genomes, there are

15 possible rooted gene trees on four taxa. Therefore, for each

data set, our model consisted of 15 q states, 15 r states, and one

start state s0, for a total of 31 states.

We use our new model and inference method to analyze two

types of empirical data sets. The first type includes individuals of

known introgressed origin, and our model recovers the intro-

gressed genomic region reported in [2] (Fig. 10). On the other

hand, the second type consists of "control" individuals collected

from geographically distant regions so as to minimize the chances

of introgression (though, it is not possible to rule out that option

completely). Our model detected no regions of introgressive

descent in this dataset (Fig. 11).

We ran PhyloNet-HMM to analyze the M. m. domesticus data set,

which consisted of samples from a putative hybrid zone between

M. m. domesticus and M. spretus (Fig. 10). The data set covered all of

chromosome 7, the chromosome containing the Vkorc1 gene.

Vkorc1 is a gene implicated in the introgression event and the

spread of rodenticide resistance in the wild [2].

Based on the pattern of recovered parental trees, the PhyloNet-

HMM analysis detected introgression in the vicinity of the Vkorc1

gene from approximately 123.0 Mb to 130.8 Mb, reproducing the

findings of [2]. The presence of the introgression in the M. m.

Figure 11. Introgression scans of chromosome 7 from the Mus musculus musculus data set. Figure layout and description are otherwise
identical to Fig. 10.
doi:10.1371/journal.pcbi.1003649.g011
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domesticus sample from mainland Spain but not the one from the

country of Georgia suggests that the putative introgression may be

polymorphic; preliminary results on additional Spanish samples

(not shown) support this hypothesis. The analysis also uncovered

recombination and incomplete lineage sorting in the region, as

evidenced by incongruence among the rooted gene genealogies

that were ascribed to loci.

The PhyloNet-HMM analysis detected introgression in 8.9% of

sites in chromosome 7, containing over 300 genes. Notably, the

analysis located similar regions in other parts of chromosome 7

which were not investigated by prior studies such as [2]. Examples

include the region from 107.7 Mb to 108.9 Mb and the region

from 115.2 Mb to 117.6 Mb. It is worth mentioning that the

method does detect ILS within introgressed regions and outside

those regions as well; yet, it does not switch back and forth

between these two cases repeatedly (which is an issue that plagues

methods that assume independence across loci).

As described by our model above, if we sum the transition

probabilities from any q state to all r states, we obtain a value for c.

We performed this computation for each q state, and took the

average of all c estimates based on each of the 15 q states. Our

model estimates the value of c as 0:002. This can be interpreted as

the probability of switching due to introgression, and can shed

light on introgression parameters.

The posterior decoding probabilities, based on Eq. (2), for all

positions in chromosome 7, are shown in Fig. 10(a). Clearly, the

introgressed regions indicated by green bars in Fig. 10(d) have very

high support (close to 1), particularly the region around the Vkorc1 gene.

To further validate our approach, we repeated our scans on the

M. m. musculus control data set (Fig. 11), which contained two sets

of genomes of mice that are not known to hybridize. The first set

of mice consisted of the M. spretus samples from the previous scan,

and the second set of mice consisted of geographically and

genetically distinct samples from M. m. musculus, which is not

known to hybridize with M. spretus in the wild.

PhyloNet-HMM did not detect introgression on the control

data set. The analysis recovered signatures of ILS, though, based

on local incongruence among inferred rooted gene genealogies.

Conclusions

In this paper, we introduced a new framework, PhyloNet-

HMM, for comparative genomic analyses aimed at detecting

introgression. Our framework allows for modeling point muta-

tions, recombination, and introgression, and can be trained to

tease apart the effects of incomplete lineage sorting from those of

introgression.

We implemented our model, along with standard HMM

algorithms, and analyzed an empirical data set of chromosome 7

from mouse genomes where introgression was previously reported.

Our analyses detected the reported introgression with high

confidence, and detected other regions in the chromosome as

well. Using the model, we estimated that about 9% of the sites in

chromosome 7 of an M. m. domesticus genome are of introgressive

descent. Further, we ran an empirical analysis on a negative

control data set, and detected no introgression. On simulated data,

we accurately detected introgression (or the lack thereof) and

related statistics from data sets generated under both isolation-

with-migration and isolation-only models.

We described above how to extend the model to general data

sets with arbitrary hybridization and speciation events, by using a

MUL-tree technique. However, as larger (in terms of number of

genomes) data sets become available, we expect the problem to

become more challenging, particularly in terms of computational

requirements. Furthermore, while the discussion so far has

assumed that the set of states is known (equivalently, that the

phylogenetic network is known), this is not the case in practice.

This is a very challenging problem that, if not dealt with carefully,

can produce poor results. In this work, we explored a phylogenetic

network corresponding to a hypothesis provided by a practitioner.

In general, the model can be "wrapped" by a procedure that

iterates over all possible phylogenetic network hypotheses, and for

each one the model can be learned as above, and then using model

selection tests, an optimal model can be selected. However, this is

prohibitive except for data sets with very small numbers of taxa. As

an alternative, the following heuristic could be adopted instead:

first, sample loci across the genome that are distant enough to

guarantee that they are unlinked; second, use trees built on these

loci to search for a phylogenetic network topology using

techniques described in [40]; third, conduct the analysis as above.

Of course, the phylogenetic network identified by the search might

be inaccurate, in which case the use of an ensemble of

phylogenetic networks that are close to that one in terms of

optimality may be beneficial.
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