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Abstract: Cattle are the main reservoirs of Shiga toxin producing Escherichia coli (STEC), a major food-
borne pathogen associated with acute enteric disease and hemolytic–uremic syndrome in humans. A
total of 397 beef and dairy cattle from 5 farms were included in this study, of which 660 samples were
collected for 16S rRNA gene sequencing. The microbiota of farms with a high-STEC prevalence (HSP)
had greater richness compared to those of farms with a low-STEC prevalence (LSP). Longitudinal
analyses showed STEC-shedders from LSP farms had higher microbiome diversity; meanwhile,
changes in the microbiome composition in HSP farms were independent of the STEC shedding status.
Most of the bacterial genera associated with STEC shedding in dairy farms were also correlated with
differences in the percentage of forage in diet and risk factors of STEC carriage such as days in milk,
number of lactations, and warm temperatures. Identifying factors that alter the gut microbiota and
enable STEC colonization in livestock could lead to novel strategies to prevent fecal shedding and
the subsequent transmission to humans.
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1. Introduction

Shiga toxin producing Escherichia coli (STEC) is a foodborne pathogen causing 2.8 mil-
lion cases of acute enteric disease and 230 deaths annually [1]. STEC infections are as-
sociated with the consumption of contaminated food and water or result from direct
contact with cattle feces since cattle represent an important reservoir for this pathogen [2].
While livestock carriers of STEC are asymptomatic, humans can develop bloody diarrhea,
hemolytic–uremic syndrome, thrombotic thrombocytopenic purpura, or end-stage renal
disease [1]. STEC virulence is caused by bacteriophage-encoded Shiga toxins (Stx1 and
Stx2) that induce cellular apoptosis of endothelial cells in the gut, kidney, and brain of
humans [3–6]. Cattle are more tolerant to STEC due to the lack of Stx receptors (glycolipid
globotriaosylceramide, Gb3) in the intestinal tract as well as a lower receptivity of Gb3
receptors present in the kidney and brain [7]. Some STEC strains, classified as enterohe-
morrhagic E. coli (EHEC), possess the locus of enterocyte effacement (LEE) pathogenicity
island that encodes for a type III secretion system and effectors, such as the intimin protein
(eae), which are responsible for attaching and effacing (AE) lesion formation [8]. Adult
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cattle carrying EHEC are typically unaffected, though infected calves develop AE lesions
on the apical epithelial surfaces of the recto-anal junction where the bacteria colonize [9].

Because cattle are important reservoirs of STEC, reducing carriage of this pathogen
in livestock and preventing dissemination in food and the environment are priorities for
preventing human infections [10]. Our previous study identified risk factors associated with
high STEC prevalence in dairy farms including first lactation, less than 30 days in milk, and
warm temperatures [11]. Meanwhile, protective factors identified in farms with low STEC
prevalence included access to pasture, anthelmintic treatment, and antibiotic treatment for
respiratory infections [11]. Nonetheless, it is not clear how factors associated with STEC
prevalence influence the microbiota composition and potentially favor STEC colonization.

The gut microbiome is critical for the activation and regulation of the immune re-
sponse and for preventing pathogen colonization [12]. Some studies have analyzed the
association between the gut microbiome and STEC in both humans and cattle. In humans,
the gut microbiome of infected patients had a lower abundance of dominant taxa from
Bifidobacteriales and Clostridiales [13]. We also previously showed that microbial commu-
nities from patients with acute enteric infections caused by STEC and other pathogens had
a lower bacterial richness with an increased abundance of Proteobacteria (genus Escherichia)
and decreased abundance of Bacteroidetes compared to healthy communities [14,15]. With
regard to cattle, varying results have been observed in the richness and composition of
the fecal microbiome between STEC shedders and non-shedders [16–24]. Within a specific
farm, for example, some studies observed no difference in diversity among STEC shedders
and non-shedders [19,21], whereas other studies detected significantly higher [22] and
lower [23] diversity in STEC shedders despite controlling for age, farm, and diet. This lack
of consensus among previous reports compels further investigation.

Herein, we sought to compare the microbiota structure and function of cattle among
farms with a high versus low STEC prevalence. Additionally, we aimed to determine
whether STEC carriage is associated with changes in the microbiota composition over
time. Characterizing a healthy cattle microbiome that does not support pathogen colo-
nization and identifying key beneficial microorganisms can guide the development of new
prevention protocols to eradicate STEC colonization in animal reservoirs.

2. Materials and Methods
2.1. Sample Collection

An initial study was carried out in the spring and summer of 2011 and 2012 in
Michigan in which 1096 samples were collected in 11 cattle farms including 6 dairy herds
and 5 beef herds to determine STEC prevalence and identify risk factors for shedding [11].
Here, samples from 5 of those 11 cattle herds were selected for microbiome analysis,
which was based on the varying prevalence of STEC in each herd. Specifically, a low
STEC prevalence (LSP) was observed in one feedlot, 1B (8.2%), and two dairy farms,
2D (8.7%) and 4D (13.8%). Comparatively, the prevalence was considerably higher in
feedlot 8B and dairy farm 9D (53.7% and 28.0%, respectively), which were classified
as herds with a high STEC prevalence (HSP). The three dairy herds had Holstein cows
(farms 2D, 4D, 9D), while the other two were beef feedlots with Crossbreed (farm 1B) and
Angus (farm 8B) breeds. Epidemiological information obtained from each herd included
demographics, geographic location, husbandry practices, health management, and diet.
Additional information including number of lactations, days in milk, and dry status was
collected at the dairy farms.

Fecal grabs (FGs) were collected by rectal palpation using obstetric sleeves (n = 308),
while recto-anal junction (RAJ) samples were collected by swabbing the RAJ with a sterile
cotton swab (n = 352) as described [11]. Roughly 256 pairs of fecal grabs (FGs) and
rectal-anal junction (RAJ) swabs were collected simultaneously from the same animal for
microbiome comparison. A subset of cattle was also sampled over time at an interval of 2 to
3 weeks between each sampling point to examine microbiome changes and STEC shedding
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over time (Table S1). In addition, blood samples were collected from the coccygeal or
jugular vein of each animal for serology [25].

2.2. Pathogen Identification

STEC was detected using CHROMagar STEC and sorbitol MacConkey agar followed
by PCR confirmation targeting key virulence genes [11]. Suspect isolates were classified
as STEC if they were positive for any Shiga toxin gene (stx) subtype with or without the
intimin gene (eae). In addition, exposure to pathogens that can alter the gut microbiota was
evaluated to account for confounding effects between STEC shedders and non-shedders.
These pathogens included bovine leukemia virus (BLV), bovine viral diarrhea (BVD), and
Mycobacterium avium subsp. paratuberculosis (MAP), which were identified by serology
using an enzyme-linked immunosorbent assay (ELISA) that detects antibodies specific to
these pathogens as described [24].

2.3. Amplicon Library Processing

DNA was extracted from 660 samples recovered from cattle at each of the five farms
using the QIAamp DNA Stool Mini Kit (QIAGEN; Valencia, CA, USA). DNA was extracted
from 250 mg of feces or from the RAJ swabs stored at −80 ◦C. A fragment of approximately
569 bp from the V3–V5 hypervariable region of the bacterial 16S rRNA gene was amplified
using the linker primer 357F (5′-CCGTCAATTCMTTTRAGT-3′) and the reverse primer
926R (5′-CCTACGGGAGGCAGCAG-3′). A sample-specific barcode of 6–8 nucleotides was
used to sequence samples in parallel on a single 454-sequencing plate. The amplification
and pyrosequencing methods were described in our prior study [14].

The raw pyrosequencing reads were analyzed using the Quantitative Insights Into
Microbial Ecology (QIIME) software v.1.9.1 workflow for 454 data [26]. First, the se-
quences were demultiplexed based on the nucleotide barcode and quality filtered using
‘split_libraries.py’. Then, de novo operational taxonomic units (OTUs) were identified
with ‘pick_de_novo_otus.py’, and the taxonomy was assigned with the SILVA database
(v132) [27]; OTUs were clustered at 97% similarity. All samples were denoised with
‘denoise_wrapper.py’ to reduce the amount of erroneous OTUs [28], and OTU chimera
detection and filtering was done with VSEARCH [29]. Lastly, the sequences were aligned
with ‘align_seqs.py’ [30] and were converted into a phylogenetic tree using the QIIME
2 plugin ‘qiime fragment-insertion sepp’ [31–33].

2.4. Microbiome Analyses

The OTU table, taxonomy, metadata, and phylogenetic tree were imported into the R
package Phyloseq v.1.24.2 [34]. Mitochondria and chloroplast OTUs were removed. Library
rarefaction was applied to calculate alpha and beta diversities among samples. Alpha
diversity was estimated to determine the richness and evenness of OTUs with the Shannon
index, and richness based on the presence of rare OTUs (singletons and doubletons) was
estimated with Chao1. The Wilcoxon and Kruskal–Wallis non-parametric tests were used to
compare the alpha diversity estimates among LSP and HSP farms and STEC shedders and
non-shedders. Beta diversity was also analyzed to compare the microbiome composition
among groups using Bray–Curtis dissimilarity and weighted UniFrac distances [35]. The
ordination was calculated by principal coordinate analysis (PCoA), which was plotted
with two axes. The difference between categorical variables and the microbial profiles
were calculated with permutational multivariate analysis of variance (PERMANOVA) with
999 permutations using the Vegan package v.2.5–6 [36].

The differentially abundant taxa analysis was performed using differential expression
analysis based on the negative binomial distribution DESeq2 (v.1.30.1) with default set-
tings [37]. The R package metacoder v.0.3.3 [38] was used to visualize the taxa abundance
as “heat trees” with the proportion of bacterial families. Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States (PICRUST2) [39] was also used to
predict metabolic pathways and enzymes based on 16S rRNA gene sequences. Linear
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discriminant analysis (LDA) effect size (LEfSe) v.1.0 [40] was used to identify differentially
abundant pathways.

3. Results
3.1. Farm Characteristics

Three dairy and two beef herds were included in this study based on their STEC
prevalence [11]. One beef and two dairy farms (1B, 2D, and 4D) were classified as LSP
farms, which were compared with HSP farms consisting of one beef and one dairy farm (8B
and 9D). The five farms represented varying breeds and sizes with different healthcare and
management practices (Table 1). Notably, the LSP farms fed animals a lower percentage
of forage in their diet (15–65%) and used anthelmintics, while HSP farms used a diet
almost exclusively based on forage (80–100%) and did not provide anthelmintic treatments.
Specific characteristics unique to the dairy farms, such as number of milks per day, days in
milk (DIM), and number of lactations are shown in Table A1.

Table 1. Characteristics of each cattle farm examined.

Feature
Farm

2D 4D 9D 1B 8B

Breed Holstein Holstein Holstein Crossbreed Angus
Herd Dairy Dairy Dairy Beef Beef

Herd size 320 3000 243 136 54
STEC prevalence (%) 8.7 13.8 28.0 8.2 53.7

STEC prevalence
classification LSP LSP HSP LSP HSP

No. of samples 213 81 77 206 83
Fecal grab 48 40 77 60 83

Recto-anal junction 165 41 0 146 0
Mean age days (SD a) 1382 (476) NR b 1362 (522) 372 (19) 442 (17)

Housing Free stall; tie stall Free stall
Access to

pasture/dry lot;
free stall

Feedlot Loose house

Diet % (SD)
Forage 65.01 (18.76) 40.62 (9.47) 80 (0) 15 (0) 100 (0)

Concentrate 34.99 (18.76) 59.38 (9.47) 20 (0) 85 (0) 0
Corn silage 29.06 (8.82) 41.7 (3.74) 0 15 (0) 0
Cotton seed 1.60 (2.60) 0 0 0 0
Rumensin No Yes No Yes No

Roughage, protein No No Yes No No
Season c Summer Summer Summer Spring Summer

Temperature (◦C) 25 25 36 4.4 36
Humidity (g/m3) 66 68 31 75 42

Temp. max. 5 days d 23.44 29.89 37.11 20.33 29.33
Temp. avg. 5 days d 19.22 16.89 30.11 13.89 22.78

Treatment
Anthelmintic Yes Yes No Yes No

Respiratory Ceftiofur,
florfenicol Ceftiofur None Ceftiofur,

tulathromycin Florfenicol

Foot infection Copper sulfate,
penicillin Copper sulfate

Copper sulfate,
oxytetracycline,

ceftiofur
Oxytetracycline Ceftiofur

a SD = standard deviation; b NR = not reported; c during sample collection; d temperature five days prior to sample collection.

3.2. Sequencing Results

Twenty-eight 454-sequencing plates containing 660 samples yielded 1,937,794 reads of
569 bp paired-end fragments of the 16S rRNA gene. After trimming and quality filtering
the sequences, the library size varied from 650 to 16,786 with a median library size of
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2332 sequences per sample. Following the de novo clustering, denoising, filtering chimeras,
and removal of chloroplast and mitochondria OTUs, 15,158 OTUs were detected.

3.3. Hindgut Microbiota Composition

The microbiota profiles for the 256 paired fecal grab (FG) and rectal-anal junction (RAJ)
samples were similar (p > 0.05), and hence, these samples were combined into a single group
representing the hindgut for downstream analyses (Figures S1 and S2). Overall, the hindgut
microbiota was dominated by two phyla, Firmicutes (54.6%) and Bacteroidetes (38.9%),
although varying proportions of other phyla were detected across farms with different
forage percentages (Figure 1A). Indeed, the percentage of forage in the diet significantly
influenced the microbial composition. Farms with low forage diets, for instance, had
a lower abundance of Firmicutes and a higher abundance of Bacteroidetes (p < 0.0001).
Classifying by family identified similar differences across farms with Ruminococcaceae
predominating but increasing with the forage percentage (p < 0.001) (Figure 1B). Several
additional bacterial families were significantly correlated with the percentage of forage in
the diet (Table S2).
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a Distinct Microbiota Structure 

Figure 1. Hindgut microbiota composition of cattle from five farms with varying percentages of forage in the diet. Stacked
bar charts show the relative abundance of bacterial (A) phyla and (B) families per farm. Less abundant taxa were grouped
together and named “Minorities”.

3.4. HSP Farms Characterized by Forage-Dominant Diets Exhibited Higher Alpha Diversity and a
Distinct Microbiota Structure

To assess the association between STEC prevalence and the hindgut microbiota among
farms, we analyzed the Shannon and Chao1 indices for alpha diversity and the Bray–Curtis
dissimilarity and weighted UniFrac for beta diversity. HSP farms exhibited greater richness
than LSP farms, although no significant difference was observed using the Shannon index
(p = 0.67) (Figure 2A). The Chao1 index, however, detected significantly greater diversity
in HSP farms (p = 1 × 10−9), indicating that a high number of OTUs were present in
low proportions (singletons and doubletons) in the two HSP farms (Figure 2B). Notably,
when comparing the alpha diversity indices between herds, the lowest and the highest
OTU richness corresponded to farms 1B and 8B, respectively, which also had the lowest
and the highest STEC prevalence (Figure S3). When the farms were plotted separately
to evaluate beta diversity, the PCoA plot of weighted UniFrac distances showed that the
microbial communities from LSP farm 1B were the most divergent relative to the other
four farms (Figure 2C). Comparatively, the farms were classified by STEC prevalence, and
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a Bray–Curtis dissimilarity PCoA was generated (Figure 2D). This plot shows that cattle
from the two HSP farms had a more similar microbiota structure that was significantly
different than the microbiota profiles observed in the three LSP farms (PERMANOVA,
p < 0.0001). HSP microbiota clustering was strongly associated with dominant forage diets
(Figure S4).
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Figure 2. Cattle-hindgut microbiota alpha and beta diversities among farms with a low STEC
prevalence (LSP) and high STEC prevalence (HSP). LSP farms (1B, 2D, and 4D) were combined as
were the two HSP farms (8B and 9D) to evaluate the alpha diversity using (A) the Shannon index and
(B) the Chao1 index. Beta diversity was evaluated by performing a (C) principal coordinate analysis
(PCoA) of weighted UniFrac distances and/or a (D) PCoA of Bray–Curtis dissimilarity. The former
plotted each farm separately along with the STEC shedders (+) and non-shedders (control, black
circle), while the latter compared farms with LSP versus HSP.

3.5. Hindgut Microbiota Diversity Comparisons between STEC-Positive Samples and Controls

The microbiota profiles of STEC-shedders and non-shedders were examined in more
detail regardless of farm. To do this, the animals were split into two comparison groups
based on the recovery of isolates positive for stx and/or eae for comparison to cattle with
isolates that were negative for both virulence factors; 3–4 control animals were randomly
selected from each of five farms for each case included in the analysis. The first comparison
group examined 31 STEC-positive (stx only) cattle from HSP farms and 85 STEC/EHEC-
negative (control) cattle including 20 from HSP and 65 from LSP farms. For the second
comparison group, EHEC-positive (stx and eae only) cattle (n = 52) were compared to a
larger set of STEC/EHEC-negative control animals (n = 205). EHEC comparison included
cattle from HSP farms (cases = 34, controls = 20) and LSP herds (cases = 18, controls = 185).
These groups excluded animals positive for BLV and MAP because they had significantly
different microbiota profiles based on the alpha and beta diversity metrics (p < 0.05) (data
not shown). Indeed, the exclusion of samples from MAP- and BLV-positive cattle was
necessary given that prior studies showed that these pathogens were associated with
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important gut microbiome changes [41,42]. Notably, the STEC shedders possessing stx only
had higher microbiota richness than the non-shedders (Shannon, p = 0.19; Chao1, p = 0.008),
though only the Chao1 metric was significant (Figure 3A,B). By contrast, no difference
in alpha diversity was observed when the EHEC shedders (stx-positive and eae-positive)
were compared to the STEC/EHEC-negative controls (Shannon, p = 0.27; Chao1, p = 0.41)
(Figure 3C,D). The microbiota structure of the STEC and EHEC shedders, however, was
significantly different from that of the controls in both comparison groups (PERMANOVA,
p < 0.001) (Figure 3E,F).
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Figure 3. Cattle-hindgut microbiota diversity comparisons between animals shedding STEC or EHEC and non-shedders
(controls). The alpha diversity was evaluated for 31 STEC-positive (stx-positive, eae-negative) cattle (red dots) for comparison
to 85 STEC/EHEC-negative control cattle (blue dots) using the (A) Shannon and (B) Chao1 indices, while (E) beta diversity
was examined using a principal coordinate analysis (PCoA) of weighted UniFrac distances. The (C) Shannon and (D) Chao1
alpha diversity indices as well as a (F) PCoA for beta diversity were also evaluated for the 52 EHEC shedders (stx-positive,
eae-positive; light blue dots) for comparison to a larger sample of 205 randomly selected non-shedders (yellow dots) from
the five herds.

3.6. STEC Carriers from Farms with LSP but Not HSP Showed Changes in Microbiota Diversity
over Time

Among the 59 cattle evaluated longitudinally from five farms (Table S1), we sought
to determine how STEC shedding impacted the microbiota composition in the hindgut.
Despite finding no significant modifications due to diet, management, and environmental
conditions (Table S3) as reported within the farms over time, all cattle had significant
differences in the alpha and beta diversities across the four samplings or phases. In general,
the STEC-positive samples exhibited higher alpha diversity within each phase, particularly
among the three LSP farms (Figure 4A,B); however, none of the animals from the LSP farms
carried STEC in more than one phase. By contrast, the cohorts from the HSP farms, 8B
and 9D, had a high proportion of cattle shedding STEC in all four phases. Each animal
from farm 8B (n = 13) shed STEC in two or more phases. Indeed, the biggest difference
in alpha diversity over time was observed in the HSP 8B farm as both the Shannon and
Chao1 indices were significantly different between STEC shedders and non-shedders over
time. In farm 9D, 25% of animals shed the pathogen in two phases, while the remaining
cattle shed in just one phase, and the alpha diversity was steady.
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Figure 4. Temporal dynamics in microbiota diversity among 59 cattle from five farms. Alpha diversity was compared
using the (A) Shannon and (B) Chao1 indices by farm and sampling period. Each box represents a different farm with the
numbers on the x-axis representing the four sampling visits; significant differences were detected using the Kruskal–Wallis
test. (C) Beta diversity was also examined using a principal coordinate analysis (PCoA) of the weighted UniFrac distances;
PERMANOVA results (R2 and p-value) were calculated. STEC shedders (+) and non-shedders (circles) were plotted by
phase, which is represented by four different colors.

Differences in the microbiota composition or beta diversity, as determined by the
PCoA, were also observed across samplings at each of the five farms evaluated (Figure 4C).
Curiously, the Angus farm (8B) had two microbiota profiles that were not associated with
STEC shedding status. In farm 8B, the microbiota profiles in phases 1 and 2 were similar,
highly diverse, and dominated by Bacteroidetes (log2 fold change = 0.22; p = 0.0009). The
microbiota profiles in phases 3 and 4, however, were distinct from those observed in phases
1 and 2, which coincided with a decreased alpha diversity and an increased abundance of
Firmicutes (log2 fold change = 0.15; p = 0.05). Despite these differences, the proportion of
STEC-positive animals in farm 8B was steady across the four phases.

3.7. Differentially Abundant Taxa among the STEC Shedders from Dairy Farms

Among the three dairy farms, STEC shedders had a significantly greater abundance
of Firmicutes and a lower abundance of Proteobacteria than the non-shedders (p < 0.01)
(Figure 5). No taxa were identified when comparing between STEC-shedders and non-
shedders among the dairy farms when controlling for farm. A total of 30 genera were
found to be differentially abundant between STEC carriers and non-carriers (Table S4).
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Figure 5. Heat tree showing the differentially abundant taxa found in the hindgut microbiota among STEC shedders (red)
and non-shedders (blue) at three dairy farms. Only those taxa with a p-value lower than 0.01 were included. Node size and
color correspond to the relative abundance at each taxonomic level.

3.8. Taxa Correlated with Factors Associated with STEC Carriage

Next, we analyzed how the microbiota composition is impacted by previously identi-
fied risk factors of STEC shedding in cattle [11] including maximum temperature 5 days
prior to sampling, days in milk (DIM), and the number of lactations (Figure 6, Table S5).
Notably, temperature increases were associated with a differential abundance of 189 taxa
including 42 observed among the STEC shedders (Table S4). Similarly, the number of DIM
was significantly correlated with 24 differentially abundant genera including those associ-
ated with STEC carriage such as Actinobacteria, Anaeroporobacter, Kingella, Ruminococcaceae
UCG-005, Tenericutes, Veillonellaceae, and the Eubacterium ruminantium group. Finally,
seven taxa were correlated with the number of lactations, including an increase of Kingella
and Neisseriaceae and decrease of Lentisphaerae and Ruminococcaceae UCG-011 as observed
in non-STEC shedders. Forage percentage in diet across farms was associated with changes
in 211 taxa of which 48 were associated with STEC shedding (Figure 6).
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4. Discussion

Preventing STEC shedding in livestock could significantly reduce the number of hu-
man infections. In this study, we sought to determine differences in the gut microbiota of
bovines from farms with a low versus high STEC prevalence. In addition, we explored
factors that could affect the microbial composition and contribute to STEC shedding. The
diversity and composition of 16S rRNA sequences of 660 hindgut samples from five cattle
farms (beef and dairy) were analyzed in this study. Cattle from HSP farms, characterized
by being fed a high percentage of forage in their diet (80–100%), had a significantly higher
richness of OTUs than LSP farms, which had a lower proportion of forage in the diet
(15–65%). Longitudinal analysis showed that most STEC shedders from LSP farms had a
greater microbial diversity than non-shedders; however, cattle from HSP farms showed
changes in the microbial diversity that were not linked to the STEC carriage. Further-
more, bacterial taxa associated with STEC shedding were also correlated with diet and
previously described risk factors of STEC. Meanwhile, significant differences in predicted
metabolic pathways in animals from LSP and HSP farms reflect functional differences of
the microbiota between herds that could affect STEC colonization.

The overall bacterial composition of the hindgut microbiota was similar to that in
prior studies where Firmicutes and Bacteroidetes were the dominant taxa [43,44]. Though
farm-specific composition was identified as previously observed in ten dairy farms with
different housing, diet, and husbandry [43]. Notably, unlike LSP farms, HSP farms had
in common a high-forage diet and did not administer anthelmintic treatment, which
could affect the microbiome composition. The effect of diet in the gut microbiota was
previously studied in cattle, where different ratios of forage:concentrate impacted changes
in the microbiota [45–47]. As previously observed, a grain-based diet was associated
with a higher abundance of Proteobacteria and lower abundance of Bacteroidetes [45,47].
Meanwhile, forage-dominant diets were associated with a higher abundance of Firmicutes,
Ruminococcaceae and Paludibacter, which have a critical function degrading forage [45,47].
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Dietary interventions in beef cattle have been suggested to reduce the prevalence of STEC
O157 as a preharvest intervention [48,49]. However, without knowledge of the microbiome
and ecological interactions, those studies had conflicting results [48]. Furthermore, the
effect of helminths in the cattle’s microbiome has not yet been studied. Anthelmintic
treatment in dogs and horses, for instance, was not associated with shifts in the microbiome
composition [50,51]. Humans treated with albendazole, however, had a higher abundance
of Clostridiales and a lower abundance of Enterobacteriales [52]. Meanwhile, helminthic
infections were associated with a lower abundance of Lachnospiraceae in the human gut
microbiome [53].

Higher alpha diversity identified among some STEC shedders has been observed
in previous studies in both beef [16,54] and dairy cattle [22]. By contrast, some reports
have found that STEC carriage in individual cattle was associated with lower alpha diver-
sity [17,20,23,55]. Two of these reports were carried out in beef herds, where correlations be-
tween bacterial richness, STEC enumeration, and age (weaning to one year) were compared.
While the authors found that older animals had higher microbial diversity and younger
animals (1–6 months) shed a higher number of STEC, the correlation between microbiome
diversity and STEC shedding reflects factors related to age and dietary changes [17,20].
Other reports in dairy cattle that identified a lower alpha diversity in the gut microbiome
were focused on shedding of STEC O157, the serogroup associated with a higher number
of hospitalizations in humans. Stenkamp-Strahm et al. (2017) detected a weak association
after removing outliers [23], while Mir et al. (2020) identified lower alpha diversity in
STEC carriers only after vaccination and oral challenge with O157. Hence, these findings
indicate that O157 carriage did not directly affect the microbiota but that vaccination for
O157 can alter the microbiota diversity [55]. Indeed, the longitudinal analysis of HSP
farms examined herein and in our prior study [56], showed similar microbiota shifts as
those observed in O157 vaccinated cattle, suggesting that STEC re-infection in cattle can be
followed by a lower alpha diversity.

The microbiota composition of STEC-positive samples mostly overlapped with that
of negative samples in the PCoA. Nevertheless, differentially abundant taxa have been
documented among STEC shedders and non-shedders [17,19,23,24,54]. Zhao et al. (2013),
for instance, found that butyrate-producing species were more abundant in low-STEC-
shedding cattle and were critical in avoiding RAJ lesions [17], suggesting the role of certain
taxa as “inhibitors” or “promoters” [17]. Contrasting results have been observed among
studies, but in general, there is a consensus that STEC shedders have a higher proportion
of members from the order Clostridiales, the dominant order found in the bovine gut
microbiome [18,21–24,54,55,57]. Consistent with other reports, a lower abundance of
Proteobacteria was observed in STEC shedders [22,55]. Varying results in differentially
abundant taxa among STEC shedders and non-shedders denote a high variability between
species and strains within taxa, as well as differences between study approaches and farms.

In this study, the main microbial biomarkers of STEC shedders were Romboutsia
and Alloprevotella, implicated in the production of C12–C19 fatty acids [58] and succinic
acid [59], respectively. Other genera significantly higher in STEC shedders were associated
with sugar fermentation and the production of acetic, formic, propionic, and succinic
acids [60–62]. By contrast, the main biomarkers of non-shedders were Kingella, Bacteroidales
p-251-o5 and Anaerosporobacter. In humans, Kingella is implicated in invasive infections due
to its cytotoxicity [63]. Butyrate-producing bacteria, including Butyrivibrio, Oscillibacter,
Roseburia, and Ruminobacter, were also found to be associated with non-shedders [64,65].
These families have previously been linked to a healthy human gut microbiota and were
suggested to play a role in preventing chronic intestinal inflammation [66]. The functional
role of these taxa in the bovine microbiome or in immunomodulation as well as the
correlation with pathogen colonization, however, requires further investigation.

Differences in predicted metabolic pathways observed between LSP and HSP farms
suggest that distinct functional microbiomes could favor STEC carriage. For instance,
metabolic-pathway prediction showed important differences between HSP and LSP farms
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associated with diet, where HSP farms had higher oxidation, production of short-chain
fatty acids, degradation, and fermentation than LSP farms, which had higher biosynthe-
sis of amino acids and sugar degradation (Figures S5 and S6). Enhanced fermentation
and fatty acid production in HSP farms could be influenced by forage-dominant diets.
Comparatively, the LSP farms had higher amino acid biosynthesis, suggesting differing
amino acid availability in diets within the LSP and HSP farms. Higher inositol degradation
in LSP farms shows enhanced cleavage of phospholipid membranes that generate cell
signaling molecules (i.e., inositol phosphate and diacylglycerol) important for microbe–
host interactions [67]. Indeed, distinct metabolic profiles were suggested to be influenced
by the diet, as a higher grain diet lowered the ruminal pH and altered the abundance of
several metabolites including short-chain fatty acids, amino acids, ethanol, endotoxins,
and biogenic amines [68]. Increasing amounts of grain in diets are also correlated with
increasing concentrations of ethanolamine [68], the main product of enterocyte membranes,
which is degraded to ethanol and acetate. Studies have shown that both Salmonella spp.
and STEC O157 can use ethanolamine as a nitrogen source to outcompete commensal
bacteria [69,70]. These studies, however, were carried out in vitro under aerobic conditions,
unlike the intestinal environment.

Microbiota diversity and STEC shedding are dynamic over time as different patterns
were observed between farms with a low and high STEC prevalence. Longitudinal studies
in cattle found that the stability of the gut microbiota diversity and composition depends
on the diet [71]. Once the animals are adapted to a specific diet, the microbial communities
are relatively stable [71]. Unlike farms with low STEC prevalence, animals from farms
with high STEC prevalence had access to pasture and a diet primarily based on forage.
The grazing behavior and differences in forage composition in farms with high STEC
prevalence could explain the high variability over time in their microbiota and a higher
STEC detection. We identified that cattle from farms with low STEC prevalence only shed
the pathogen once in an 8–12-week period. Meanwhile, most of the cattle from farms with a
HSP prevalence shed the bacteria more than once. We also identified STEC super shedders
only in the HSP farms (data not shown). A longitudinal study carried in dairy cattle for a
12-month period identified a very low number of STEC super-shedders in farms with a low
STEC prevalence (3.5–5%), and those animals only shed the bacteria once a year [72]. Other
studies have reported that the within-farm proportion of super-shedders ranges from 3.8%
to 25%, highlighting the importance of farm-specific differences on STEC prevalence and
shedding levels [73–75].

The bioinformatics pipeline used in this study was designed to improve the quality of
the pyrosequencing results. We used SATé-Enabled Phylogenetic Placement (SEPP) trees
to more accurately identify the phylogenetic relationships between OTUs by including
sequences of known species [33]. SEPP trees are strongly recommended to avoid incorrect
results driven by erroneous phylogenetic placements as observed in de novo trees [31].
Using SEPP trees was critical to account for differences in the beta diversity using weighted
UniFrac metrics and to predict metabolic pathways with PICRUSt2. In addition, we
used non-linear approaches to identify differentially abundant taxa. Linear discriminant
analyses, which assume normality, showed similar results to those of DESeq though fewer
taxa were identified as significantly different.

Prior studies looking for associations between the bacterial composition and STEC
shedding used different techniques to identify taxa including denaturing gradient gel
electrophoresis (DGGE) [17], pyrosequencing [16,18,20,24,54], and Illumina dye sequenc-
ing [19,21–23,55,57]. Despite differences in the pipeline, commonalities in the microbiota
composition and differentially abundant taxa present in STEC shedders were observed
across studies. As the sequencing techniques and bioinformatic tools evolve rapidly, high-
resolution results will help to better understand more complex relationships within the
microbiome. Along with defining the taxonomic composition, it is important to charac-
terize molecular interactions between microorganisms and hosts by identifying KEGG
pathways and metabolites that are common among STEC-positive cattle.
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Nonetheless, this study has several limitations, and hence, the data should be in-
terpreted carefully. For instance, we compared animals from cattle farms with different
genetic backgrounds, diet, housing, locations, and husbandry practices, which could be
confounding factors that also influence microbiota diversity and composition between
farms. Furthermore, using pyrosequencing, we were able to detect differences in numeri-
cally dominant taxa, limiting the identification of low-abundant taxa that could also play
a key role in defining the composition of the microbiota. For instance, the proportion
of Escherichia was very low and absent in a large proportion of samples through pyrose-
quencing analysis. Metabolic pathways predicted from 16S rRNA gene sequencing showed
significant differences between HSP and LSP farms (Figure S5) and between STEC shedders
and non-shedders (Figure S6). These predictions, however, are not entirely accurate as they
are based on metabolic reconstruction of a few representative species and do not account
for genome differences between closely related strains. Despite this limitation, they provide
clues that can be used to guide future studies aimed at defining the function of the cattle
gut microbiome in the presence and absence of STEC. Future studies should also use a
longitudinal approach and consider the within-farm STEC prevalence to better identify
changes in the microbiome among shedders. Understanding the role that anthelmintics
play in STEC shedding should also be addressed, while metagenomic and metabolomic
data should be evaluated to identify key metabolites, genes, and bacterial species that
could inhibit STEC colonization and boost the gut immune response.

5. Conclusions

This study suggests that STEC carriage in cattle is favored by highly diverse microbiota
profiles, which are associated with forage-dominant diets. In addition, multiple factors
affect the abundance of taxa associated with STEC shedding in dairy farms, including diet,
number or lactations, DIM, and warm temperatures. Identifying healthy microbiomes
could guide novel husbandry decisions that aim to decrease levels of pathogen shedding.
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Appendix A

Table A1. Characteristics of the three dairy farms examined in this study.

Feature
Dairy Farm

2D 4D 9D

No. of milkings/day 2 times 3 times 2–3 times
DIM (SD) 206.7 (134) 259 (118.5) 195.25 (136.43)

No. of lactations
0 (No. of cows) 4 0 0
1 (No. of cows) 80 36 34
≥2 (No. of cows) 141 86 43
Dry (No. of cows) 5 9 0

Treatment

Clinical mastitis

Ceftiofur, pirlimycin
hydrochloride,

penicillin, ampicillin,
oxytetracycline,

sulfadimethoxine

Penicillin G procaine,
ceftiofur, pirlimycin

hydrochloride,
amoxicillin

Ceftiofur

Metritis Oxytetracycline,
penicillin Ceftiofur Ceftiofur,

isoflupredone acetate

Dry
Penicillin-novobiocin,

Penicillin-
dihydrostreptomycin

Penicillin-
dihydrostreptomycin,

Orbeseal
None

No. = number; DIM = days in milk; SD = standard deviation.
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