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Identification of candidate ATP-
binding cassette transporter gene 
family members in Diaphorina citri 
(Hemiptera: Psyllidae) via adult 
tissues transcriptome analysis
Zhengbing Wang  1, Fajun Tian1, Lijun Cai2, Jie Zhang2, Jiali Liu1 & Xinnian Zeng1*

The ATP-binding cassette (ABC) transporters exist in all living organisms and play major roles in various 
biological functions by transporting a wide variety of substrates across membranes. The functions of 
ABC transporters in drug resistance have been extensively studied in vertebrates; however, they are 
rarely characterized in agricultural pests. The Asian citrus psyllid, Diaphorina citri, is one of the most 
damaging pests of the Citrus genus because of its transmission of Huanglongbing, also known as Yellow 
Dragon disease. In this study, the next-generation sequencing technique was applied to research the 
ABC transporters of D. citri. Fifty-three ABC transporter genes were found in the RNA-Seq data, and 
among these ABC transporters, 4, 4, 5, 2, 1, 4, 18 and 15 ABC proteins belonged to the ABCA-ABCH 
subfamilies, respectively. Different expression profiles of 52 genes between imidacloprid-resistant and 
imidacloprid-susceptible strains were studied by qRT-PCR; 5 ABCGs and 4 ABCHs were significantly 
upregulated in the imidacloprid-resistant strain. In addition, five of the nine upregulated genes were 
widely expressed in adult tissues in spatial expression analysis. The results suggest that these genes 
may play key roles in this phenotype. In general, this study contributed to our current understanding of 
D. citri resistance to insecticides.

The ATP-binding cassette (ABC) transporter family is one of the largest families of membrane proteins and uni-
versally exists in all living organisms on Earth1. The first one was found in prokaryotes. In humans, 48 ABC family 
members have been identified2. The majority of these proteins are membrane-bound primary active transport-
ers that transport various molecules across all cell membranes by binding ATP3. Based on the components of 
their ATP-binding domain(s), also known as nucleotide-binding domains (NBDs), they are classified as ABC 
transporters. Each NBD contains three characteristic motifs: ABC signature C, Walker A box and Walker B box. 
The function of NBDs is to bind and hydrolyse ATP to provide energy for substrate transportation. In addi-
tion, the ABC transporters also contain a transmembrane domain (TMD) which usually consists of five to seven 
membrane helices and participates in the recognition of the substrates. Some eukaryotic ABC transporters are 
composed of 2 NBDs and 2 TMDs, known as full-transporters, whereas those with only 1 NBD and 1 TMD 
are called half-transporters. The latter require either homodimers or heterodimers to form a functional unit4,5. 
According to the homology of the NBD sequences, the ABC transporter family is classified into 8 subfamilies, 
named ABCA-ABCH.

In recent years, ABC transporters have received increasing attention regarding detoxification. In humans, 
the overexpression of various ABC transporters in cancer cells can efficiently remove the anticancer drugs from 
the cells, thus reducing the efficacy of drugs. The development of multidrug resistance (MDR) in cancer cells is 
one of the major reasons for the failure of cancer chemotherapy6,7. In arthropods, ABC transporters are usually 
associated with insecticide resistance by reducing toxic concentrations in cells/tissues8–10. For instance, ABCG4 
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correlates with Cry1Ac resistance in Plutella xylostella11. Some genes of the ABCB, ABCC, ABCD and ABCG 
subfamilies are upregulated in strains of Laodelphax striatellus resistant to chlorpyrifos, deltamethrin and imi-
dacloprid12. ABC transporters (Mdr50, Mdr65, and Mrp1) are involved in DDT resistance in Drosophila mela-
nogaster13. In a study of the interaction between permethrin and verapamil (an inhibitor of ABC transporters) 
in Anopheles stephensi, the toxicity of permethrin is increased approximately 5-fold with the inhibition of ABC 
transporters; concurrently, the expression levels of ABCB6 and ABCG4 are significantly upregulated14. It has been 
reported that ABC transporters are associated with the transport and/or resistance to 27 different insecticides 
belonging to 9 distinct chemical classes of insecticides (carbamates, macrocyclic lactones, neonicotinoids, organ-
ophosphates, pyrethroids, cyclodienes, benzoylureas, phenylpyrazoles, and DDT)15,16.

The Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae) feeds on citrus flush and trans-
mits Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium that infects citrus, that causes 
Huanglongbing, also known as citrus greening disease or Yellow Dragon disease, a destructive disease of citrus. 
At present, the application of pesticides is the main way to control the ACP17,18. However, the long-term use of 
chemical insecticide has led to the development of varying levels of resistance to almost all common insecticides 
in the populations of D. citri in many citrus producing areas19–21. The decreased insecticide sensitivity of D. citri 
was related to the increased activities of esterases (ESTs), glutathione S-transferases (GSTs), and cytochrome 
P450 monooxygenases (P450s)22–24. A recent study showed that four P450s, one GST, and one EST of D. citri were 
associated with imidacloprid resistance25.

The development of insecticide resistance seriously impacts the effectiveness of chemical control strategies. 
Therefore, it is necessary to comprehensively understand the mechanism of insecticide resistance. However, as 
xenobiotic transporters, the role of the ABC transporters in insecticide resistance in D. citri has not been deter-
mined. To identify the ABC transporter genes in D. citri, transcriptome analysis was applied in this study. In total, 
fifty-three ABC transporter genes were found, which were classified into eight subfamilies (A-H) by phylogenetic 
analysis. The detailed sequence comparisons of the eight subfamilies with other species (D. melanogaster, Bombyx 
mori, Tribolium castaneum, Tetranychus urticae, and Bemisia tabaci) shed light on our understanding of the evo-
lution of the ABC transporter family among the six species. In addition, the expression profiles of these genes 
in imidacloprid-susceptible and imidacloprid-resistant strains were analysed by qRT-PCR. Our results provide 
valuable information on the mechanism of insecticide resistance in D. citri, and will facilitate the elucidation of 
the functions of these genes in this citrus pest.

Results and Discussion
Identification of ABC transporters in D. citri. A total of 53 ABC transporter genes were found in the 
transcripts of D. citri, including 52 unigenes with full-length open reading frame (ORF) sequences and the lengths 
of these ABC transporters ranged from 594 to 2413 amino acids (Table 1). In addition, 91 ABC transporter genes 
or fragments were also found in the genome of D. citri (Accession, GCA_000475195.1), and all these genes or 
fragments can be matched with those identified from the transcriptome data (Table S2). Therefore, we speculate 
that the 53 ABC transporters we identified are very close to representing all of the ABC transporters. Then, we 
aligned the NBDs by the ClustalW program and constructed a neighbor-joining tree. According to the homology 
of the NBDs, these 53 ABC transporters were grouped into the 8 A-H families (Fig. 1). We identified 4, 4, 5, 2, 1, 
4, 18 and 15 ABC proteins belonging to the ABCA-H subfamilies, respectively. All genes of subfamilies ABCA 
and ABCC were full-transporters; in subfamily ABCB, full-transporters were not identified. The ABCD, ABCG, 
and ABCH subfamilies comprised only half-transporters. However, subfamilies ABCE and ABCF contained only 
NBDs (Fig. 2). All of the ABC transporter genes of D. citri were submitted to GenBank (Table 1).

ABCA subfamily. Four ABCA transporters were identified in D. citri. Three of them were full-transporters, 
and one was a single TMD-containing ABCA protein (DcABCA2) (Fig. 2). This subfamily includes the largest 
ABC transporter, which is encoded by DcABCA1 (2413 amino acids), and in fact, subfamily ABCA transporters 
are typically the largest among known ABCs26. A phylogenetic tree was constructed to support the member posi-
tion for the DcABCAs (Supplementary Fig. S1). DcABCA1 clustered with tetur25g01640 and human HsABCA1, 
2, 4 and 7. DcABCA2 reveals a high bootstrap support with a group that is formed by six ABCAs of B. tabaci, and 
then aligned with two ABCAs of T. castaneum, TcABCA-UA and TcABCA-7A, DmCG31731, BmABC004187 
and a sister-group that is formed by seven T. urticae ABCAs; these ABCAs form a clade. DcABCA3 is placed in 
the human ABCA3 clade, which comprises a sister-group of TcABCAs. The clade also contains two BmABCAs 
(BmABC007217 and BmABC007221). DcABCA4 clustered with three insect ABCAs and then aligned with five 
human HsABCAs (HsABCA5, HsABCA6, and HsABCA8-10).

In humans, ABCA transporters play important functions in lipid transport and metabolism2. This includes 
ABCA1, which transports intracellular cholesterol and phosphatide to lipid-poor apolipoprotein A-I (ApoA-I) 
to form high-density lipoprotein (HDL)27. The expression of ABCA1 in the hippocampus is positively associated 
with the severity of Alzheimer’s disease (AD)28. However, the role of the arthropod orthologues of these human 
ABCAs is currently unclear, but they might be related to lipid transport based on the high conservation of the 
structure. Injection of dsRNAs of TcABCA-9A and TcABCA-9B, results in approximately 30% mortality with 
severe defects in pupae and pharate adults of T. castaneum29.

ABCB subfamily. The ABCB subfamily contains both full-transporters and half-transporters. In D. citri, 
four ABCB transporters were identified, and all of them are half-transporters that comprise one TMD and one 
NBD. In the phylogenetic tree (Supplementary Fig. S2), the four DcABCBs were allocated to 4 clades. DcABCB2 
was clearly clustered with five ABCBs from other species and formed a clade. This clade contains BmABC005473, 
TcABCB-6A, DmCG4225, Btaq001304.1, and HsABCB6. DcABCB3, DcABCB4, and DcABCB5 are located in 
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Subfamily Name Accession no. Length (aa) Completeness
Matched protein 
(Accession no.) Species E value N-Glc O-Glc

A (4)

DcABCA1 MH172490 2413 Complete AIN44098.1 Laodelphax striatella 0 11 8

DcABCA2 MH172491 1693 Complete XP_016657979.1 Acyrthosiphon pisum 0 6 0

DcABCA3 MH172492 1674 Complete XP_022180700.1 Myzus persicae 0 0 0

DcABCA4 MH172493 2001 Complete XP_023723146.1 Cryptotermes secundus 0 8 0

B (4)

DcABCB2 MH172495 830 Complete XP_021938907.1 Zootermopsis nevadensis 0 0 4

DcABCB3 MH172496 706 Complete XP_015606144.1 Cephus cinctus 0 3 0

DcABCB4 MH172497 688 Complete XP_022199620.1 Nilaparvata lugens 0 1 0

DcABCB5 MH172498 644 Complete XP_018904441.1 Bemisia tabaci 0 1 0

C (5)

DcABCC1 MH172499 1523 Complete XP_025201032.1 Melanaphis sacchari 0 5 0

DcABCC2 MH172500 1407 Complete XP_021928372.1 Zootermopsis nevadensis 0 6 0

DcABCC3 MH172501 1373 Complete XP_015366071.1 Diuraphis noxia 0 0 0

DcABCC4 MH172502 1512 Complete XP_018902692.1 Bemisia tabaci 0 4 1

DcABCC5 MK090470 1343 Complete XP_018897575.1 Bemisia tabaci 0 2 0

D (2)
DcABCD1 MH172503 712 Complete XP_022192008.1 Nilaparvata lugens 0 0 0

DcABCD2 MH172504 667 Complete XP_018911183.1 Bemisia tabaci 0 2 0

E (1) DcABCE1 MH172505 610 Complete XP_023724484.1 Cryptotermes secundus 0 0 0

F (4)

DcABCF1 MH172506 608 Complete KZS19906.1 Daphnia magna 0 2 0

DcABCF2 MH172507 1113 Complete XP_018327498.1 Agrilus planipennis 0 2 1

DcABCF3 MH172508 629 Complete XP_025837481.1 Agrilus planipennis 0 3 0

DcABCF4 MH172509 711 Complete XP_018911520.1 Bemisia tabaci 0 2 0

G (18)

DcABCG1 MH172510 612 Complete XP_018915601.1 Bemisia tabaci 0 2 0

DcABCG2 MH172511 645 Complete XP_018915017.1 Bemisia tabaci 0 0 0

DcABCG3 MH172512 594 Complete XP_022181257.1 Myzus persicae 0 1 0

DcABCG4 MH172513 632 Complete XP_018910658.1 Bemisia tabaci 0 1 0

DcABCG5 MH172514 695 Complete XP_018907924.1 Bemisia tabaci 0 1 2

DcABCG6 MH172515 711 Complete XP_018897078.1 Bemisia tabaci 0 1 0

DcABCG7 MH172516 623 Complete XP_018898633.1 Bemisia tabaci 0 0 0

DcABCG8 MH172517 644 Complete XP_018897241.1 Bemisia tabaci 0 0 2

DcABCG9 MH172518 627 Complete XP_018914482.1 Bemisia tabaci 0 2 0

DcABCG10 MH172519 910 Complete XP_018915492.1 Bemisia tabaci 0 1 0

DcABCG11 MH172520 728 Complete XP_024214083.1 Halyomorpha halys 0 0 0

DcABCG12 MH172521 609 Complete XP_018911164.1 Bemisia tabaci 0 2 0

DcABCG13 MH172522 649 Complete XP_018896422.1 Bemisia tabaci 0 1 0

DcABCG14 MH172523 638 Complete XP_018896422.1 Bemisia tabaci 7e-149 3 0

DcABCG15 MH172524 609 Complete XP_014276473.1 Halyomorpha halys 0 2 0

DcABCG16 MH172525 646 Complete XP_014279356.1 Halyomorpha halys 0 2 0

DcABCG17 MH172526 706 Complete XP_018908689.1 Bemisia tabaci 0 3 0

DcABCG18 MK090471 606 Complete XP_025412973.1 Sipha flava 0 2 0

ABCH (15)

DcABCH1 MH172527 686 Complete XP_018896133.1 Bemisia tabaci 2e-164 2 0

DcABCH2 MH172528 703 Complete XP_001945365.2 Acyrthosiphon pisum 0 2 0

DcABCH3 MH172529 949 Complete XP_021926127.1 Zootermopsis nevadensis 1e-78 7 0

DcABCH4 MH172530 700 Complete AKJ85501.1 Rhopalosiphum padi 6e-146 1 0

DcABCH5 MH172531 769 Complete XP_012522429.1 Monomorium pharaonis 0 4 0

DcABCH6 MH172532 682 Complete XP_018916054.1 Bemisia tabaci 0 1 0

DcABCH7 MH172533 681 Complete AKJ85501.1 Rhopalosiphum padi 2e-175 3 0

DcABCH8 MH172534 689 Complete XP_018896133.1 Bemisia tabaci 0 2 0

DcABCH9 MH172535 764 Complete XP_025206654.1 Melanaphis sacchari 0 2 0

DcABCH10 MH172536 691 Complete XP_025208609.1 Melanaphis sacchari 0 1 0

DcABCH11 MH172537 685 Complete XP_022164150.1 Myzus persicae 0 4 0

DcABCH12 MH172538 677 Complete XP_018917681.1 Bemisia tabaci 7e-114 2 0

DcABCH13 MH172539 717 Complete XP_012522429.1 Monomorium pharaonis 6e-165 1 0

DcABCH14 MH172540 645 N-missing XP_014274344.1 Halyomorpha halys 5e-91 1 0

DcABCH15 MK090472 676 Complete XP_025197526.1 Melanaphis sacchari 1e-109 2 0

Table 1. Characterisation of 53 ABC transporters in D. citri. aa, amino acid; N-Glc, N-glycosylation sites; 
O-Glc, O-glycosylation sites.
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Figure 1. Phylogenetic tree of D. citri ABC transporters. The amino acid sequences of the nucleotide binding 
domain (NBD) were used to construct the neighbour-joining tree with the Poisson model. Analysis was 
performed with MEGA6.0. The bootstrap values resulted from 1000 replications and are displayed in the size 
and colour of the circles.

Figure 2. Conserved domain analysis of the ABC transporters of D. citri. The orange stripes indicate the 
transmembrane domains, TMDs; the blue stripes represent the nucleotide binding domains, NBDs; the 
numbers in parentheses indicate the number of ABC transporters in each subfamily.
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three other clades similar to DcABCB2. The half transporters in phylogenetic analysis showed obvious ortholo-
gous relationships, suggesting that half-transporters have evolutionarily conserved roles in arthropods30.

In humans, HsABCB6-8 and HsABCB10 are four mitochondrial ATP-binding cassette transporters. 
HsABCB6 is associated with multiple cellular functions, including iron homeostasis and porphyrin transport, 
and is resistant to several cytotoxic agents31. HsABCB7 is associated with Refractory anaemia with ring side-
roblasts (RARS)32. HsABCB8 is involved in protecting the mitochondrial genome through doxorubicin resist-
ance33. HsABCB10 is an important player in the protection from oxidative stress34. D. melanogaster DmCG4225, a 
homologous gene of Homo sapiens HsABCB6 was associated with tolerance to cadmium35. DmCG3879 (MDR49) 
is involved in directing germ cell migration through controlling export of a Drosophila germ cell attractant in a 
signal peptide-independent manner36. The homologous gene of HsABCB7 in Aedes aegypti is involved in insec-
ticide resistance37.

ABCC subfamily. The C subfamily ABC transporters in humans consist of cystic fibrosis transmem-
brane conductance regulator (CFTR), membrane-bound sulfonylurea receptors (SURs) and multidrug 
resistance-associated proteins (MRPs). CFTR (HsABCC7) acts as a chloride channel that is involved in regulating 
exocrine secretions. SURs (HsABCC8, HsABCC9) binds sulfonylurea and functions as regulators of potassium 
channels that play a role in modulating insulin secretion. MRPs (HsABCC1-6 and HsABCC10-12) are considered 
to be important transporters of xenobiotics due to their ability to transport a wide range of substrates (such as 
drugs, ions, toxins, and endogenous compounds)2,38,39. Due to their functions, MRPs are the most well charac-
terized in the ABC transporters subfamily C. All of the human ABCC transporter genes encode full ABC trans-
porters; however, both full- and half-transporters were found in insects2,40. A human MRP can be classified as a 
“long” MRP or “short” MRP based on whether it contains a third N-terminal transmembrane domain (TMD0). 
If it contains a TMD0, it is considered to be a “long” MRP, (HsABCC1-3, HsABCC6, and HsABCC10); on the 
contrary, the “short” MRPs include HsABCC4, HsABCC5, HsABCC11, and HsABCC1241. In insects, it has been 
reported that ABCC is involved in insecticide resistance; for instance, when the nymphs of Nilaparvata lugens 
are exposed to triazophos, the transcript level of an ABCC shows a significant increase42. In Pediculus humanus, 
silencing PhABCC4 by RNAi leads to an increased susceptibility to ivermectin43.

In D. citri, five ABCC transporter genes were identified; all genes contained full-length ORFs and encoded 
full ABC transporters (Table 1, Fig. 2). In phylogenetic analysis (Supplementary Fig. S3), DcABCC1 clustered 
with Btabq019529.2 and Btabq000311.1, DmCG6214, two B. mori ABCCs, four human MRPs (HsABCC1, 
HsABCC2, HsABCC3, and HsABCC6), twenty-three T. urticae ABCCs, and T. castaneum TcABCC-9A. As an 
orthologue to human MRPs, DmCG6214 is an ATP-dependent, vanadate-sensitive organic anion transporter 
and transports developmentally significant hormones, such as ecdysteroid and juvenile hormone41. DcABCC2 
cluster with three human MRPs (HsABCC5, HsABCC11 and HsABCC12), where HsABCC5 and HsABCC11 
act as nucleoside transporters; however, the function of HsABCC12 is unknown2,44. DcABCC3 and DcABCC5 
were placed in a large clade containing HsABCC4, a large cluster of T. urticae ABCCs, seven B. mori ABCCs, 
a cluster of T. castaneum ABCC5s, and ten D. melanogaster ABCCs. HsABCC4 has the ability to transport a 
wide variety of endogenous and xenobiotic organic anionic compounds out of the cell; these substrates also 
include molecules involved in cellular signaling2. DcABCC4 clustered with human HsABCC10, DmCG7806, 
BmABC010636, Tetur03g07840, Btabq004618.1, and TcABCC-4A, and this clade showed clear orthologous rela-
tionships. HsABCC10 is known as a drug-efflux pump because it is involved in the transport of amphipathic 
anions, leading to resistance to a variety of anticancer drugs45. In the transcriptomes of D. citri, the orthologues 
of CFTR and SUR are not identified.

ABCD subfamily. The ABCD subfamily transporters are half-transporters in animals with one TMD and 
one NBD and play a role in transporting fatty acids and acyl-CoA in peroxisomes46. Two ABCD transporter tran-
scripts were identified in the transcriptomes of D. citri, both of which have full-length ORFs. The same number of 
ABCDs was also found in the genome of most other insects47 (Table 2). In the phylogenetic tree (Supplementary 
Fig. S4), D. citri DcABCD1 clustered with B. tabaci Btabq026746.1, T. castaneum TcABCD-6A, D. melanogaster 
DmCG2316, B. mori BmABC004616, T. urticae tetur05g06640, H. sapiens HsABCD1 and HsABCD2. DcABCD2 
is located in the HsABCD3 clade. The phylogenetic analysis reflected clear orthologous relationships with ABCD 
transporter proteins among these species, suggesting that ABCD transporters are highly conserved in animals.

ABCE and ABCF subfamilies. The ABCE and ABCF subfamilies are quite distinct from other ABC 
transporters because they only contain two linked NBDs and lack TMDs (Fig. 2). In view of the special struc-
ture, ABCE and ABCF proteins are involved in biological processes other than transportation. RNAi against 
Caenorhabditis elegans ABCE, which is also known as an RNase L inhibitor (RLI) in eukaryotes, resulted in 
embryonic lethality and slow growth, suggesting that ABCE plays a role in the regulation of translation and tran-
scription48. In humans, HsABCE1 has an important role in HIV-1 assembly49, and HsABCF1 (ABC50) is associ-
ated with promoting translation initiation50. In insects, injection of dsRNA specific for T. castaneum TcABCE-3A 
and TcABCF-2A, led to 100% mortality in the larvae of T. castaneum29.

One ABCE and four ABCF transporter genes were identified in the D. citri transcriptomes. Most eukaryotes 
only have one ABCE and three ABCF genes (Table 2). In the phylogenetic tree (Supplementary Fig. S5), DcABCE1 
showed the highest homology with BmABC010129 and TcABCE-3A. ABCFs clustered into well-supported sep-
arate clades, with DcABCF1 and DcABCF2 located in the HsABCF1 clade, and DcABCF3 and DcABCF4 posi-
tioned at the HsABCF2 and HsABCF3 clades separately. Phylogenetic analysis revealed that the ABCE and ABCF 
subfamilies were highly conserved.
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ABCG subfamily. The ABCG transporter family is present in most metazoan species, fungi and plants. 
Based on the research of predecessors, ABCG half-transporters were only identified in metazoan species 
except one ABCG gene in P. xylostella (Px007949)51. However, full-transporters are widely present in fungi and 
plants52,53. The half-transporters have a reverse domain structure with an NBD at the N-terminus and a TMD at 
the C-terminus (NBD-TMD), while a functional transporter must be dimeric15. In humans, five ABCG trans-
porter family genes have been identified. Among these HsABCGs, four HsABCGs except HsABCG2 were mainly 
involved in the transportation of dietary lipids, while HsABCG2 (breast cancer resistance protein, BCRP) has 
a series of substrates, including anticancer drugs, and acts as an MRP54. Among invertebrates, D. melanogaster 
ABCG members were first characterized, including brown, scarlet, and white genes55.

Eighteen ABCG transporter family transcripts were identified in the transcriptomes of D. citri and represent 
the largest ABC subfamily in D. citri, all of which possess full-length coding sequences and are in accord with 
half-transporters with the topology TMD–NBD. In the phylogenetic tree (Fig. 3), eight D. citri ABCG genes 
(DcABCG1-3, DcABCG5-8, and DcABCG18) clustered with potential orthologues of HsABCG1 and HsABCG4 
in ABCG clades, where HsABCG1 is involved in regulating the output of cholesterol, while the function of 
HsABCG4 was not clear56. In humans, HsABCG5 and HsABCG8 form a functional heterodimer and play a role 
in removing plant sterols from the body56. In the phylogenetic tree, DcABCG9 and DcABCG10 were two orthol-
ogous genes of HsABCG5 and HsABCG8, and all the arthropod orthologues of HsABCG5/HsABCG8 showed a 
head-to-head arrangement, indicating that DcABCG9 and DcABCG10 may have similar functions as HsABCG5/
HsABCG8. Six genes (DcABCG12-17) clustered with D. melanogaster white, scarlet, and brown and the ortho-
logues of the other species. In D. melanogaster, white, scarlet, and brown are the best-characterized ABCG genes 
of arthropods, and scarlet or brown takes part in transporting pigment precursors in the Malpighian tubules and 
relates to the formation of compound eye colour57,58. D. melanogaster white mutants show a white-eye colour 
phenotype, and this phenomenon has also been confirmed in T. castaneum and B. mori29,59. However, white is also 
involved in resistance to pesticide, and downregulation of the white orthologues leads to increased Bt resistance 
in P. xylostella60. In D. citri, DcABCG17 is orthologous to white, DcABCG13 and DcABCG14 are orthologous 
to scarlet, and three genes (DcABCG12, DcABCG15 and DcABCG16) are orthologous to brown. DcABCG11 
clustered with B. tabaci Btabq023890.1, T. castaneum TcABCG-8A, D. melanogaster DmCG3327, and T. urticae 
tetur17g02510. In D. melanogaster, DmCG3327 (also named E23) is capable of modulating the 20E response61, 
and a similar function has also been found in T. castaneum TcABCG-8A29. DcABCG6 clustered with T. cas-
taneum TcABCG-4C, D. melanogaster DmCG3164, B. mori BmABC005202 and two orthologues of B. tabaci. In 
T. castaneum, TcABCG-4C-dsRNA injected larvae exhibited a rough cuticle as a consequence of desiccation and 
shrinkage and rapidly caused death during the quiescent stage, in addition, injection of TcABCG-4C-dsRNA into 
pre-pupae resulted in death at the pupal stage before the pupal-adult molt, while DmCG3164 performs a similar 
function in Drosophila29,62.

ABCH subfamily. The ABCH transporter family proteins are half-transporters and share the same 
NBD-TMD topological structure as the ABCH family. ABCH transporters were first identified in D. melano-
gaster and it was then reported that the ABCH subfamily was only found in arthropods, zebrafish Danio rerio 
and marine medaka Oryzias melastigma15,63. At present, the ABCH subfamily has not been identified in other 
species such as mammals, plants and fungi2,52,64. We identified fifteen DcABCH genes in the transcriptomes of D. 
citri, fourteen of them have the full-length ORF. In most insect species, only three ABCH members were found, 
including D. melanogaster, B. mori and T. castaneum which has an excellent genome sequence, however, a large 
number of ABCH members were found in three Hemiptera insects (B. tabaci, Lygus Hesperus and D. citri) and 
two species of arthropods (D. pulex and T. urticae) (Table 2). In the phylogenetic tree (Fig. 4), six DcABCH 
sequences (DcABCH1, DcABCH4, DcABCH7, DcABCH12 and DcABCH14-15) formed a separate clade, which 
was similar to the ABCHs of T. urticae30 and D. pulex65, suggesting that the diversity of ABCH proteins in D. citri 

Species ABCA ABCB ABCC ABCD ABCE ABCF ABCG ABCH TOTAL

Homo sapiens 12 11 12 4 1 3 5 0 48

Daphnia pulex 3 6 24 3 1 3 26 11 82

Tetranychus urticae 9 4 39 2 1 3 23 22 103

Tigriopus japonicus 5 5 17 3 1 3 7 5 46

Brachionus koreanus 11 19 15 3 1 3 8 2 61

Drosophila melanogaster 10 8 14 2 1 3 15 3 56

Anopheles gambiae 9 5 13 2 1 3 16 3 52

Bombyx mori 6 8 15 2 1 3 13 3 51

Helicoverpa armigera 7 11 11 2 1 3 16 3 54

Plutella xylostella 15 14 21 3 1 3 19 6 82

Tribolium castaneum 10 6 35 2 1 3 13 3 73

Apis mellifera 3 7 9 2 1 3 15 3 43

Bemisia tabaci 8 3 6 2 1 3 23 9 55

Lygus hesperus 11 6 12 2 1 3 19 11 65

Diaphorina citri 4 4 5 2 1 4 18 15 53

Table 2. Number of each ABC transporter subfamily in different species.
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has been due to lineage-specific duplications events, this similar expansion was also found in two Hemiptera 
insects B. tabaci and L. hesperus26,64.

ABCH plays an important role in insect physiology. In recent years, researchers have been exploring and 
have a considerable understanding of their physiological function. In Helicoverpa armigera and Manduca 
sexta, when the larvae were fed with secondary metabolites, the expression of ABCH subfamily was induced to 
increase66,67. In D. melanogaster, cold hardening treatment resulted in a 2-fold increase in the expression level 
of DmCG3397068, both DmCG9990 null mutants and RNAi-mediated knockdown DmCG9990 are lethal62,69. 
In addition, DmCG9990 was also found to be associated with the formation of epidermal barrier70. In T. cas-
taneum, injection of dsRNA specific for TcABCH-9C, the ortholog of DmCG9990, resulted in desiccation and 
100% larval mortality and a significant reduction in fertility and the egg hatchability. Furthermore, TcABCH-9C 
dsRNA treated larvae showed a lack of lipids in the epicuticle, and based on these results, the authors inferred that 
TcABCH-9C was involved in transport of lipids to epicuticle and promoting the formation of waterproof barrier 
in epicuticle29. In a recent study, the ortholog of DmCG9990 in Locusta migratoria, LmABCH-9C, were borne 
out to be associated with transport of lipids to epicuticle and cuticle barrier formation in epicuticle71. In D. citri, 
DcABCH5 and DcABCH9 are orthologues of DmCG9990 and DmCG33970, respectively (Fig. 4).

Expression profile of DcABCs. The spatial expression profiles of these ABC transporter genes were esti-
mated by analysing the FPKM values. Ten genes (DcABCB5, DcABCD1, DcABCE1, DcABCF2-3, DcABCG6-8, 
DcABCG10, and DcABCH5) are widely expressed in adult tissues of D. citri. Seven ABC transporter genes 
(DcABCA1, DcABCA3-4, DcABCC1, DcABCC3-4, DcABCG15, and DcABCH2) showed high expression lev-
els in the abdomen of adults (Fig. 5). To understand the possible role of DcABCs in the insecticide resistance 
of D. citri, qRT-PCR was used to compare the expression of these genes between the imidacloprid-susceptible 
and imidacloprid-resistant strains. The expression level of DcABCG11 in susceptible strains was too low to be 
detected; therefore the expression levels of 52 genes were presented. Nine DcABCs were significantly upreg-
ulated in the imidacloprid-resistant strains compared to the susceptible strains (Fig. 6), and the upregulated 
genes were mainly concentrated in the ABCG and ABCH subfamilies. DcABCH4 was upregulated 3.9-fold in 

Figure 3. Phylogenetic analysis of ABCG transporters of D. citri and other species. Dm, Drosophila 
melanogaster; Bm, Bombyx mori; Tc, Tribolium castaneum; tetur, Tetranychus urticae; Btabq, Bemisia tabaci Q; 
Dc, D. citri (red). The neighbour-joining tree was constructed using MEGA6.0 software and with the Poisson 
model. The bootstrap values resulted from 1000 replications and are displayed in the size and colour of the 
circles.
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resistant strains, and DcABCG3 and DcABCG9 were upregulated 2.6-fold and 2.9-fold. DcABCG6, DcABCG7, 
DcABCG10, DcABCH5, DcABCH9, and DcABCH12 were upregulated 1.4-fold to 1.8-fold. Twenty-seven of the 
52 DcABCs were down-regulated in resistant strains, and the expression of the remaining 16 DcABCs did not 
show a significant difference between susceptible and resistant strains.

In arthropods, ABCB, ABCC and ABCG were the three most reported subfamilies associated with insecticide 
transport or resistance, and the index of insecticide transport or resistance is mainly based on their expression 
level15. In D. citri, five ABCG transporters were significantly upregulated in imidacloprid-resistant strains, and 
similar upregulation of expression has also been reported in other insects. For instance, one ABCG transporter 
was upregulated in the imidacloprid-susceptible Leptinotarsa decemlineata72. Four ABCG transporters were 
up-regulated in imidacloprid-treated B. tabaci64. In addition to the ABCG transporter, four ABCH transporters 
were significantly upregulated in imidacloprid-resistant strains. In the green peach aphid, Myzus persicae, an 
ABCH was upregulated under the stress of pirimicarb73, suggesting that ABCH may also be involved in insec-
ticide resistance in insects. The results indicated a potential implication of these genes in imidacloprid resist-
ance. In addition, five of the nine upregulated genes (DcABCG6-8, DcABCG10, and DcABCH5) were expressed 
widely in adult tissues, which may demonstrate that the wide expression of ABC transporters may contribute to 
the transport of exogenous substances such as pesticides. Twenty-seven DcABCs were downregulated in resist-
ant strains. Similarly in P. xylostella, Px006766 (PxABCF3) and Px013659 (PxABCA12) were downregulated in 
chlorpyrifos-resistant and fipronil-resistant strains51. This may indicate that not all ABCs are involved in detoxi-
fication and may be a physiological adaptation to long-term pesticide pressure.

Conclusions
The major objective of this study was to identify the ATP-binding cassette transporter gene family in D. citri. In 
this study, fifty-three genes encoding ABC transporters were identified in D. citri using RNA-Seq and transcrip-
tomic analysis. Among 8 subfamilies, ABCG and ABCH have more members in D. citri. Moreover, nine genes of 
these two subfamilies were upregulated in the imidacloprid-resistant strain of adult D. citri and five of them were 
expressed extensively in adult tissues. These results enrich the research content regarding the insecticide resist-
ance mechanism in D. citri and will further facilitate our understanding of imidacloprid-resistance mechanisms 
in this pest.

Figure 4. Phylogenetic analysis of ABCH transporters of D. citri and other species. The abbreviations and 
colour settings are consistent with Fig. 3. The neighbour-joining tree was constructed using MEGA6.0 software 
and with the Poisson model. The bootstrap values resulted from 1000 replications and are displayed in the size 
and colour of the circles.
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Materials and Methods
Insect rearing and strains. Two strains of D. citri were used in this study: laboratory-susceptible strains 
and imidacloprid-resistant strains. The laboratory susceptible-strains were collected from Murraya exotica on 
the campus of South China Agricultural University, Guangzhou, Guangdong Province, China, in 2013, and this 
population was reared in the greenhouse without exposure to any insecticides. The imidacloprid-resistant strains 
originate from field populations in Guangzhou, Guangdong Province, China, in 2016, and then they were con-
tinuously exposed to imidacloprid to select the resistant strains. A 52.19-fold imidacloprid-resistant strain was 
obtained through 9 generations of continuous selection via the leaf dip method25. Both strains were kept rearing 
on M. exotica in a climate chamber (26 °C, 80% RH) and a 14:10 h (light:dark) photoperiod.

Sample collection and RNA Seq. The tissues of insects were dissected from 3-day-old adults of 
laboratory-susceptible strains. A total of 2000 antennas (including a modicum of tissues of heads), 200 heads 
(antennas removed), 150 thoraxes, 300 legs, 150 abdomens, and 1000 terminal abdomens (cut from the 5th 
abdominal segments) were collected from male adults, and the tissues from famale adults had equal numbers. 
Total RNA from each sample was extracted using TRIzol Reagent (Invitrogen, Waltham, MA, USA). Total RNA 
samples were quantified and assessed for quality by a NanoDrop 2000 (Thermo Fisher Scientific, Waltham, 
MA, USA). Transcriptome sequencing was performed on an Illumina HiSeq. 2500 platform (Genewiz, Suzhou, 
China), and a total of 143.37 Gb of raw data was acquired. After removing low-quality, adaptor and contami-
nating sequence reads, 137.22 Gb of clean reads was obtained. The clean data were assembled by Trinity, and 
297,614 unigenes larger than 200 bp were obtained, the unigenes were submitted to InsectBase (http://www.
insect-genome.com/data/Diaphorina_citri.transcript.fa.tar.gz)74–76. The raw data of the transcriptomes were sub-
mitted to the NCBI Short Read Archive (SRA) database (Submission ID: SRP139008) (https://www.ncbi.nlm.nih.
gov/sra/SRP139008)76.

Figure 5. Tissue-specific expression profiles of ABC transporter genes in various tissues of D. citri based on 
FPKM values. The mRNA levels, as represented by log2 (FPKM + 1) values, are shown in the heat map with 
colors ranging from blue (low expression) to red (high expression). MA, male antenna; MH, male head; MT, 
male thorax; ML, male leg; MAB, male abdomen; MAT, male abdomen terminal; FA, female antenna; FH, 
female head; FT, female thorax; FL, female leg; FAB, female abdomen; FAT, female abdomen terminal.
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Identification of ABC transporters in D. citri. The local blast program of BioEdit software was applied to 
identify candidate ABC transporter genes. The amino acid sequences of H. sapiens2, D. melanogaster30, B. mori47, 
T. castaneum29, B. tabaci64, P. xylostella51, T. urticae30, and Saccharomyces cerevisiae77 were used as BLAST queries 
with an E-value threshold of 10−5. To obtain the whole ABC transporter genes as far as possible, the same method 
was also used to identify ABC transporters in the genome of D. citri (Accession: GCF_000475195.1). The can-
didate ABC transporter genes were reconfirmed by BLASTx analysis with the non-redundant protein sequence 
(NR) of NCBI (http://www.ncbi.nlm.nih.gov/).

Protein structure and domain prediction. The open reading frames (ORFs) of the candidate ABC trans-
porter genes were predicted using the ORF finder (http://www.ncbi.nlm.nih.gov/). The ORFs of the genes in each 
subfamily were aligned using ClastalW to search alternative splicings to confirm the isoforms from the same 
gene. The NBD and TMD of each potential ABC transporter genes were verified by searching with the Pfam pro-
gram (http://pfam.xfam.org/)78 and Conserved Domains (http://www.ncbi.nlm.nih.gov/)79. The domains were 
graphed with the illustrator program DOG 2.0.180. N-glycosylation sites and O-glycosylation sites were predicted 
using NetNGlyc 1.0 (Potential Score > 0.5, Jury agreement: 9/9) (http://www.cbs.dtu.dk/services/NetNGlyc/) and 
O-glycosylation81 (G-score > 0.5) (http://www.cbs.dtu.dk/services/NetOGlyc-3.1/) respectively.

Phylogenetic analysis. To classify the position of D. citri ABCs within ABC classes (A-G), the amino acid 
sequences of NBDs of D. citri ABC transporters were used to resolve their phylogenetic relationships. When a 
protein had two NBDs, the N-terminal NBD was used. To analyse the evolutionary placement of ABC transport-
ers in D. citri, comparison analyses among each subfamily of ABC transporters from D. citri, D. melanogaster, B. 
mori, T. castaneum, B. tabaci, and T. urticae were conducted, and the full-length protein sequences were subjected 
to phylogenetic analyses (Supplementary data). Sequences were aligned by the ClustalW alignment algorithm82, 
and MEGA6 was used to construct the neighbor-joining trees with the Poisson model and 1,000 bootstrap repli-
cates83, the dendrograms were viewed in FigTree and edited in Adobe PhotoShop CS6.

Expression analysis of ABC transporters. Gene expression levels for each tissue sample were estimated 
by RSEM (RNA-Seq by Expectation-Maximization) (v1.2.6)84. The spatial expression of these ABC transporter 
genes was estimated using the Fragments Per Kilobase of transcript per Million fragments (FPKM) method, 

Figure 6. Transcript levels of 52 ATP-binding cassette (ABC) transporter genes in D. citri. The error bars 
indicate the standard errors of the means (n = 3), The asterisks indicate significant differences compared with 
the susceptible strain (Student’s t-test, P < 0.05).
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which is based on the number of uniquely mapped reads85. The FPKM values of each gene were transformed 
into log2 (RPKM + 1) values, and GraphPad Prism 7.01 was used to generate and visualize the expression profile.

The relative expression of ABC transporter mRNAs in imidacloprid-susceptible and imidacloprid-resistant 
strains was determined using quantitative real-time PCR (qRT-PCR) with SYBR-green fluorescence. Total RNA 
was extracted from two strains using TRIzol Reagent (Invitrogen, Waltham, MA, USA). The PrimeScript™ 
RT reagent Kit with gDNA Eraser (Takara, Dalian, China) was used for cDNA synthesis, and two reference 
genes, namely, β-actin (XM_008473151) and α-tubulin (DQ675550), were used as internal controls86,87. The 
gene-specific primers were designed by the Primer 3 program (http://elixir.ut.ee/Main/Services) (Supplementary 
Table S1). Gene-specific primers synthesis were completed by TsingKe Biotech Co., Ltd (TsingKe, Beijing, China). 
The CFX96 Real-Time PCR System (Bio-Rad, Hercules, CA, USA) and the Go Taq® qPCR Master Mix (Promega, 
Madison, WI, USA) were used to perform qRT-PCR reactions. Finally, the relative values of mRNA expression 
were calculated by The 2−ΔΔCt method88, and the expression level of imidacloprid-susceptible strain was used as 
the calibrator. The significance of differences between two strains was determined using Student’s t test (P < 0.05). 
Three biological replicates were analysed for each experiment. A total of 120 ACP adults (three biological repli-
cates, n = 40) from susceptible and resistant strains were used for qRT-PCR analysis, and three technical replicates 
were performed in each qRT-PCR reaction.
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