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Abstract: Curved pedestrian bridges are important urban infrastructure with the desired adaptability
to the landscape constraints and with aesthetic benefits. Pedestrian bridges feature thin cross-sections,
which provide sufficient load capacities but lead to low natural frequencies that make the bridges
susceptible to vibration under pedestrian excitation. This study investigates the lateral vibration
of a curved bridge with a small radius down to 20 m, proposes an approach to mitigate the lateral
vibration of bridges with large curvatures using distributed multiple tuned mass dampers (MTMD),
and conducts in-situ bridge tests to evaluate the vibration mitigation performance. The lateral
vibration was investigated through in-situ tests and finite element analysis as well as the code
requirements. The key parameters of the distributed MTMD system were improved by strategically
selecting the mass ratio, bandwidth, center frequency ratio, and damper number. The results showed
that the curved bridge was subjected to significant lateral vibration due to the coupling of torque
and moment, and the recommended design parameters for the studied bridge were derived, i.e., the
total mass ratio is 0.02, bandwidth is 0.15, center frequency ratio is 1.0, and damper number is 3. The
proposed approach effectively improves the deployment of MTMD for lateral vibration control of
the curved bridge. The field tests showed that the vibration was reduced by up to 82% by using the
proposed approach.

Keywords: bridge vibration; curved bridge; distributed multiple tuned mass dampers (MTMD);
lateral vibration; pedestrian bridge; steel box girder

1. Introduction

Pedestrian bridges play important roles in improving mobility through diverging
pedestrians and vehicles, improving pedestrian safety, and mitigating congestion, particu-
larly in major cities. With the shrinkage of available spaces in the course of urbanization,
curved pedestrian bridges attract intensive interest because of their adaptability to the land-
scape constraints and aesthetic advantages in urban infrastructure [1]. The span lengths of
curved pedestrian bridges keep increasing, and thin cross-sections have been adopted in
many curved bridges. The adoption of thin cross-sections makes curved bridges aestheti-
cally appealing. However, the use of thin sections led to low flexural and torsional stiffness
as well as low natural frequencies of the bridges [2]. The fundamental frequencies of many
pedestrian bridges are lower than 3 Hz [3], which are comparable with the frequency of
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pedestrian excitation. Pedestrian loads may cause resonance of the bridges and lead to
catastrophic consequences such as collapse [4]. The vibration of bridges compromises their
serviceability and durability [5].

An effective method to mitigate the vibration problems for curved pedestrian bridges
is to employ dampers [6–11]. Bar hysteretic dampers were proposed to dissipate energy
through bending mechanisms [10,11], and shape memory alloy was used to replace steel
bars to achieve re-centering properties [11]. Among different types of dampers, tuned
mass dampers were adopted for vibration control in many projects since they are cost-
effective and easy to deploy in both new and existing structures [12–14]. Employment of
tuned mass dampers mitigated resonance at specific frequencies. Based on tuned mass
dampers, multiple tuned mass dampers (MTMD) were proposed and reduced the vibration
of complex structures such as high-rise buildings and long-span bridges [15–17], since the
MTMD mitigated resonance at different frequencies. Then, MTMD was utilized in vibration
control for various engineering structures under operation loads and extreme events [18–21].
Previous research showed that the deployment positions and parameters of MTMD played
significant roles in the performance of vibration control [22–26].

MTMD have been applied to pedestrian bridges for vibration control. For example,
a single-span 34-m-long girder bridge was investigated [27]. The fundamental natural
frequency of the bridge was 2.0 Hz. The use of MTMD reduced the maximum acceleration
from 1.3 m/s2 to 0.4 m/s2. MTMD were applied to a 40-m-long girder bridge [28]. The fun-
damental natural frequency of the bridge was 2.0 Hz. The use of MTMD reduced the
maximum acceleration from 2.5 m/s2 to 0.2 m/s2. MTMD were also applied to a 60-m-long
girder bridge [29]. The fundamental natural frequency of the bridge was 1.33 Hz. The use
of MTMD reduced the maximum acceleration from 15.3 m/s2 to 1.35 m/s2. An eight-span
67-m-long girder bridge was investigated [30]. The fundamental natural frequency of the
bridge was 2.94 Hz. The use of MTMD reduced the maximum acceleration from 1.6 m/s2

to 0.3 m/s2. Wang and Shi [31] applied MTMD to a single-span 55.2-m-long girder bridge.
The fundamental natural frequency of the bridge was 2.55 Hz. The use of MTMD reduced
the maximum acceleration from 0.75 m/s2 to 0.15 m/s2. Recently, MTMD were applied to
suspension and cable-stayed pedestrian bridges [32,33].

The previous research showed that MTMD reduced bridge vibration. However, the
previous research mainly focused on the vertical vibration of bridges with straight girders.
There is limited research on the lateral vibration of curved pedestrian bridges. Another
limitation is that the radius of the studied curved pedestrian bridges is large (≥50 m). As
the radius decreases, the coupling effect of torsion and flexure is highly magnified and
exacerbates lateral vibration of curved bridges. There is a lack of knowledge about the
effect of MTMD on the lateral vibration of curved pedestrian bridges with large curvatures.
It is unclear how much vibration amplitude can be reduced and how the placement and
parameters of MTMD should be improved. To address these problems, this research
investigates the performance of MTMD for lateral vibration control in a curved pedestrian
bridge with a center radius down to 20 m. This research has three main objectives: (1) to
study the lateral vibration of the curved pedestrian bridge under pedestrian loads; (2) to
understand the effect of MTMD on the lateral vibration, and; (3) to study the influences of
the key parameters of MTMD for strategical deployment in vibration control.

To achieve these objectives, in-situ tests and three-dimensional finite element analysis
of the bridge were performed to investigate the lateral vibration of the bridge under pedes-
trian loads. A parametric study was performed to evaluate the effects of key parameters
of the MTMD. The investigated parameters included the mass ratio, bandwidth, center
frequency ratio, and damper number. Based on the parametric study, the distributed
MTMD were strategically configured for vibration control.

The significance of this research includes three main aspects: (1) This research offers
knowledge on lateral vibration and vibration control for curved bridges with large curva-
tures. (2) This research clarifies the effects of key variables of MTMD systems and provides
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guidelines for the strategic selection of the variables. (3) The research outcomes advance
the applications of MTMD for the safe and comfortable operation of pedestrian bridges.

2. Vibration Investigations
2.1. Bridge Description

The investigated bridge is a 3-span 60-m-long pedestrian bridge with curved steel box
girders. The length of each span is 20 m. The width and depth of the steel box girders are
4.0 m and 0.8 m, respectively. The center radius of the curved steel box girders was 20 m.
The geometry and cross-section of the girders of the bridge are shown in Figure 1.
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Figure 1. Illustration of the investigated bridge (unit: mm): (a) a photo; (b) the plan view; (c) the 

elevation view; and (d) the cross-section of the steel box girder. Figure 1. Illustration of the investigated bridge (unit: mm): (a) a photo; (b) the plan view; (c) the
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2.2. In-Situ Tests

The three spans of the bridge were respectively tested after the bridge was erected and
instrumented with accelerometers. Nine accelerometers were deployed in the bridge that
had three spans. In each span, three accelerometers were deployed at the mid-span section,
as depicted in Figure 1d. Along the transverse (width) direction of the bridge, the three
accelerometers were attached to the bridge deck in the center and at the two sides of the
mid-span section, as shown in Figure 2.
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Figure 2. Instrumentation of the investigated pedestrian bridge with accelerometers.

The accelerometers (model: LC0116) measured the accelerations of the bridge along
its longitudinal (length), transverse (width), and vertical directions. The acceleration data
from the accelerometers were collected using a data acquisition system (model: INV3062).
For each span of the bridge, ambient vibration tests were carried out to evaluate the natural
frequencies of the pedestrian bridge. The bridge was excited by vehicles passing underneath
the bridge and the winds. Accelerations were measured from the accelerometers for an
extended time longer than 600 s, which is more than 400 times the fundamental period of
the bridge. The sampling frequency was 45 Hz. The measured acceleration history data
were processed using a filter with a passing bandwidth from 0.5 Hz to 45 Hz [32]. The first
five characteristic frequencies were directly identified from the power spectrum, which are
0.776 Hz, 1.100 Hz, 1.335 Hz, 1.992 Hz, and 2.732 Hz.

2.3. Finite Element Analysis

A three-dimensional finite element model was established for further analysis of the
bridge using a commercial software MIDAS CIVIL, which is a well-developed software used
to analyze the static and dynamic responses of bridges, as elaborated in references [34,35].
The curved steel box girder was simulated using three-dimensional two-node beam ele-
ments. The cross-sections of the beam elements were consistent with the steel box girder
of the real bridge. The cap girders and piers were also simulated using beam elements,
and the cross-sections of the beam elements were consistent with the geometry of the real
bridge. A total of 372 beam elements were created.

The connection between the box girder and cap girders was defined using spring
elements with six degrees of freedom that were used to define the rigidity of the supporting
conditions. Along the vertical and the transverse (bridge width) directions, the stiffness of
the bearings was assumed to be infinite. Along the longitudinal (bridge length) direction,
the stiffness was assumed to be zero, meaning that the box girders were simply supported
by the cap girders of the piers. Figure 3 shows the finite element model.
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Figure 3. The established three-dimensional finite element model of the investigated bridge.

The finite element model was used to analyze the natural frequencies and mode shapes
of the bridge through eigenvalue analysis. The analysis results of the natural frequencies
and the mode shapes of the first five modes are listed in Table 1.

Table 1. Natural frequencies and mode shapes of the first five modes.

Mode Natural
Frequency Mode Shape Note Measured

Frequency Error

1 0.739 Hz
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The first two modes were lateral bending modes, and the frequencies were low, indi-
cating low lateral stiffness. The natural frequencies of the first five modes were lower than
3 Hz, comparable with the frequency of pedestrian loads. The analysis results of natural
frequencies were compared with measurement results from in-situ tests. The maximum
discrepancy between measurement and simulation results was 5%, indicating that the finite
element model provided adequate accuracy in the prediction of vibration characteristics.

2.4. Pedestrian Loads and Investigation Cases

The pedestrian loads recommended by ISO specifications were adopted in this research
because the recommended loads covered vertical and lateral loads for single pedestrian
and multiple pedestrian scenarios [36,37] The pedestrian loads are treated as cyclic loads
expressed as harmonic waves as shown in Equation (1):

F(t) = G

[
k

∑
i=1

αi,hsin(2πi fst + ϕi,h)

]
(1)

where G is the average weight of a person (G = 750 n); αi is the dynamic factor of excitation
of the i-th order (α1 = 0.4 for vertical pedestrian loads, and α1 = 0.1 for transverse loads);
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fs is the pedestrian pace frequency (unit: Hz); t is time (unit: s); and ϕi is the phase angle of
excitation of the i-th order.

When there is a single pedestrian on the bridge, the vertical and transverse pedestrian
loads are respectively expressed by Equations (2) and (3):

Fv(t) = 0.4× 750sin(2π fst), (2)

Fh(t) = 0.1× 750sin(2π fst), (3)

The crowd load is expressed by Equation (4):

F(t)n = nF(t)C(n) (4)

where n is the equivalent number of pedestrians; C(n) is a factor used to account for
interactions between pedestrians, which can be calculated by [36,37]:

C(n) =
√

n/n (5)

n = WLS (6)

where W, L, and S are the bridge width, bridge length, and crowd density (S = 0.6 person/m2),
respectively.

Table 2 lists six pedestrian load cases, including three cases for single pedestrian
load and three cases for crowd load. For the cases of single pedestrian load, three pace
frequencies were considered, which are 0.739 Hz, 1.800 Hz, and 2.300 Hz, representing
the first-order resonant frequency of the bridge, normal walking, and quick walking,
respectively. The single pedestrian load was applied as a concentrated force to the mid-
span sections of each span of the bridge. For the crowd load, the same pace frequencies
were considered. The crowd load was applied as a line force to each span of the bridge.

Table 2. Investigated pedestrian load cases.

Case Load Type Pace Frequency (Hz) Pedestrian Load

1 Single pedestrian 0.739 F(t) = 75sin(4.641t)
2 Single pedestrian 1.800 F(t) = 75sin(11.310t)
3 Single pedestrian 2.300 F(t) = 75sin(14.451t)
4 Crowd load 0.739 F(t) = 961sin(4.641t)
5 Crowd load 1.800 F(t) = 961sin(11.310t)
6 Crowd load 2.300 F(t) = 961sin(14.451t)

The serviceability of the bridge was evaluated according to the ISO specifications [36–38].
The threshold of accelerations was limited at each frequency, as shown in Figure 4. The
accelerations of pedestrian bridges should be equal to or lower than the threshold. The ISO
specifications were applied to both the vertical and transverse directions of the bridge.

2.5. Evaluation of Vibration Characteristics

The finite element model was used to analyze the vibration characteristics of the
bridge in the six load cases. In each case, the accelerations of different bridge sections
were determined, as listed in Table 3. The listed results include the root mean square and
maximum values of lateral accelerations of the mid-span (1/2) sections of the first and third
spans as well as the quarter spans (1/4, 1/2, and 3/4) of the second span.
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Table 3. Simulation results of the lateral accelerations of the bridge under pedestrian loads.

Case Span Section
Lateral Acceleration (m/s2)

Root Mean Square Maximum Limit Evaluation

1

1 1/2 0.001 0.002

0.15

Satisfied
2 1/4 0.002 0.004 Satisfied
2 1/2 0.002 0.004 Satisfied
2 3/4 0.003 0.005 Satisfied
3 1/2 0.004 0.006 Satisfied

2

1 1/2 0.004 0.009

0.15

Satisfied
2 1/4 0.004 0.009 Satisfied
2 1/2 0.004 0.010 Satisfied
2 3/4 0.005 0.011 Satisfied
3 1/2 0.008 0.017 Satisfied

3

1 1/2 0.002 0.004

0.16

Satisfied
2 1/4 0.001 0.004 Satisfied
2 1/2 0.001 0.004 Satisfied
2 3/4 0.001 0.004 Satisfied
3 1/2 0.003 0.006 Satisfied

4

1 1/2 0.017 0.061

0.30

Satisfied
2 1/4 0.026 0.071 Satisfied
2 1/2 0.031 0.080 Satisfied
2 3/4 0.037 0.091 Satisfied
3 1/2 0.052 0.136 Satisfied

5

1 1/2 0.075 0.229

0.30

Satisfied
2 1/4 0.069 0.192 Satisfied
2 1/2 0.072 0.197 Satisfied
2 3/4 0.081 0.216 Satisfied
3 1/2 0.131 0.345 Unsatisfied

6

1 1/2 0.031 0.098

0.32

Satisfied
2 1/4 0.027 0.092 Satisfied
2 1/2 0.028 0.087 Satisfied
2 3/4 0.031 0.098 Satisfied
3 1/2 0.047 0.157 Satisfied

The comparison of the analysis results of Cases 1 to 3 for single pedestrian loads
revealed that the single pedestrian loads had limited effects on the lateral accelerations at the
different sections of the bridge. The limits of the lateral acceleration were 0.15–0.16 m/s2,
while the maximum lateral acceleration was lower than 0.02 m/s2. The change of the pace
frequency did not significantly change the lateral accelerations. In comparison, Cases 4 to 6
for crowd pedestrian loads generated more intensive lateral accelerations than the single
pedestrian load cases, and the pace frequency showed significant effects. The limits of
the lateral accelerations were 0.30–0.32 m/s2, while the maximum lateral acceleration was
lower than 0.345 m/s2. The maximum lateral acceleration occurred at the middle span of
the third span, which exceeded the code limit (0.3 m/s2) of the ISO specification [36,37].
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The time history curve of the mid-span lateral acceleration of the third span is plotted
in Figure 5. The dash lines mark the code limit value. The curve shows that the vibration
amplitude increased with time overall until the crowd loads left the bridge.
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Figure 5. Plot of the time history result of the mid-span lateral acceleration of the third span of the
investigated bridge (unit: m/s2).

3. Vibration Mitigation
3.1. Tuned Mass Dampers

Previous research showed that MTMD were effective in mitigating the vertical vibra-
tion of bridges. It is speculated that MTMD are also effective in controlling the lateral
vibration of curved pedestrian bridges. To test this speculation, the finite element model
was modified to incorporate tuned mass dampers. Both single tuned mass damper (STMD)
and MTMD were considered. The mechanical models of STMD and MTMD are illustrated
in Figure 6.
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Figure 6. Comparison of the mechanical models of: (a) single tuned mass damper (STMD) and
(b) multiple tuned mass dampers (MTMD).

The main difference between STMD and MTMD is that MTMD have multiple damper
masses attached to the bridge. The multiple dampers are deployed at different positions of
the bridge. For each damper, the key parameters include the mass, stiffness, and damping
ratio [39]. When a STMD is adopted, the optimal frequency and damping ratios can be
calculated as:

f1 =
1

1 + µ
, (7)

ζ1 =

√
3µ

8(1 + µ)3 , (8)

µ =
m1

m0
, (9)
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where f 1 is the optimal center frequency ratio; ζ1 is the optimal damping ratio, and; µ is the
mass ratio.

Then, the optimal stiffness (k_1) and damping (c_1) of the STMD are calculated as:

k1 = f1
2ω0

2m0, (10)

c1 = 2ζ1 f1ω0m0, (11)

where ω0 is the natural frequency of the bridge and m0 is the transverse modal mass of the
bridge. With the above formulae, the parameters of the STMD were determined. The mass
was 1973.6 kg. The stiffness was 242.4 kN/m. The damping ratio was 1.84 kN·s/m. The
natural frequency was 1.8 Hz.

When MTMD are used, the design parameters include the mass ratio, stiffness, band-
width, damping ratio, and damper number. According to reference [40], the main design
parameters can be calculated as:

ωj = ωT

[
1 +

(
j − n + 1

2

)
R

n − 1

]
, (12)

k j =
µm0

∑n
j=1 1/(2πωj)

2 (13)

cj = 2ζ jk j/
(
2πωj

)
(14)

mj = k j/(2πωj)
2, (15)

where ωT is the average natural frequency of n TMDs; ωj, kj, cj, and ζj are the natural fre-
quency, stiffness, damping, and damping ratio of the j-th damper, and; R is the bandwidth.

Three tuned mass dampers were placed in the three spans of the bridge, designated
as TMD-1 to TMD-3, respectively. The total mass ratio was 0.02. The bandwidth was 0.2.
The damping ratio was 0.016. Then, the design parameters of the MTMD were calculated.
The mass values of TMD-1 to TMD-3 were 795.0 kg, 644.6 kg, and 532.8 kg, respectively.
The stiffness, damping ratio, and natural frequencies of TMD-1 to TMD-3 were 82.4 kN/m,
0.233 kN·s/m, and 1.8 Hz, respectively. The deployment positions of the three dampers are
marked by red dots in Figure 1b.

With the parameters of STMD and MTMD, the tuned mass dampers were simulated
using spring elements and node mass in the finite element model. More details of the
modeling of the tuned mass dampers are elaborated on in references [38,40]. For the STMD,
the damper was simulated using a spring element and a node mass at the mid-span section
of Span 2 of the bridge. For the MTMD, three dampers were placed at the middle spans of
the three spans. The lateral vibration results of the bridge under load case 5 are listed in
Table 4.

Table 4. Lateral acceleration results of the bridge under load case 5.

Span Section
No Damper STMD MTMD

Value (m/s2) Value (m/s2) Reduction Value (m/s2) Reduction

1 1/2 0.229 0.082 64% 0.052 77%
2 1/4 0.192 0.109 43% 0.044 77%
2 1/2 0.197 0.124 37% 0.038 78%
2 3/4 0.216 0.145 22% 0.041 81%
3 1/2 0.345 0.229 34% 0.059 83%

The results indicated that the STMD and MTMD reduced the maximum lateral accel-
erations. When the STMD was used, the percentages of reduction were higher than 34%.
At the middle span of the third span, the maximum lateral acceleration was reduced from
0.345 m/s2 to 0.229 m/s2, satisfying the code requirement. When the MTMD were used, the
percentages of reduction were higher than 77%. At the mid-span section of the third span,
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the amplitude of lateral acceleration was reduced from 0.345 m/s2 to 0.059 m/s2, satisfying
the code requirement. In comparison, the use of MTMD was more effective in reducing the
lateral vibration of the bridge, and MTMD achieved comparable percentages of reduction
at the different sections, while the STMD led to different percentages of reduction at the
different sections.

3.2. Parametric Studies

Sensitive analysis is a method of analyzing system stability. It is assumed that there is a
system whose characteristic P is mainly determined by multiple factors a = {a1, a2, . . . , an}.
At a certain reference state a∗ =

{
a∗1 , a∗2 , . . . , a∗n

}
, the system characteristics are P∗, which

makes each influencing factor vary within its own suitable range, causing the system
with the characteristic P to deviate from the reference state P∗. This method is called
sensitivity analysis. For the MTMD vibration damping system of the pedestrian bridge,
the characteristic P is an acceleration response under the MTMD action. In this paper,
the influencing factor a is taken as the total mass ratio µ, the frequency bandwidth ∆R,
the center frequency ratio xc, and TMD number n, so P = f (µ, ∆R, xc, n). According to
research and engineering practical applications, µ is usually taken between 0.01 to 0.05; ∆R
is usually about 0.15, and xc is usually about 1 or so. While n varies for different pedestrian
bridges, it should not be too large for cost purposes.

Further research was performed to investigate the effects of four important parameters
of MTMD, which were the total mass ratio, bandwidth, center frequency ratio, and damper
number. The results of parametric studies were used to strategically configure the design
of the MTMD for the curved pedestrian bridge. In the parametric studies, one parameter
was evaluated each time.

To evaluate the effect of the total mass ratio, the other parameters were kept constant.
The bandwidth was 0.15. The center frequency ratio was 1.0. The damper number was 3.
Four total mass ratios were tested, which were 0.01, 0.02, 0.03, and 0.04. The three dampers
were placed at the mid-span sections of the three spans. The stiffness of the three dampers
was denoted by k1, k2, and k3, respectively. Then, the mass and stiffness of each damper
can be calculated using Equations (12)–(15), as listed in Table 5. As the total mass ratio
increased from 0.01 to 0.04, the optimal stiffness of each tuned mass damper of the MTMD
linearly increased.

Table 5. Design parameters of MTMD under different total mass ratios.

Mass Ratio k1 (kN/m) k2 (kN/m) k3 (kN/m) m1 (kg) Total Mass (kg)

0.01 36.0 42.1 48.6 33.5 100.6
0.02 72.0 84.2 97.2 67.1 201.3
0.03 108.0 126.2 145.9 100.6 301.8
0.04 144.0 168.3 194.5 134.1 402.4

With the determined design parameters, the lateral accelerations at the five cross-
sections of the bridge were analyzed using the finite element model incorporating the
MTMD, as listed in Table 6. At all the five sections, the minimum lateral acceleration was
achieved when the total mass ratio was 0.02, which was selected as the total mass ratio for
further research.

In the evaluation of the effect of the bandwidth, the total mass ratio was kept at 0.02; the
center frequency ratio was 1.0, and; the damper number was 3. Five bandwidths were tested,
which were 0.05, 0.10, 0.15, 0.20, and 0.25. The three dampers were placed at the mid-span
sections of the three spans. The stiffness of the three dampers was denoted by k1, k2, and k3,
respectively. Then, the mass and stiffness of each damper of the MTMD were calculated
using Equations (12)–(15), as listed in Table 7. As the bandwidth increased from 0.05 to
0.25, the optimal stiffness of each tuned mass damper of the MTMD slightly increased.
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Table 6. Effect of the mass ratio on the lateral acceleration of the bridge under load case 5.

Span Section No Damper
MTMD

µ = 0.01 µ = 0.02 µ = 0.03 µ = 0.04

1 1/2 0.229 0.049 0.048 0.049 0.051
2 1/4 0.192 0.036 0.034 0.037 0.039
2 1/2 0.197 0.030 0.027 0.031 0.034
2 3/4 0.216 0.035 0.030 0.033 0.037
3 1/2 0.345 0.047 0.040 0.044 0.049

Table 7. Design parameters of MTMD under different bandwidths.

Bandwidth k1 (kN/m) k2 (kN/m) k3 (kN/m) m1 (kg) Total Mass (kg)

0.05 80.0 84.2 88.4 67.1 201.3
0.10 75.9 84.2 92.8 67.1 201.3
0.15 72.0 84.2 92.8 67.1 201.3
0.20 68.2 84.2 101.8 67.1 201.3
0.25 64.4 84.2 106.5 67.1 201.3

With the determined design parameters, the lateral accelerations at the five cross-
sections of the bridge were analyzed using the finite element model incorporating the
MTMD, as listed in Table 8. At all the five sections, the lateral acceleration achieved
the minimum values when the bandwidth was 0.15, which was therefore selected as the
bandwidth for further parametric studies.

Table 8. Effect of the bandwidth on the lateral acceleration of the bridge under load case 5.

Span Section No Damper
MTMD

R = 0.05 R = 0.10 R = 0.15 R = 0.20 R = 0.25

1 1/2 0.229 0.058 0.053 0.048 0.049 0.061
2 1/4 0.192 0.042 0.037 0.034 0.038 0.045
2 1/2 0.197 0.037 0.033 0.027 0.034 0.041
2 3/4 0.216 0.041 0.036 0.030 0.038 0.044
3 1/2 0.345 0.057 0.044 0.040 0.048 0.058

In the evaluation of the effect of the center frequency ratio, the total mass ratio was
0.02; the bandwidth was 0.15, and; the number of dampers was 3. Five center frequency
ratios were tested, which were 0.95, 0.98, 1.00, 1.02, and 1.05. The three dampers were
placed at the mid-span sections of the three spans. The stiffness of the three dampers was
denoted by k1, k2, and k3, respectively. Then, the mass and stiffness of each damper of
the MTMD were calculated using Equations (12)–(15), as listed in Table 9. As the center
frequency ratio increased from 0.95 to 1.05, the optimal stiffness of each tuned mass damper
of the MTMD slightly increased.

Table 9. Design parameters of MTMD under different center frequency ratios.

Center
Frequency Ratio k1 (kN/m) k2 (kN/m) k3 (kN/m) m1 (kg) Total Mass (kg)

0.05 64.4 75.9 88.4 67.1 201.3
0.10 68.9 80.8 88.4 67.1 201.3
0.15 72.0 84.2 97.2 67.1 201.3
0.20 75.2 87.6 100.9 67.1 201.3
0.25 80.0 92.8 106.5 67.1 201.3

With the determined design parameters, the lateral accelerations at the five cross-
sections of the bridge were analyzed using the finite element model incorporating the
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MTMD, as listed in Table 10. At all the five sections, the lateral acceleration achieved the
minimum values when the center frequency ratio was 1.00, which was therefore selected as
the center frequency ratio for further parametric studies.

Table 10. Effect of the center frequency ratio on the lateral acceleration of the bridge.

Span Section No Damper
MTMD

λ = 0.95 λ = 0.98 λ = 1.00 λ = 1.02 λ = 1.05

1 1/2 0.229 0.061 0.052 0.048 0.054 0.066
2 1/4 0.192 0.047 0.042 0.034 0.045 0.054
2 1/2 0.197 0.042 0.036 0.027 0.038 0.049
2 3/4 0.216 0.046 0.040 0.030 0.044 0.052
3 1/2 0.345 0.066 0.054 0.040 0.057 0.069

In the evaluation of the effect of the damper number, the total mass ratio was kept
at 0.02; the bandwidth was 0.15, and; the center frequency ratio was 1.0. Four damper
numbers were tested, which were 1, 3, 5, and 9. When one damper was used, the damper
was deployed at the mid-span section of the second span of the bridge. When three
dampers were used, they were deployed at the mid-span sections of the three spans. When
five dampers were used, three dampers were deployed at the mid-span sections of the
three spans, and two dampers were deployed at the quarter spans of the second span.
When nine dampers were used, they were deployed at the 1/4, 1/2, and 3/4 spans of
the three spans. The stiffness of the dampers was denoted by k1 to k9. Then, the mass
and stiffness of each damper of the MTMD were calculated using Equations (12)–(15), as
listed in Table 11. As the damper number increased from 1 to 9, the optimal stiffness of the
individual dampers decreased.

Table 11. Design parameters of MTMD under different damper numbers.

Number Damper Stiffness (kN/m) Number Damper Stiffness (kN/m)

1 1 k1 = 242.4

9

1 k1 = 24.0

3
1 k1 = 72.0 2 k2 = 25.0
2 k2 = 84.2 3 k3 = 26.0
3 k3 = 97.2 4 k4 = 27.0

5

1 k1 = 43.2 5 k5 = 28.1
2 k2 = 46.8 6 k6 = 27.0
3 k3 = 50.5 7 k7 = 20.2
4 k4 = 54.3 8 k8 = 31.3
5 k5 = 58.3 9 k9 = 32.4

With the determined design parameters, the lateral accelerations at the five cross-
sections of the bridge were analyzed using the finite element model incorporating the
MTMD, as listed in Table 12. At all the five sections, the lateral acceleration decreased with
the increase of the damper number. A mean percentage of reduction was used to evaluate
the effect of damper number on the reduction of lateral accelerations. The mean percentage
of reduction is defined as the percentage of reduction divided by the damper number.

As the damper number increased from 3 to 9, although the lateral acceleration con-
tinued to decrease, the mean percentage of reduction decreased. To balance the vibration
mitigation performance and cost of MTMD, the damper number was determined to be 3.

The studied design parameters exhibited significant effects on the performance of
MTMD. With the investigated ranges of the parameters, the lateral acceleration varied in
the range of 0.027–0.051 m/s2 for the mass ratios; 0.027–0.061 m/s2 for the bandwidths;
0.027–0.069 m/s2 for the frequency ratios, and; 0.027–0.229 m/s2 for the damper numbers.
The comparison of these ranges indicated that the damper number had the highest effect.
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Table 12. Effect of the damper number on the lateral acceleration of the bridge.

Span Section No Damper

MTMD

n = 1 n = 3 n = 5 n = 9

Value Mean Value Mean Value Mean Value Mean

1 1/2 0.229 0.082 64% 0.048 26% 0.029 17% 0.010 11%
2 1/4 0.192 0.109 43% 0.034 27% 0.040 16% 0.004 11%
2 1/2 0.197 0.124 37% 0.027 29% 0.038 16% 0.002 11%
2 3/4 0.216 0.145 33% 0.03 29% 0.026 18% 0.001 11%
3 1/2 0.345 0.229 34% 0.04 29% 0.039 18% 0.006 11%

4. Performance Evaluation

Based on the selected parameters of the MTMD system, in-situ tests were conducted
to test the performance of the MTMD system. The adopted parameters were µ = 0.02,
∆R = 0.15, λ = 1, and n = 3. The three dampers were deployed in the three spans of the
bridge. In each span, one damper was deployed at the mid-span section. The mass of each
damper was 201.3 kg. The effect of the additional mass due to the use of the MTMD on the
static stresses of the bridge was examined using the finite element model. The mechanical
responses of the bridge satisfied the code requirements [37].

As described earlier, the mid-span sections of the three bridge spans were also instru-
mented with accelerometers, which were used to measure accelerations along the lateral
(width) direction of the bridge. Two load cases were investigated, as listed in Table 13. The
errors between the simulation and the test results of accelerations were mainly related to
the assumptions of the finite element model: (1) The crowd loads applied by ten people in
the real bridge were simplified in the finite element analysis. In real tests, the ten people
were not ideally synchronized and had consistent pace frequency. These were not fully con-
sidered in the finite element model. (2) There were assumptions on the material properties
and boundary conditions in the finite element analysis. Despite the errors, the simulation
results were deemed valid because of the complexity of the tests.

Table 13. Summary of the maximum mid-span accelerations in the two cases.

Case Description
Without MTMD With MTMD

Reduction Percentage
Simulation Test Error Simulation Test Error

I Ten people jump at the
mid-span section 0.299 0.254 15% 0.054 0.047 13% 82%

II Ten people jump at the
end-span section 0.381 0.316 17% 0.099 0.087 12% 74%

Note: 1. Error = (Simulation − Test)/Simulation × 100%. 2. Reduction percentage is based on a comparison of
simulation results of the two cases.

In Case I, ten people jumped at the mid-span sections of the three spans to excite the
bridge vibration. In Case II, ten people jumped at the end-span sections of the three spans
to excite the bridge vibration. The applied crowd loads of the two cases are depicted in
Figure 7. Each of the red areas represents 10 adults. The average weight of a person was
750 n, which was distributed in an area of 0.6 m2. In both cases, the lateral accelerations
of the bridge were respectively evaluated under the conditions of “without MTMD” and
“with MTMD”.

It was noted that the MTMD system was installed in the bridge under both conditions
in each of the load cases. The difference between the “without MTMD” and “with MTMD”
conditions was that the MTMD system was locked under the “without MTMD” condition
while the MTMD system was released under the “with MTMD” condition. When the
MTMD system was locked, it acted as lumped masses and did not have a damping effect.
When the MTMD system was released, the system acted as the dampers.
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Figure 7. Depiction of the two load cases of in-situ tests of the bridge instrumented with three mass
tuned dampers: (a) Case I and (b) Case II. A red area represents 10 adults, with an average weight of
750 n per person and distributed at 0.6 of a person per m2.

The time history results of the lateral accelerations from the finite element analysis of
the bridge are plotted in Figure 8. The results indicated that the employment of the MTMD
system effectively reduced the lateral accelerations.
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Figure 8. Results of lateral accelerations: (a) the first span in Case I; (b) the second span in Case I;
(c) the third span in Case I; (d) the first span in Case II; (e) the second span in Case II; and (f) the third
span in Case II.

In Case 1, before the MTMD system was applied, the maximum amplitude of the
lateral acceleration of the bridge was 0.299 m/s2, which was reduced to 0.054 m/s2 by the
use of the MTMD system. In Case 2, before the MTMD system was applied, the maximum
amplitude of the lateral acceleration of the bridge was 0.381 m/s2, which was reduced to
0.099 m/s2 by the use of the MTMD system. The results indicate that the MTMD system is
effective in mitigating lateral vibrations.

5. Conclusions

This research studies the lateral vibration of a long-span curved steel box girder pedes-
trian bridge with a small radius (20 m), and the vibration control of the bridge with MTMD.
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The vibration characteristics were investigated through the in-situ measurement of acceler-
ations of the bridge and by three-dimensional finite element analysis. The lateral vibration
was evaluated using ISO specifications and mitigated using MTMD. The design parame-
ters of MTMD were evaluated through parametric studies and strategically configured to
minimize the lateral vibration. The tested parameters include the mass ratio, bandwidth,
center frequency ratio, and damper number. The selected deployment scheme of MTMD
was evaluated through in-situ pedestrian load tests. Based on the above investigations, the
following conclusions are drawn:

1. The curved steel box girder pedestrian bridge had low natural frequencies and was
subjected to significant lateral vibrations under pedestrian excitation. The funda-
mental natural frequency of the bridge was 0.739 Hz, which is comparable with the
frequencies of pedestrian loads and thus may cause resonance. Under crowd pedes-
trian loads, when the pace frequency is 1.8 Hz, which represents normal walking, the
amplitude of lateral acceleration of the bridge exceeds the limit of ISO specifications.

2. The amplitude of lateral acceleration was greatly reduced by the use of either the
STMD or MTMD. Both the STMD and MTMD reduced the amplitude to acceptable
levels. Compared with the STMD, MTMD showed greater effects on reducing the
lateral accelerations. When the STMD is used, the percentages of reduction are higher
than 34%. When the MTMD are used, the percentages of reduction are higher than
77%. Another finding was that MTMD achieved comparable percentages of reduction
at the different sections of the bridge, while the STMD led to different percentages of
reduction at the different sections.

3. The effects of the mass ratio, bandwidth, center frequency ratio, and damper number
of MTMD were evaluated via parametric studies. These parameters exhibited signifi-
cant effects on the performance of MTMD for lateral vibration control. The mass ratio
varied from 0.01 to 0.04; the bandwidth varied from 0.05 to 0.25; the center frequency
ratio varied from 0.95 to 1.05, and; the damper number varied from 1 to 9. With the
investigated ranges, the lateral acceleration varied in the range of 0.027–0.051 m/s2

for the mass ratios; 0.027–0.061 m/s2 for the bandwidths; 0.027–0.069 m/s2 for the
frequency ratios, and; 0.027–0.229 m/s2 for the damper numbers. The comparison of
these ranges indicates that the damper number has the highest effect.

4. For the studied bridge, the recommended design parameters are as follows: total mass
ratio = 0.02; bandwidth = 0.15; center frequency ratio = 1.0; and damper number = 3.
It should be noted that the optimal parameters are dependent on the specific bridge,
while it is envisioned that the proposed step-by-step method can be applied to the
design and deployment of MTMD for other bridges.

5. The performance of the optimal deployment scheme of MTMD was evaluated through
in-situ pedestrian load tests in two different cases. The test results indicated that the
MTMD system was effective in mitigating lateral vibrations of the bridge. The reduc-
tion percentage was in the range of 74% to 82%.

This research shows that it is important to consider the lateral vibration of curved
pedestrian bridges due to the coupling effect of torsion and bending, particularly, for bridge
girders with a large curvature due to the small radius. It is interesting and important to
investigate the impact of bridge vibrations on durability, such as the fatigue life of the steel
box girders as well as the effect of MTMD on the extension of service life of the bridges.
It is envisioned that a life-cycle cost analysis can be performed to optimize the design of
MTMD for the minimal life-cycle cost. The deployment positions of MTMD should also be
considered in future optimization.
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