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SUMMARY
Peripheral blood mononuclear cells (PBMCs) bear specific dysregulations in genes and pathways at distinct
stages of multiple sclerosis (MS) that may help with classifying MS and non-MS subjects, specifying the early
stage of disease, or discriminating among MS courses. Here we describe an unbiased machine learning
workflow to build MS stage-specific classifiers based on PBMC transcriptomics profiles from more than
300 individuals, including healthy subjects and patients with clinically isolated syndromes, relapsing-remit-
ting MS, primary or secondary progressive MS, or other neurological disorders. The pipeline, designed to
optimize and compare the performance of distinct machine learning algorithms in the training cohort, gener-
ates predictive models not influenced by demographic features, such as age and gender, and displays high
accuracy in the independent validation cohort. Proper application of machine learning to transcriptional pro-
files of circulating blood cells may allow identification of disease state and stage in MS.
INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory and demyelin-

ating disease of the CNS, characterized by clinical and biolog-

ical heterogeneity. Generally, the disease starts with a first clin-

ical episode suggestive of MS, classified as clinically isolated

syndrome (CIS), which evolves to defined MS in cases

of further clinical or neuroradiological activity.1 Up to 85% of

MS patients develop the relapsing-remitting (RR) course of

MS, characterized by periodic neurologic deterioration followed

by partial or complete remission, and several RR MS subjects

eventually evolve to secondary progressive (SP MS, where

worsening of neurologic function occurs in the absence of

recognizable relapses. Approximately 15 % of MS patients

develop the primary progressive (PP) course from onset of

the disease.

Despite continuous refinement of diagnostic criteria, the de-

gree of MS misdiagnosis remains quite high, especially for PP

MS, because this form manifests MRI findings often overlapping

with RR MS or other neurodegenerative and vascular dis-

eases.2,3 Further, disease prognosis is poorly predictable. For

example, the transition from RR MS to SP MS can be defined

retrospectively when a sustained period of worsening neurologic

impairment has been observed, often resulting in a 2- to 3-year

period of diagnostic uncertainty.4

Recent advances in artificial intelligence applied to MRI data

show promising results in discriminating MS conditions from

healthy controls5,6 but have limited power in classification of sin-
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gle MS stages.7,8 Because aberrant transcriptional profiles have

been described in peripheral blood of patients at distinct MS

stages,9–12 we hypothesized that peripheral blood mononuclear

cell (PBMC) transcriptomes contain useful information to build

specific classifiers for the different MS forms. We generated

and analyzed transcriptomic profiles of PBMCs from more than

300 individuals, including healthy subjects (HCs) and patients

with CIS, RRMS, PPMS, SPMS, or other neurological disorders

(ONDs), and assembled independent training and validation co-

horts. For definition of the optimal classifier, several issues need

to be taken into account, including selection of the proper ma-

chine learning algorithm and dataset characteristics such as

feature and sample numbers. Moreover, collected MS cohorts

usually suffer from imbalances among MS stages, with PP MS

and RR MS being the rarest and most frequent form, respec-

tively. To overcome these issues, we developed a machine

learning workflow, based on nested cross-validation (NCV),

able to conduct unbiased optimization and comparison of

different algorithms in the training dataset prior to final validation

in the independent test set. To limit detrimental effects related to

class imbalance and optimize prediction of the class of interest

(usually the rarest), each algorithm was specifically fine-tuned

in each prediction task. To avoid potential biases introduced

by a separate feature selection step,13 we oriented our choice to-

ward decision tree-based algorithms, which can perform feature

selection internally as part of the learning process, such as the

powerful and largely employed random forests (RFs).14 We

also explored functional trees (FTs), a promising class of
eports Medicine 1, 100053, July 21, 2020 ª 2020 The Author(s). 1
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Table 1. Demographics and Clinical Characteristics of Individuals Included in the Training and Validation Cohorts

Class n (Female: Male) Age (Years) Expanded Disability Status Scale (EDSS) Disease Duration (Years)

Training set

N = 224

CIS 48 (25:23) 34.2 ± 9.7 1.7 ± 1.0 –

RR MS 73 (44:29) 38.4 ± 9.3** 1.9 ± 1.2 6.2 ± 6.7

SP MS 18 (10:8) 53.2 ± 13*** 6.8 ± 1.2 25 ± 10.4

PP MS 25 (16:9) 53.1 ± 11.7*** 4.8 ± 1.9 13.9 ± 8.7

HC 42 (23:19) 32.9 ± 10.2 – –

OND 18 (7:11) 43.6 ± 14** – –

Independent test set

N = 89

CIS 9 (4:5) 34.1 ± 10.7 1.9 ± 0.7 –

RR MS 35 (22:13) 38.7 ± 10.8** 1.4 ± 0.6 5.2 ± 5

SP MS 8 (4:4) 48.5 ± 8.8*** 6.2 ± 1.5 21.5 ± 4.5

PP MS 10 (5:5) 49.6 ± 7.3*** 6.0 ± 1.6 7.1 ± 4.8

HC 18 (10:8) 30.8 ± 7.4 – –

OND 9 (2:7) 44.0 ± 11** – –

The EDSS value (from 0 to 10) indicates disability status. Age, EDSS, and disease duration are given as mean ± SD. Asterisks indicate statistical sig-

nificance versus HC (**p < 0.01, ***p < 0.001).
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decision trees integrated with logistic models,15,16 and then

applied adaptive boosting to FT (ADAboost-FT) because boost-

ing techniques can enhance classification performance in imbal-

anced datasets.17,18 Overall, our strategy demonstrated predic-

tive power with an accuracy above 90% for most of the

classification tasks.

RESULTS

Integrated PBMC Transcriptomics Datasets Were
Coherent in the Training and Validation Cohorts
To construct optimal gene expression-based classifiers for pre-

diction of MS state and stage, we collected genome-wide tran-

scriptomics profiles of PBMCs derived from 313 individuals (60

HCs, 57 CIS subjects, 108 RR MS subjects, 26 SP MS sub-

jects, 35 PP MS subjects, and 27 OND subjects) and generated

with two distinct microarrays (HumanRef-8 v.2 and HumanHT-

12 v.4). After batch effect detection and correction procedures

(Figure S1), we assessed dataset integrity through clustering

analysis of technical and biological replicates. We observed a

marked improvement in the number of correctly clustering

pairs, passing from 5 to 15 (of 17) after batch correction (Fig-

ures S2A and S2B). Similarly, biological replicates tended to

pair more reproducibly after correction (Figures S2C and

S2D). Principal-component analysis (PCA) of the final global

dataset did not show proper separation of subjects based on

demographic factors such as age and gender (Figure S3).

This final integrated dataset was then divided into the training

and independent test sets according to specific clinical and de-

mographic criteria (Table 1). PCA of genome-wide transcrip-

tomics data did not show any clear separation of the different

classes (CIS, MS stages, and controls) in the first two principal

component (PC) dimensions in the training and independent

test sets (Figures 1A and 1C). Nevertheless, a detailed inspec-

tion of the training cohort using 3D PCA revealed a coherent

clustering structure (Figure 1B) where the CIS centroid was

close to RR MS and the centroids for the two progressive forms

(SP MS and PP MS) clustered together. This structure was re-
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produced in the independent test set (Figure 1D). Overall, these

results confirmed the robustness of the applied procedure in

generating an integrated transcriptomics dataset suitable for

MS classifier development.

NCV in the Training Cohort Led to Unbiased Evaluation
of Classification Algorithms
To obtain optimal classifiers for MS stages from PBMC tran-

scriptomes, we designed an unbiased framework based on

NCV comparing 3 distinct machine learning algorithms—FT,

RF, and ADAboost-FT—without use of the independent test

set (Figure 2A).

The first test aimed to build a descriptive model differenti-

ating MS (RR+SP+PP) from non-MS (HC+OND) subjects.

Precision-recall curves and relative area under the precision-

recall curve (AUPRC) indicated a comparably high classifi-

cation performance of the three algorithms in this task

(Figure 3A).

The second test investigated whether the CIS transcriptome

carried early-stage-specific alterations that could discriminate

CIS from HC, MS, and OND subjects. Here the high

degree of class imbalance (48 CIS, 176 ‘‘all’’), combined with

the high heterogeneity of the ‘‘all’’ class, resulted in poor

classification performance, especially with the RF algorithm

(Figure 3B).

The final three tests investigated the performance of the

workflow in distinct classification of PP and/or SP MS from

RR MS (Figures 3C–3E). Here, despite the small sample size

for progressive cases and, thus, class imbalance with respect

to RR MS, classifiers generated reasonably accurate models,

and comparison of the AUPRC evidenced a more stable perfor-

mance of FT-based algorithms than the commonly used RF-

based algorithm.

Overall, these NCV experiments on the training dataset

confirmed that blood transcriptomes deliver useful information

for predictive classification models, whose performance may

depend on the algorithm used, the number of samples in each

class, and class balance.



Figure 1. Integrated PBMC Transcriptomics Datasets Were Coherent in the Training and Validation Cohorts

PCA plots of PBMC genome-wide transcriptomes included in the study are shown for the training (top panels) and validation (bottom panels) cohorts.

(A) Distribution of the classes used for classifier development (CIS, clinically defined MS stages, and HC and OND controls) among the first two principal

components (PCs) in the training dataset.

(B) Centroids of 3D PC coordinates showing the relative distribution of the different classes in the training dataset.

(C) Distribution of classes among the first two PCs in the independent test set.

(D) Centroids of 3D PC coordinates showing the relative distribution of the different classes in the independent test set.
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MS Classifiers Built on the Training Datasets
Demonstrated High Accuracy in the Independent
Validation Cohorts
For construction and validation of the final classifiers, we re-

trained and optimized each algorithm on the complete training

set and applied each classifier to the independent test set. The

workflow used for final validation is shown in Figure 2B. Preci-

sion-recall curves and relative AUPRCs of the different algo-

rithms in the independent test set confirmed the NCV results,

demonstrating the superior performance of the ADAboost-FT al-
gorithm with respect to single FT and RF in each classification

task (Figures 4A, 4B, and 5A–5C).

In the MS versus non-MS classification task, ADAboost-FT

generated a predictive model based on 139 probes (Table

S2A), which showed 94.3% sensitivity (recall) and 87.5% preci-

sion (Figure 4C). Similar to the NCV results, the CIS classifier (213

probes; Table S2B) showed sub-optimal performance in sensi-

tivity and precision but reached an overall accuracy of 89.9%

(Figure 4D). Probes classifying MS from non-MS conditions

were mostly distinct from those identifying the CIS stage
Cell Reports Medicine 1, 100053, July 21, 2020 3



Figure 2. Machine Learning Pipeline and Relative Data Flow

(A) Nested cross-validation (NCV) for algorithm optimization and comparison. At each fold of the outer CV, the whole training data are split in two sub-sampled

datasets, one for training and the other for testing. The sub-sampled training set enters the hyper-parameter optimization loop, where it is further split into training

and test partitions following a second 10-fold CV (inner CV), where different combinations of hyper-parameters are evaluated (one 10-fold CV for each com-

bination). The combination of hyper-parameters that maximize the F-measure (harmonic mean of precision and recall) of the class of interest is retained as

optimal, applied to the algorithm, and tested on the test set of the corresponding outer CV fold. The entire procedure is repeated 10 times, and the averaged

performance is collected at the end of the outer CV loop and used for algorithm comparison.

(B) Final optimization and validation of the selected algorithm. Thewhole training dataset enters the hyper-parameter optimization loop, where it is subjected to an

identical search for the combination of hyper-parameters that maximize the F-measure. The optimal hyper-parameters are applied to the algorithm, which is

trained on the whole training set and tested on the independent test set for final validation.
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(Figure 4E). Interestingly, functional enrichment evidenced tran-

scripts playing a role in common processes, such as regulation

of transcription and interferon signaling, with the MS profile pre-

senting additional themes about chromatin remodeling and

apoptosis and the CIS signature about cell proliferation and

chemotaxis (Figures 4F and 4G; Tables S3A and S3B).

Because significant differences in age distribution were

observed between single disease classes and the healthy pop-

ulation (Table 1) and between classes used for construction of

each classifier (Table S1), we verified whether classifiers were

driven by age. Despite no significant differences in gender ra-

tios being present, we included gender in the analyses as an

additional control. PCA plots showed that MS and CIS predic-

tive signatures failed to separate subjects on the basis of

gender (Figures S4A and S4B) or age (Figures S4C and S4D).

On the other hand, both classifiers generated a clear separation

of subjects according to condition (Figures S4E and S4F), with

superior performance of the MS signature, as expected from

the NCV results.
4 Cell Reports Medicine 1, 100053, July 21, 2020
The progressive MS classifier consisted of 222 probes (Table

S2C) that showed 83.3% sensitivity and 93.8% precision in

differentiating progressive from RR forms (Figure 5D). The PP

MS classifier (266 probes; Table S2D) differentiated PP MS

from RR MS with 90% sensitivity and precision (Figure 5E).

Finally, the SP MS versus the RR MS classifier (201 probes; Ta-

ble S2E) showed the highest performance, with 87.5% sensitivity

and 100%precision, reaching an overall accuracy of 97.7% (Fig-

ure 5F). As expected, the progressive classifier contained

probes distinct from those classifying the whole MS condition

(Figure 5G). Further, the predictive probes for the single or com-

bined progressive stages showed limited, partial overlap, indi-

cating that classifiers selected specificities for the PP versus

SP stages of disease (Figure 5I). Significantly enriched biological

themes included cell cycle and T cell activation for the combined

(PP+SP) MS signature; protein ubiquitination, cell migration, and

fatty acid metabolism for the PP MS profile; and regulation of

GTPase activity, locomotor behavior, and blood coagulation in

the SP MS signature (Figures 5H, 5J, and 5K; Tables S3C–S3E).



Figure 3. NCV of the Training Cohort Led to

Unbiased Evaluation of Classification Algo-

rithms

(A–E) For each of the 5 classification tasks (A, MS

vs. non-MS; B, CIS vs. All; C, (PP+SP)MS vs. RR-

MS; D, PP-MS vs. RR-MS; E, SP-MS vs. RR-MS),

comparison of the performance obtained by the

ADAboost-FT, FT, and RF algorithms in the NCV is

shown as precision-recall (PR) curves and relative

areas under the curves (AUPRCs).

Article
ll

OPEN ACCESS
PCA plots based on the progressive signatures did not evi-

dence any major effect of gender (Figures S5A, S5B, and S6A)

but showed modest separation according to age (Figures S5C,

S5D, and S6B), as expected from the large difference in age dis-

tribution between RR MS and progressive MS (Table S1). This

age-related effect disappeared almost completely when the pro-

gressive signatures were applied to all subjects, including CIS

and controls (Figures S5E, S5F, and S6C). These results indicate

that the initial age-dependent separation by the progressive

classifiers was mainly caused by the large superposition of

progressive MS classes with the older age group rather than

by a separate effect of age. Most importantly, PCA plots based

on progressive MS signatures clearly discriminated between

the progressive and the RR forms of MS (Figures S5G, S5H,

and S6D).
Cell Re
Altogether, these results confirmed

that machine learning classifiers detect

transcriptomic variations specifically

linked to MS disease state and stage

but not to demographic factors.

DISCUSSION

Here we described a machine learning

workflow based on NCV for unbiased

fine-tuning and comparison of different

algorithms that led to selection of MS

stage-specific PBMC signatures with

high predictive power directly from

genome-wide transcriptomics.

Although the majority of machine

learning applications in MS research

focus on classification based on MRI

data, alone5,6,8,19 or in combination with

clinical data,7 a few examples show

promising results when considering bio-

logical dimensions, such as the cerebro-

spinal fluid (CSF) proteome20 or blood

metabolome.21 Here we hypothesized

that biological information derived from

PBMC transcriptomes could facilitate

disease classification. We oriented our

choice toward PBMCs because our prior-

ity was to develop classifiers that are

easy to apply in clinical settings while

providing a global view of MS-related

gene expression changes in all PBMCs.

Although several studies have explored
gene expression patterns from blood in MS using traditional sta-

tistical analyses,9–11 only a couple of reports have attempted to

apply machine learning to blood transcriptomics and were

limited to discrimination between the RR MS form and con-

trols.22 In this context, our study, which also included PBMC

transcriptomes from the progressive forms of MS, responds to

the unmet clinical need of potential predictive biomarkers for

distinct MS courses.

Gene expression datasets pose a great challenge to classifi-

cation algorithms because high dimensionality may lead to

models overfitting the training data and with poor performance

on new ‘‘unseen’’ samples. Moreover, MS datasets are sub-

jected to class imbalance, adding further complexity to the

learning process. To select the optimal classifier, we developed

an NCV workflow performing unbiased fine-tuning and
ports Medicine 1, 100053, July 21, 2020 5



Figure 4. Construction, Test, and Biological Contents of MS versus Non-MS and CIS versus ‘‘All’’ Classifiers

(A and B) Comparison of the performance of the different algorithms on the independent test set for MS versus non-MS (A) and CIS versus ‘‘all’’ (B) classifiers.

(C and D) ADAboost-FTmodels generated on the complete training set and classification results on the independent test set for theMS vs. non-MS (C) andCIS vs.

All (D) classifiers.

(E) Venn diagram of probes identified by the two classifiers.

(F and G) TagCloud of enriched gene ontology (GO) biological processes in MS versus non-MS (F) and CIS versus All (G) classifiers. The height and width of

TagCloud terms are proportional to the level of significance.
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comparison of three algorithms based on a decision tree para-

digm. The NCV results were confirmed by validation on the inde-

pendent test set, where FT-based algorithms showed superior

performance to the largely employed RF. In particular, ADA-

boost-FT displayed the best predictive power in all classification

tasks, in spite of class imbalance. The weaker classification po-

wer of the algorithms in NCV experiments compared with the

validation data may be related to the pessimistic bias that can

occur in NCV (and cross-validation [CV] in general), where clas-

sifiers are trained on sub-samples of the training data, and that is

more evident in imbalanced datasets.23 For this reason, it is ex-

pected that, if overfitting is successfully avoided, then classifiers

display better performance when trained on the complete

training set and tested on the validation cohort. Classifiers using

deep learning applied to MRI showed impressive performance

(99%accuracy) in discriminatingMS subjects fromHCs in recent

studies.5,6 However, none of them included an OND cohort in the

control group, limiting classifier ability in differential diagnosis

among distinct neurological conditions. Further, although em-

ploying valid techniques to limit overfitting and estimate classifi-

cation performance, these reports did not perform any validation

on independent cohorts. Our MS versus non-MS classifier iden-

tified a signature capable of discriminating the MS condition

from HC and OND subjects with high sensitivity and precision.

Functional enrichment showed that processes involved in chro-

matin remodeling and apoptosis may have major roles in defini-

tion of the MS state. Recent work reported epigenetic reprog-

ramming during MS.24,25 Moreover, dysregulation of apoptotic

genes has been described in PBMCs of MS patients.26,27

Because of the high degree of intra-class variability combined

with class imbalance, CIS versus ‘‘all’’ represented the most

challenging prediction task, and although the classifier demon-

strated some improvement when trained on the whole training

set and tested on the validation cohort, the performance re-

mained considerably lower than that of others, indicating the

lack of a strong signature for the very early phase of disease.

Although not optimal, the resulting classifier achieved a perfor-

mance close to MRI-based classifiers comparing CIS with RR

MS.8,19 Interestingly, the CIS signature showed significant

enrichment for transcripts involved in interferon signaling, con-

firming previous findings of dysregulation of interferon-related

transcripts throughout all MS stages, including CIS,11 possibly

providing insights regarding the benefits observed with early

interferon beta treatment of CIS patients.28

The progressive MS versus RRMS classifier showed highly ac-

curate prediction results and was able to extract a transcriptional

signature specific for the progressive (PP+SP) MS stage. Interest-
Figure 5. Construction, Test, and Biological Contents of Progressive M

(A–C) Comparison of the performance of the different algorithms on the independe

SP MS versus RR MS (C) classifiers.

(D–F) ADAboost-FT models generated on the complete training set and classifica

MS vs. RR-MS (E), SP-MS vs. RR-MS (F) classifiers.

(G) Venn diagram of probes identified by MS versus non-MS and progressive ve

(H) TagCloud of enriched GO biological processes in the progressive MS versus

(I) Venn diagram of probes identified by progressive MS versus RR MS, PP MS v

(J andK) TagClouds of enrichedGObiological processes in PPMS versus RRMS (

The height and width of TagCloud terms are proportional to the level of significa
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ingly, Barbour et al.20 developed an RF classifier based on CSF

proteins, obtaining a classification performance similar to our re-

sults in MS versus non-MS and progressive MS versus RR MS.

However, our model has the advantage of analyzing peripheral

blood, which is easier and less invasive to collect and resample

than CSF. The progressive MS signature was distinct from the

more general MS signature derived by the MS versus the non-

MS classifier and showed enrichment for specific processes

such as T cell activation and nitric oxide biosynthesis. The activa-

tion and autoproliferation of brain-homing autoreactive T cells has

been described recently for PBMCs of RR MS patients,29 but the

potential role of this mechanism in progressive MS has not yet

been investigated. Moreover, nitric oxide is known to be involved

in MS, and its metabolites are generally increased in serum, CSF,

and urine of MS patients.30 Because PP MS and RR MS share

many pathological findings at presentation, and the correct diag-

nosis of PP MS is often delayed,2,3 we trained PP MS versus the

RR MS model to identify stage-specific transcripts that could

facilitate early discrimination between the two courses of disease.

Our PP MS versus RR MS classifier showed impressive perfor-

mance in the independent test set, reaching 90% of precision

and recall with an overall accuracy of 95.6%. The SPMS versus

RR MS classifier was built to generate reliable predictive models

of disease progression from theRR to theSPstage. The extremely

high precision (100%) reached by our SP MS model in the inde-

pendent test set indicates that the classifiermay help tomore pre-

cisely identify the transition from RR MS to SP MS, which often

represents a clinical challenge.4 By taking into account the effects

of class imbalances, precision and recall are better evaluation

metrics than accuracy when focusing on small positive classes.

For example, in our PP MS versus RR MS classifier, where there

is amajority of negative samples (RRMS) comparedwith the pos-

itive class (PP MS), misclassification of one real PPMS as RRMS

(false negative) and one RRMS as PPMS (false positive) lowered

the precision and recall values from 100% to 90%,with little effect

on overall accuracy. Similarly, in the SPMS versus RRMS classi-

fier, where the positive class is even smaller, the only one false

negative dropped the recall value to 87.5%.Because classifier hy-

perparameters were optimized on the F-measure, which is the

harmonic mean between precision and recall, the misclassifica-

tion rates in the independent test set reflect the best compromise

between precision and recall and represent the true limits of our

classifiers. Thus, the high degree of precision and recall shown

by PP MS and SP MS classifiers in the independent validation

cohort make them suitable for application in clinical practice

andmay offer clinicians a rationale for appropriate treatment plan-

ning or switching.
S versus RR MS Classifiers

nt test set for progressive MS versus RRMS (A), PPMS versus RRMS (B), and

tion results on the independent test set for the (PP+SP)MS vs. RR-MS (D), PP-

rsus RR MS classifiers.

RR MS classifier.

ersus RR MS, and SP MS versus RR MS classifiers.

J) or SPMS versus RRMS (K) classifiers. In (J), only the top 10 terms are shown.

nce.



Article
ll

OPEN ACCESS
Altogether, these results were superior to PP MS and SP MS

classifiers based on MRI connectivity data8 and to classifiers

that used combinations of clinical data and MRI metabolic

features.7

The rate of overlap among transcripts identified by our work-

flow in the three progressive MS prediction tasks was low, indi-

cating that classifiers were able to capture distinctive signatures.

Although (PP+SP) MS versus RR MS preferentially captured

commonalities between the two progressive forms, PP MS

versus RRMS and SPMS versus RRMS tasks were able to iden-

tify transcripts specific to each progressive stage. Distinction of

PP MS from SP MS is highly debated in the literature, with

several studies suggesting complete biological overlap between

the two forms when analyzing MRI imaging,31 neuropathology,32

or the CSF proteome.20 On the other hand, significant differ-

ences have been described in the blood gene expression profiles

of the two forms.10,12 The highly specific signatures derived by

PP MS versus RR MS and SP MS versus RR MS classifiers evi-

denced enrichment for distinctive processes that deserve further

investigation. For example, our results indicate that dysregula-

tion of processes related to protein ubiquitination may play a

central role in PP MS but not in SP MS. Interestingly, the ubiqui-

tin-proteasome system is tightly related to antigen presentation

and has been linked previously to neuro-inflammatory processes

and MS pathogenesis.33 Similarly, the SP MS signature showed

enriched classes distinct from PP MS, including blood coagula-

tion. Interestingly, altered plasma levels of specific coagulation

factors have been recently described in SP MS but not in PP

MS patients in comparison with healthy controls.34

Classifier results were largely independent of age and gender

factors and therefore specifically linked to blood transcriptomics

dysregulations underpinning MS state and stage. However, we

cannot exclude that age- or gender-related MS signatures can

be obtained by appropriately orienting the experimental design,

as already demonstrated for gender in the RR form of disease by

our group.25 The main limitation of the present study is the rela-

tively low number of progressive MS samples. However, this lim-

itation is compensated for by the high number of RR MS

samples, which enhance the level of significance of classifier re-

sults. Nevertheless, this imbalance between progressive and RR

cases mimics clinical scenarios, offering more realistic training

and test sets for MS classifier development. The current study

can thus be considered an advanced pilot study that can be

extended to larger cohorts, new constantly evolving algorithms

(i.e., deep learning), and more complex inquires (i.e., analysis

of different subsets of immune cells) in future investigations.

In conclusion, the present study justifies application of artificial

intelligencemethods to blood transcriptomes and offers a robust

pipeline for generation of classifiers supporting MS diagnosis

and prognosis.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

PBMC from MS subjects IRCCS San Raffaele Scientific Institute, Milan, Italy https://www.hsr.it:443/

PBMC from healthy subjects IRCCS San Raffaele Scientific Institute, Milan, Italy https://www.hsr.it:443/

PBMC from other neurological disease

subjects

IRCCS San Raffaele Scientific Institute, Milan, Italy https://www.hsr.it:443/

Critical Commercial Assays

Lymphoprep density gradient medium STEMCELL Technologies Inc Cat# 07801

Trypan Blue Sigma-Aldrich Cat#t8154

TRI Reagent Solution ThermoFisher Scientific Cat#AM9738

TotalPrep RNA Amplification Kit Ambion Cat#AMIL1791

HumanRef-8 v2 expression beadchip Illumina Inc. N/A

humanht-12 v4 expression beadchip Illumina Inc. Cat#BD-901-1001

Deposited Data

Raw and processed microarray data GEO database https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE136411

Software and Algorithms

BeadStudio Illumina Inc. https://www.illumina.com/

limma Ritchie et al.40 http://www.bioconductor.org/packages/

release/bioc/html/limma.html

DASC Yi et al.41 https://github.com/HaidYi/DASC

ComBat Johnson et al.42 https://rdrr.io/bioc/sva/man/ComBat.html

pca3d https://cran.r-project.org/web/packages/pca3d/

pca3d.pdf

https://cran.r-project.org/web/packages/

pca3d/index.html

KNIME Berthold et al.43 https://www.knime.com/

Weka 3.7 Witten et al.44 https://hub.knime.com/knime/extensions/

org.knime.features.ext.weka_3.7/latest
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for data should be directed to and will be fulfilled by the Lead Contact, Dr. Cinthia Farina (farina.

cinthia@hsr.it), Head of Immunobiology of Neurological Disorders Lab, Institute of Experimental Neurology (INSpe) and Division of

Neuroscience, San Raffaele Scientific Institute Building Dibit 2-San Gabriele,Via Olgettina, 58 20132 Milan – Italy.

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Raw and processed microarray datasets were deposited at GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE136411). Accession is currently private and can become available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Clinical investigations were conducted according to the principles expressed in the Declaration of Helsinki and after approval of the

Ethics Committee of San Raffaele Hospital. Written informed consent was obtained from all participants. MS subjects were
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diagnosed according toMcDonald criteria35 andwere clinically stable at the time of blood sampling.Moreover theywere not suffering

from any other acute or chronic inflammatory/autoimmune diseases, had not started any immunomodulatory therapy for MS yet or

were treatment-free during at least one year before sampling. They had not been treated with steroids during at least onemonth prior

to their enrollment in the study. All healthy subjects had no acute or chronic inflammatory or autoimmune disorders. The study

included a total of 313 individuals (172 females and 141 males, with a mean age of 41.7 y.), comprising of 60 healthy controls

(HC), 57 subjects with CIS, 169 clinically defined MS cases and 27 OND cases. The MS cohort contained 108 RR-MS, 26 secondary

SP-MS and 35 PP-MS cases. The OND cohort included both inflammatory and non-inflammatory neurological diseases (4 stroke, 2

Parkinson disease, 2 spastic paraparesis, 2 primary progressive aphasia, 2 transient global amnesia, 2 migraine with aura, 1 auto-

immune encephalitis, 1 chronic cerebrovascular disease, 1 chronic cephalgia, 1 asthenia associated with thyroid disfunction, 1

myelopathy, 1 herniated disk, 1medullarymeningioma, 1 obstructive hydrocephalus, 1 progressive cerebellar atrophy, 1 brain tumor,

1 CNS vasculitis. 176 subjects (39 HC, 46 CIS, 23 PP-MS, 47 RR-MS, 21 SP-MS) out of 313 were included in a previously published

study by our group,11 5 subjects were sampled twice to evaluate biological variability. Additional 137 subjects (21 HC, 11 CIS, 12 PP-

MS, 61 RR-MS, 5 SP-MS, 27 OND) were recruited for this study. The clinical and demographical characteristics of all individuals

included in the present study are summarized in Table 1. Peripheral blood was drawn between 9 and 12 a.m.

METHOD DETAILS

PBMC isolation and RNA extraction
PBMC were isolated using a discontinuous density gradient (Lymphoprep, STEMCELL Technologies Inc). Viable cells were counted

by Trypan Blue (Sigma-Aldrich) exclusion. Then total RNA was extracted using TRI-Reagent (ThermoFisher Scientific) and stored at

�80�C. Quantification and quality control of RNA were performed on Bioanalyzer 2100 (Agilent).

Microarray experiment and data processing
PBMC transcriptomes relative to 176 subjects and 10 biological or technical replicates were conducted using HumanRef-8 v2 arrays

and previously published.11,12 PBMC transcriptomes relative to additional 137 subjects and 13 technical replicates were generated

with Illumina HumanHT-12 v4 arrays (Illumina, Netherlands). Reverse transcription and biotinylated cRNA synthesis were performed

using the Illumina TotalPrep RNA Amplification Kit (Ambion), according to the manufacturer’s protocol. Array hybridization, washing,

staining and scanning in the Beadstation 500 (Illumina Inc) were performed according to standard Illumina protocols. Microarray raw

data originating from Illumina v2 and v4 arrays were pre-processed, normalized independently and thenmerged into a single dataset

according to the common probes. Raw intensities were background subtracted and filtered according to detection p values (p < 0.05

in at least 20% of samples) and then normalized using quantile normalization. Pre-processed data were log2 transformed and in-

spected for the presence of hidden batch effects. Hierarchical clustering of technical and biological replicates and principal compo-

nent analysis (PCA) were used to assess dataset integrity following batch correction procedure. Replicates were then removed from

further analysis. Generation of training and independent test sets was carefully conducted in order to avoid clinical, age and gender

biases between the two datasets (Table 1).

Machine learning pipeline
For unbiased comparison of distinct learning algorithms we developed a nested cross-validation (NCV) workflow (Figure 2A) followed

by final validation on the independent test set (Figure 2B).23 Using NCV we compared three algorithms based on decision trees:

Functional Trees (FT), Adaptive Boosting applied to FT (ADAboost-FT) and Random Forests (RF). Fine-tuning of the specific hy-

per-parameters of each algorithm was performed automatically in an inner cross-validation loop (innerCV) nested inside an outer

cross-validation loop (outerCV), which was used for the proper estimation of the predictive model. To preserve class ratio in each

split of the training data, a ten-fold stratified CV was applied to both inner and outer loops.36 Hyper-parameters used for ADAboost

were the number of iterations (I = 2 to 10; step = 1) and the learning rate (h = 0.2 to 0.9; step = 0.1). Resampling instead of reweighting

was applied to ADAboost as it showed superior performance in imbalanced data.37 Hyper-parameters used for RF were the number

of trees (nt = 500 to 2000; step = 500) and the number of selected features (mtry = 50 to 300; step = 50; where sqrt of nTot features =

100). The combination of hyper-parameters that maximized the F-measure (harmonic mean of precision and recall) of the class of

interest was retained as optimal and applied to the algorithm. We applied a stratified sampling method to RF to mitigate class imbal-

ance issues. FT was applied with the default parametrization except for the number of iterations that was set on CV and for error

minimization set on probabilities. To reduce computation time of ADAboost we applied a small weight trimming (w = 0.01) to the asso-

ciated FT base learner for all tasks except CIS versus All, where the high heterogeneity of both classes prompted us to avoid weight

trimming. To further reduce heterogeneity issues in CIS versus All, we employed a CV stratification based on all the different sub-

classes instead of the simple binary stratification used for all the other tasks. Moreover, in MS versus non-MS and CIS versus All

tasks, the larger dataset dimensions imposed the use of the AIC criterion in FT base learner in order to achieve reasonable time reduc-

tion in ADAboost execution.38 Area under the precision-recall curve (AUPRC) was used to evaluate candidate models, as it consti-

tutes a more reliable estimator than classic AUROC in imbalanced datasets.39
Cell Reports Medicine 1, 100053, July 21, 2020 e2
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QUANTIFICATION AND STATISTICAL ANALYSIS

Microarray data processing
The raw gene expression intensities were exported from the Beadstation using BeadStudio software (Illumina Inc) and further pro-

cessed in R-Bioconductor. Microarray raw data were pre-processed and normalized using limma package.40 DASC package was

used for the detection of hidden batch effects and batch correction was performed using Combat.41,42 PCA and cluster analysis

were performed using respectively pca3d package and hclust function in R. Regarding cluster analysis, Spearman correlation

was used to compute the distance matrix and clustering was performed using the single-linkage metrics. Distance (1-correlation)

was used to represent clustering results. Statistical significance of differences in age and gender-ratios was assessed by t test

and chi-square test, respectively, using p.value % 0.05 as a cut-off.

Machine learning pipeline
Machine learning pipeline was assembled using KNIME, integrated with Weka 3.7.43,44 FT and ADAboost (RealAdaBoost) were im-

plemented using Weka libraries, while RF was implemented using the tree ensemble node of KNIME. Details about algorithm opti-

mization are described in the previous section. Precision-recall curves and AUPRC were generated using R package PRROC.45

Functional annotation
Functional enrichment analysis of predictive gene signatures was performed in GeneCodis3 using GeneOntology Biological Process

categories and genes on HumanRef-8 v2 array as background.46 Enrichment p.values were adjusted using Benjamini-Hochberg

correction and an adjusted p.value % 0.05 was used as significance cut-off. Tag-clouds of enriched terms were generated using

GO summaries package in R.47
e3 Cell Reports Medicine 1, 100053, July 21, 2020
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