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This editorial refers to ‘Artificial intelligence assessment

for early detection of heart failure with preserved ejection

fraction based on electrocardiographic features’ by J. Kwon

et al., on page 106.

Introduction

Heart failure (HF) is a growing health problem affecting millions
of people worldwide. Heart failure with preserved ejection frac-
tion (HFpEF) accounts for at least 50% of HF diagnoses and its
prevalence is expected to increase due to an aging population
and a growing burden of obesity, hypertension, and diabetes melli-
tus.1 Although HFpEF and HF with reduced ejection fraction
(HFrEF) share a common phenotypic spectrum of symptoms, clin-
ical signs, and poor health status, they are distinct entities.2 The
heterogeneity and poorly understood pathophysiology of HFpEF
makes it a complex syndrome with to date no therapies demon-
strating clear benefits in large trials.3 Moreover, adverse events
related to HFpEF have been steadily increasing which accounts for
substantial morbidity, mortality, and increasing health care cost.4,5

Hence, the need for new techniques to define and diagnose this
population with the possibility of precision treatment and improv-
ing prognosis. Machine learning (ML) is everywhere around us and
has made its way into clinical practice with emerging applications
to interpret echocardiography, radiologic images, and pathology
slides. Yet, the earliest form of ML within cardiology is the ma-
chine read an electrocardiogram (ECG) over 40 years ago.
Where at the time accuracy was low, current neural networks
achieve a high diagnostic performance outperforming cardiology
residents.6 Therefore, it is not surprising that we are revisiting this
old friend with new knowledge.

Discussion

In this issue of European Heart Journal – Digital Health, Kwon et al. pro-
pose an ensemble neural network-based deep learning model (DLM)
combining electrocardiographic data and four clinical variables to
predict HFpEF.7 A total of 22 148 patients from a Korean hospital
were retrospectively included of whom data of 20 169 patients were
used to derive the DLM. Internal validation was performed in the
remaining 1979 patients and external validation in 11 955 patients
from a second institution. All patients underwent an ECG and echo-
cardiogram, and left ventricular diastolic dysfunction (LVDD) was
defined according to current guidelines.3 Cases with LVDD in the
presence of a (near) normal ejection fraction with symptoms or signs
of heart failure were deemed as having HFpEF. The algorithm
resulted in an area under the curve (AUC) of 0.87 [95% confidence
interval (CI) 0.86–0.88], sensitivity of 0.77 (95% CI 0.75–0.79), and
specificity of 0.82 (95% CI 0.81–0.83) in the external validation co-
hort, results that are similar to a recently published clinical risk
score.8 Additionally, in patients initially classified by the DLM as hav-
ing HFpEF without evidence of LVDD by echocardiographic assess-
ment (false positives), a significant proportion of ‘high-risk’ patients
eventually developed HFpEF during follow-up (33.6% vs. 8.4%,
P < 0.001).

Overall, the study by Kwon et al. confirms the feasibility of a
DLM to discriminate between patients with and without HFpEF
and highlights the possibility of screening and early diagnosis by
means of the ECG. In contrast to available risk scores, the strength
of this approach lies within the utilization of an inexpensive and al-
most universal available tool in combination with four patient char-
acteristics to predict a prevalent disease. Their analysis regarding
the ‘false positives’ suggests that subtle ECG abnormalities may
identify early stages of HFpEF when overt disease is not yet pre-
sent, a phenomenon also described by Attia et al.9 in their work on
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HFrEF. Furthermore, by applying guided gradient backpropagation
and a sensitivity map analysis the authors visualize the electrocar-
diographic regions(R-wave and T-wave axis) that significantly
affected the DLM. Not only does this help to unravel the ‘black
box’ myth surrounding ML, it also expands our knowledge on sub-
tle disease-specific electrocardiographic features improving ECG in-
terpretation in daily practice.10,11

Although showing great promise, we should be careful before
applying the presented algorithm in clinical practice. This DLM was
developed upon a retrospective analysis which increases the possibil-
ity of incidental findings and correlations. The authors already noted
this limitation that will be addressed in a prospective study designed
to reproduce the current findings. More importantly, defining HFpEF
is challenging and only combining the presence of LVDD with signs
or symptoms of HF might be an oversimplification of a complex dis-
ease. This raises the question if the DLM truly predicts HFpEF or
LVDD, a problem that should be addressed by using the HFA-PEFF
diagnostic algorithm in future studies.12 By using the Youden J-statistic
sensitivity and specificity were optimized leading to a very good diag-
nostic accuracy (AUC) of the DLM. However, in the case of a screen-
ing test one might be more interested in maximizing either the
sensitivity or the specificity in order to effectively rule-out or rule-in
disease, respectively. Moreover, the trade-off between these varia-
bles introduces false positives or false negatives leading to unneces-
sary testing or false reassurance of patients. These problems are not
apparent when focusing on the diagnostic accuracy of a model but
become important when regarded from a clinical and economical
perspective. Last, DLMs may demonstrate a lower accuracy when
used beyond their training and validation data. Consequently, exten-
sive external validation of the model is necessary prior to clinical im-
plementation. This process should not only be repeated in a different
institution, as was the case here, but also in a different geographic lo-
cation (beyond Korea) to provide evidence of its applicability.
Multicentre collaboration or open data sharing are necessary to facili-
tate this on a large scale.

Despite these challenges, the findings by Kwon et al. offer a glimpse
into a future in which we are able to identify those at high risk of
developing HFpEF in a simple but efficient way. Perhaps, this may
even be applicable in regions with limited cardiovascular care with
the use of wearables or lifestyle devices. Early recognition of these
patients can initiate lifestyle intervention and treatment of known risk
factors. The latter may lead to improved quality of life, significant
reductions in HF associated adverse events and reduced costs bene-
fiting patients, physicians, and healthcare systems. Also, sub-
classification of patients with HFpEF using deep phenotyping may
help to approach this heterogeneous disease and selectively direct in-
dividual patients towards clinical trials that match their underlying
pathophysiologic features. A strategy eventually leading to effective
patient management.13,14 Additionally, follow-up of untreated
patients might help delineate the complex natural course of this mul-
tisystem disease. Machine learning is becoming increasingly important
in clinical medicine and medical research, yet we must remember to
have a healthy amount of scepticism when interpreting its results.
Hopefully, coupled with new imaging technology and molecular ana-
lysis, machine learning will assist in a more accurate diagnosis,

targeted and efficacious treatment, and a true personalized approach
for HFpEF.
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