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The unique life cycle of diatoms with continuous decreasing and restoration of
the cell size leads to periodic fluctuations in cell size distribution and has been
regarded as a multi-annual clock. To understand the long-term behaviour of a
population analytically, generic mathematical models are investigated algeb-
raically and numerically for their capability to describe periodic oscillations.
Whereas the generally accepted simple concepts for the proliferation
dynamics do not sustain oscillating behaviour owing to broadening of the
size distribution, simulations show that a proposed limited lifetime of a
newly synthesized cell wall slows down the relaxation towards a time-
invariant equilibrium state to the order of a hundred thousand generations.
In combination with seasonal perturbation events, the proliferation scheme
with limited lifetime is able to explain long-lasting rhythms that are character-
istic for diatom population dynamics. The life cycle thus resembles a
pendulum clock that has to be wound up from time to time by seasonal
perturbations rather than an oscillator represented by a limit cycle.
1. Introduction
Phytoplankton plays an enormous role in the sequestration of carbon dioxide from
the atmosphere [1,2]. From the estimated 60 Gt of carbon fixation per year in the
oceans, 26 Gt are attributed to diatoms, both values being maximum estimates [3].
Additional contributions come from freshwater inwhichdiatomsare also abundant,
leading to a total share of 20–25% of primary productionworldwide. However, pro-
ductivity is subjected to periodic fluctuations in the form of the so-called algal
blooms [4,5].Whereas amajor part of these fluctuations canbe attributed to seasonal
changes in nutrient availability, temperature and photoperiod, diatoms possess an
intrinsic oscillation mechanism in their population due to their peculiar life cycle
that interferes with external conditions. Thus, understanding the population
dynamics of diatoms helps in understanding global carbon cycles.

In 1984, William M. Lewis [6] of the University of Colorado described the
unique life cycle of diatoms (Bacillariophyta) as a ‘diatom sex clock’. Briefly, it
comprises two alternating phases, a long mitotic size diminution phase and a
short sexual size restoration phase. The uniqueness in size reduction and restor-
ation is a consequence of the specific cell wall structure consisting of two
biomineralized silica halves with different size (epitheca and hypotheca) that are
assembled like a Petri dish. Upon cell division, each half becomes an epitheca of
the next generation, in which a new hypotheca is synthesized. By this mechanism,
the mean cell size of a population decreases from generation to generation, and
the distribution of sizes becomes larger (MacDonald–Pfitzer rule) [7,8]. Obviously,
this process cannot proceed forever, so later generations undergo sexual reproduc-
tion and form haploid gametes which eventually fuse to diploid auxospores.
Within these auxospores, new large initial cells are produced, starting the cycle
again. The variety of sexual mechanisms is large [9,10]. In some cases, auxospor-
ulation can occur within one single cell (uniparental), whereas, in other cases,
gametes from different cells have to recombine (biparental). Within these two
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main types, several variants are observed. In uniparental
auxosporulation such as automixis, sexuality is reduced to
some degree. Biparental (allomictic) auxosporulation can occur
in homothallic species (gametes of both sexes are formed
within a single clonal strain) or heterothallic species (strains of
different mating types are required) [10]. Von Stosch was able
to show by experiments using artificial alteration of size that
the threshold for sexual reproduction is determined by cell
size rather than by age [11,12]. Therefore, a specific size range
of cells that are capable of sexual reproduction can be assumed
for each individual species. If the cell is larger than an upper
sexual size threshold, auxosporulation is blocked [10,13]. In
some cases, also a lower size limit for auxosporulation exists;
the life cycle is then referred to as ‘closed’. In any case, there is
a minimum size until which the cells are viable. Together with
the maximum size of the initial cells, this defines the possible
range for the cell size. It should be noted that while the size
reduction–restitution mechanism is widespread and dis-
tinguishes diatoms from other taxa, exceptions are described
showing no decrease in size during the vegetative phase or
even vegetative enlargement in order to produce larger cells
[9,14]. However, by the standard mechanism, as Lewis pointed
out, the diatom life cycle (‘sex clock’ or generation clock) defines
its own rhythm independent from environmental constraints.
Cell size reduction–restitution cycles that can last many years
in natural environments apparently support this hypothesis [15].

There is a caveat, however, for taking the diatom sex clock
simply as a periodic process, and that is caused by the broaden-
ing of the cell size distribution. If the size distribution broadens
continuously and larger cells are maintained in the system, it is
difficult to close the cycle and return to a previous state without
any additional mechanisms that counteract this broadening.
While this is certainly a challenge to the clock concept, field
observations of diatom populations over many years confirm
periodic fluctuations with the proposed periodicity of the life
cycle [15–17]. Mathematical models may help in understanding
the possible mechanisms that cause a deviation from the simple
step-by-step size reduction–restitution scheme. Simulations
have been madewith a large set of parameters aimed at match-
ing the experimental observations, notably in the work of
Schwarz et al. [18], D’Alelio et al. [17] and Hense & Beckmann
[19]. Schwarz et al. [18] fitted experimental data for Pseudo-
nitzschia delicatissima with a continuous-time Markov chain
model and investigated the stationary distributionwithout oscil-
lations. D’Alelio et al. [17] modelled the cell size dynamics of
Pseudo-nitzschia multistriata over 11 years in an eight-parameter
modelwith polynomial differential equations. The 14-parameter
model of Hense & Beckmann [19] took the environment into
account by modelling vertical migration in a water column. In
their study, multimodal size distributions were attributed to
intra- and interspecific competition as a way to overcome the
broadening of the size distribution. With this contribution, we
address this issue from a different perspective and ask under
which circumstances real periodicity can be obtained in a dis-
crete minimum model derived from the generation-resolved
MacDonald–Pfitzer scheme and what are the obstacles and
conditions for maintaining the clock over many periods.
2. Material and methods
We describe the state of a diatom population in the basic model
(referred to as basic linear model) as a vector x of size n, in which
each element represents the number of individuals of a distinct
size class per volume. The order of sizes is chosen such that
higher indices characterize larger sizes and we start with the
index i = 0 for the smallest size, leaving for the largest size (i.e. the
initial cells) the index n− 1. We adopt this enumeration convention
starting with 0 (rather than 1) in order to be compatible with the
programming language and algorithms used in the simulations.

Using different stages for a single species—a concept that we
transfer here to the diatom life cycle—is known as the Leslie
model [20] in biomathematical literature. Briefly, in the Leslie
model, a (female) animal population is divided into different
age classes, typically three, with separate transition rates to the
next generation. Whereas the Leslie model and other models for
population dynamics typically treat time as a continuous variable,
we account for the special proliferation mechanism with discrete
size steps at discrete time points and model the system as a dis-
crete dynamical system [21]. This means that we determine the
population state at discrete points in time t, defining distinct gen-
erations in accordance with the MacDonald–Pfitzer rule. The
transition from one generation to the next is thus expressed by a
propagation matrix P applied to the current population state

xtþ1 ¼ Pxt: ð2:1Þ

The elements of this matrix are determined by the two states in the
diatom life cycle. The vegetative phase is represented by the diag-
onal elements denoting daughters derived from the epitheca, and
the upper side diagonal denoting daughters from the hypotheca.
The probability of successful division and survival to the next gen-
eration is given as parameter p. In order to treat a possible bias
between the two daughters in this probability, we multiply the
diagonal elements by β. For size classes that are capable of auxo-
sporulation, a different factor for remaining α is assigned. The
sexual phase is represented by a parameter s, which defines the
probability for the lower size classes to form auxospores and
initial cells in the next step. With s in the lower left corner of the
propagation matrix, the life cycle is closed. In order to be able to
extract p from the propagation matrix and to simplify the resulting
analytical expressions for general n, we write s = σnp and con-
veniently use σ instead of s as the parameter. For reference, all
parameters are compiled in table 1.

For simplicity and parameter reduction, we assume that only
the smallest size class can undergo auxosporulation, thus con-
tracting the corresponding size range lower than the upper
threshold for auxosporulation to one single class. The propagation
matrix of the basic linear model is thus given as

P ¼

ap p 0 . . . 0 0 0

0 bp p . . . 0 0 0
0 0 bp . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . bp p 0

0 0 0 . . . 0 bp p
s 0 0 . . . 0 0 bp

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ p

a 1 0 . . . 0 0 0

0 b 1 . . . 0 0 0

0 0 b . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . b 1 0

0 0 0 . . . 0 b 1

sn 0 0 . . . 0 0 b

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð2:2Þ

Considering a whole size range and introducing an
additional parameter as the upper size threshold or even a distri-
bution of initial sizes is possible and would give additional
entries in the matrix. The corresponding expressions are shown
in the electronic supplementary material. We can safely ignore



Table 1. Parameters used in the models.

parameter meaning model

N number of size classes all models

i index for size class, 0≤ i < n all models

p survival probability of theca all models

s probability of auxosporulation all models

σ (s/p)1/n all models

α survival factor of smallest cell all models

β asymmetry factor between

daughters

all models

t generation as time scale all models

γ inverse carrying capacity saturation models,

ageing models

m number of age classes ageing models

j index for age class, 0≤ j < m ageing models

z period of a zeitgeber in

generations

zeitgeber models

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210146

3

all classes smaller than a possible lower size threshold for auxo-
sporulation, since they will not contribute further to the cycle
and eventually die out.

In the basic linear model, the auxosporulation probability is
proportional to the number of possible parent cells.

We note that a generation-resolved discrete matrix model with-
out implementation of a sexual phase was used by Terzieva &
Terziev [22], whereas other previous models were based on differ-
ential equations, the one of Schwarz et al. [18] also being linear and
others using polynomial or further nonlinear expressions [17,19].

Four classes of variations of the basic linear model are
considered.

First, possible delays of one generation caused by short rest-
ing phases in epitheca, hypotheca or auxospores are treated.
They could be modelled with second-order difference equations
(delay difference equations [23])

xtþ1 ¼ P0xt þ P1xt�1, ð2:3Þ
but we rewrite this expression using a single matrix and state
vectors of double size containing both xt and xt−1 (see electronic
supplementary material, S2). These variations are called delay
models. In the Müller delay model the smaller daughter is delayed
by one generation, whereas in the Laney delay model the larger
daughter is delayed by one generation.

Second, a nonlinearity is introduced (nonlinear models).
A biparental scheme for sexual reproduction was modelled by

xn�1,tþ1 ¼
sx20,t

(1þ 2sx0,t)
(biparental nonlinear model), ð2:4Þ

instead of

xn�1,tþ1 ¼ sx0,t, ð2:5Þ
as in the basic linear model.

In an independent nonlinear model, overpopulation was
avoided by introducing a saturation limit for the population
according to a Ricker function [24]. Extending the Ricker function
to multiple size classes, p drops exponentially with the total
number of cells according to

p ¼ p0e
�g

P
i
xið Þt (saturation nonlinear model): ð2:6Þ
Saturation nonlinearity was also used in the following two
classes of models.

Third, for simulating a finite lifespan (ageing model), we coded
the age of the epitheca of a cell as an additional dimension of size
m, representing m different age classes (index j with 0≤ j <m).
Hence, the state vector was replaced formally by a matrix of size
n ×m, and the propagation matrix formally by a tensor of fourth
rank. In the analytical treatment (electronic supplementarymaterial,
S3), the state matrix was rewritten to a simple vector as in the case of
the delay model, so that P could still be treated as a matrix. For the
computational treatment, a fast algorithm was devised (electronic
supplementary material, S5), taking advantage of the fact that only
some elements differ from zero. The newpopulationwas then calcu-
lated as the sum of only two contributions: (i) cells from the
epithecae, formed by shifting the previous population matrix to the
right (increase of age by 1), removing aged cells and correcting the
remaining ones by the appropriate factors α p and β p; and (ii) cells
from the hypothecae, formed by shifting the previous population
matrix upwards (decrease in size). The matrix multiplication was,
therefore, reduced to two ‘roll’ commands. Additionally, new large
cells from auxospores were considered. This computational trick
had been applied in most simulations, also in implementations of
the other models in which only the second roll was needed.

Fourth, p or s are made variable in order to account for sea-
sonal changes in growth and auxospore formation (zeitgeber
models). A sinusoidal variation between a maximum and mini-
mum value was assumed as the basic mode. In the p-zeitgeber
model, p is varied, whereas in the s-zeitgeber model, σ is varied.

For analysing all investigated cases, we used a combination
of two methods, an analytical one and a computational one.
Whenever possible, we performed a mathematical analysis in
order to find the contributing eigenvalues and eigenvectors. If
the eigenvalues λk and corresponding eigenvectors ξk of P are
known, then, for arbitrary initial conditions, the temporal evol-
ution of the population after t generations can be predicted as
a sum of distinct relaxation modes according to

xt ¼ Ptx0 ¼
X
k

ltkckjk: ð2:7Þ

Here, the coefficients ci denote the decomposition of the
initial vector x0 into contributing eigenvectors.

This analytical treatment is supplemented by computer
simulations, especially in the cases where analytical expressions
for the eigenvalues are not easily possible (saturation models,
ageing model, zeitgeber models). Programs containing the differ-
ent model variations were written in Python. Source codes are
provided in electronic supplementary material, S5 and S7. In
the computer simulations, we sampled as suitable measures for
the population state at a certain point in time:

the total number of cells

N ¼
Xn�1

i¼0

xi, ð2:8Þ

the number of formed auxospores

A ¼ sx0, ð2:9Þ

the mean size (first moment of the distribution)

M1 ¼ 1
N

X
i

xii ð2:10Þ

and the variance V ¼ M2 �M2
1, derived from the second

moment

M2 ¼ 1
N

X
i

xii2: ð2:11Þ



(a) (b) (c)

generation

size
i = n–1 i = n–1i = 0  i = 1 …

i = 0

i = 1

…

1
1

(1) (1)

1

(1)

1
(1)

1

(1)

1

(1)

1

4
(1)

1

1

(2)

2

(3)

3

3
(1)

1

(1)

(1)

(1)
1

(1)
2

(2)
1

(3)
3

(1)
3

(1)
4 1

1

1

1

1
1

1

1

1

1

1
+1

1 1

2

3

5

8

13

1

2

3

5

8

13

2

4

8

16

32

64

1

2

3

4

5

6

1

3

6

10

15

1

4

10

20

1

5

15

1

61

size size

generation generation

Figure 1. Three different models for the proliferation mechanism of diatoms: (a) simple binary fission (basic linear model) and (b) binary fission with a delay of one
generation for the hypothecal daughter (Müller delay model). (c) Binary fission with a delay of one generation for the epithecal daughter (Laney delay model). Cells
that cannot divide in the next generation are denoted with brackets. The total number of cells is counted in the columns on the right-hand side (grey numbers).
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3. Results and discussion
Using different models, it is analysed under which assump-
tions oscillations of the population state are obtained, and
whether these oscillations can be self-sustained or need exter-
nal input. A sustained or driven oscillation with long periods
would constitute a sex clock in the meaning attributed by
Lewis to the diatom life cycle. We start with a linear model,
then this model is extended systematically in order to demon-
strate which changes have to be made in order to favour
oscillatory behaviour. In contrast with multi-parameter
models aimed at ecosystem simulations for matching field
data [17–19], the number of parameters is kept as small as poss-
ible to show the principal logic behind the mechanisms. The
systematic approach of extracting analytical information from
a linear model extended to delay and ageing processes, while
being able to implement nonlinearities and zeitgeber by vary-
ing the parameters of the model computationally is a unique
feature that distinguishes our approach from previous reports.
3.1. Basic linear model
The basic linear model represents the original MacDonald–
Pfitzer rule. With this model, we can rigorously answer the
question why the model needs a modification in order to
explain sustained oscillations in the population distribution.
The MacDonald–Pfitzer rule refers to distinct generations,
thus the application of a discrete model with distinct time
steps is well justified. We note that diatom cultures can
even be synchronized (with the help of nutrient starvation
or blue light [25]), which would allow an experimental veri-
fication of generation-resolved models. However, not enough
data are available at the moment.

As explained in theMaterial andmethods section, the popu-
lation state consists of the number of cells for each size. In real
species, up to 500 different sizes can be achievedwith an average
generation time of one week, resulting in life cycles of several
years [15]. For understanding the generic behaviour of the
model, the exact number of sizes is not important, though.

The main parameters used in the model are the vegetative
proliferation probability p, the sexual proliferation probability
s, an asymmetry factor between the daughter cells in the
vegetative phase β and a survival factor for the smallest
cells α (table 1). In our basis model, all sizes that are capable
of auxosporulation are contracted into this single size class.
This approach seems to be a rough approximation, but we
will show at the end of the section that the main conclusions
also hold if we consider a distribution of sexual stages or
initial cell sizes. By construction, the linear model represents
uniparental sexual schemes, but biparental schemes are
covered as well in the limit of high cell density (see §3.3).

The ‘ideal’ case in which there are no losses of cells and
doubling in the vegetative phase is characterized by the par-
ameters p = β = 1, α = 0 and s = 1. With one initial cell of
largest size as the usual initial condition, the occupation num-
bers of the different size classes follow directly from Pascal’s
triangle (figure 1a) with a total number of 2t cells after t gen-
erations, up to the point where the smallest class is reached
and new initial cells via auxosporulation are generated.

The number of cells would be invariant if only half of the
cells in the vegetative phase survived, i.e. p = 0.5, and other par-
ameters were unchanged. For intermediate values of p, there is
a value of s that in the long term balances the growth in the
vegetative phase by loss in the sexual phase. In figure 2, a typi-
cal result is plotted for the linearmodelwith parameters near to
this steady state. It reflects the general behaviour obtained for
this model: oscillations in the output variables occur, but they
decay and approach an equilibrium in the long term.

This behaviour can be attributed to the continuous broad-
ening of the size distribution which prevents a periodic
transition of a narrow size peak through all size classes. In
physical terms, such a transient wave without broadening
would be described as a ‘soliton’.

Next, it is shown how the problem of the relaxation behav-
iour can be transformed into mathematical language. Doing
this, we can prove rigorously that oscillations in the linear
model will always decay regardless of the parameters, and
which concepts for the mechanism will not be able to change
this behaviour. The temporal evolution of the system is
described by equation (2.5) and thus depends on the eigen-
values of the matrix P. The leading (dominant) eigenvalue
λmax, i.e. the one with the largest absolute value, and its corre-
sponding eigenvector will dominate the population in the long
term, since contributions from all other eigenvalues are decay-
ing faster (or not growing so fast).Oscillations in thepopulation
will be indicated by complex eigenvalues or negative real
eigenvalues that indicate a cycle of two generations. Therefore,
if the dominant eigenvalue is not real positive, we will find sus-
tained oscillations. In all other cases, intermediate oscillations
will decay in the long term.
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An answer to whether sustained oscillations are possible
or not can be given quite elegantly by the application of the
Perron–Frobenius theorem [26,27]. It states that, for non-
negative irreducible matrices, the dominant eigenvector is
always positive. Matrix P is non-negative because none of
the matrix elements has a negative sign, and irreducible
because it reflects a cyclic mapping of one row index in the
state vector to the next lower one and therefore exhibits a
strong connectivity (for a mathematical proof, see electronic
supplementary material, S1). However, decaying oscillations
exist and we can analyse the decay parameters represented
by the non-leading eigenvalues.

For α = β, the eigenvalues of P can be easily calculated for
general dimension n (see electronic supplementary material,
S1). They are evenly distributed in the complex plane on a
circle around p β with radius r = p σ. The dominant eigen-
value is located on the real axis. For odd n, this is the
only real eigenvalue. For even n, there is a second one at
p(β− σ). It should be remarked that eigenvectors with nega-
tive eigenvalues may contribute but can never dominate,
since, for any non-negative initial vector, a change of sign is
prevented by the non-negative values in the matrix. An
important case for the dominating eigenvalue is λmax= p(β +
σ) = 1, which represents a stable population with zero
growth. For each combination of β and σ, there is exactly
one corresponding value of p that leads to this condition.
The number of cells is maintained with the eigenvalue of
+1 and, owing to the symmetry, the eigenvector for this special
case shows an equal distribution among all size classes. If
σ < 1, the dominant eigenvector represents an exponentially
falling distribution from smallest to largest sizes, depending
solely on σ irrespective of the value for β. The other eigen-
values with non-zero imaginary part describe oscillations.
Since each trajectory starting from a certain initial state is a
superposition of n possible relaxation modes, these oscil-
lations are superposed to a decreasing, increasing or stable
total population. Since the dominant eigenvector is always
present in an initial vector with non-negative occupations,
the contributions of these oscillations vanish in the long term.

The period T of the oscillations can be readily predicted.
The eigenvalues have to be applied T times to reach their
original phase, so T is given by 360° divided by the angle
of the eigenvalue to the real axis in the complex plane. Since
the n eigenvalues are distributed evenly on a circle displaced
from the origin by p β, this angle is smaller than 360°/n.
Thus, T is larger than n.

In the other limit for α, i.e. α = 0, the situation is more
complex and an analytical solution cannot be given easily.
However, it is possible to find a relation between p, β and s
such that a steady state with eigenvalue +1 results. To deter-
mine the generic case, we used the cofactor expansion
method (see electronic supplementary material, S1) to
obtain the determinant jPn � lIj (I is the unity matrix). In
short, the characteristic polynomial is given by

jPn � lIj ¼ ( pa� l)( pb� l)n�1 � (�ps)n: ð3:1Þ

Setting α to 0 and λ to +1, we can solve the roots for p for a
given s, or calculate s for a given p via

s ¼ 1� pb
p

� �n�1

: ð3:2Þ

For a given s, the population-balancing value of p can be
calculated analytically for n = 2 and numerically for n > 2.
Valid solutions are real roots in the interval [0,1]. For
s = 0.5, p-values depend on the dimension as follows: p = 2−
2√2≈ 0.586 (n = 3), 0.557 (n = 4), 0.543 (n = 5) 0.535 (n = 6)
… . With these specific relations between s and p, the
number of cells as well as parameters of the distribution are
time invariant, thus we obtain a true equilibrium state.

The eigenvalues differ of course, but not too much from
the eigenvalues in the case α = β, with the same statements
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on periodicity. Indeed, the simulation in figure 2 reflects the
deviation of the period from n.

The Perron–Frobenius theorem allows predictions for vari-
ations of the model in which other matrix elements are filled.
For instance, we can consider a range of auxosporulating sizes
below an upper size threshold or also a size distribution of
initial cells depending on the parent cell size as observed by
Davidovich [28]. The corresponding matrices still have only
non-negative entries and retain their connectivity (see elec-
tronic supplementary material, S1.3), so, also in this case,
occurring oscillations will decay and are not self-sustained.

We can conclude that for a linear system oscillations occur
but, in the long term, the trajectory spirals towards a station-
ary point, the population of which is represented by the
dominant eigenvector. Therefore, the simple picture of
the life cycle is not able to explain long-term oscillations
in the population and size distribution.
 erface

18:20210146
3.2. Asymmetric delay
In this section,we answer the questionofwhether a delay in cell
division between the daughter cells may cause sustained oscil-
lations. Generally, delay processes are known to favour
oscillatory behaviour in various contexts [23,29]. A delay for
the smaller daughter by exactly one generation before the
next cell division was suggested by Müller [30] in the early
days of diatom research after careful studies on chain-
forming Melosira arenaria. This asymmetry in time is not
uncommon for single-celled organisms and is known for
other species such as budding yeast [31], in which there is
also a difference in size of the two mitotically separated cells.
Interestingly, a delay of just the opposite sign was reported
by Laney et al. [32] for the diatom Ditylum brightwellii. In this
case, the smaller daughter derived from the previous
hypotheca is more likely to divide faster than the one from
the epitheca. These contradictory findings certainly express
the need for more detailed experimental investigations and
species-specific treatment. The variety of diatoms is so large
that it is not knownwhether this asymmetry in timing between
the two daughter cells holds for the majority of species or how
this time delay can vary.

In both the Müller and Laney models with a delay of one
generation, a Fibonacci series for the number of cells replaces
the exponential growth. In figure 1b, the principle is shown
explicitly for the Müller model; in figure 1c for the Laney
model. Without losses, the number of cells derived from
one initial cell follows the series 1, 2, 3, 5, 8, … rather than
1, 2, 4, 8, 16 in the non-delayed scheme. Because of the
delay, the division scheme including closure by the sexual
phase represents a second-order difference system, but it
can be reduced to a first-order matrix equation as shown in
electronic supplementary material, S2.

The resulting matrix for the Müller delay model is also
non-negative and irreducible, thus the dominant eigenvalue
is real positive and given for α = β by

lmax ¼ bp
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s=b

p� �
ð3:3Þ

(see electronic supplementary material, S2).
That means that, also with this division scheme, the quali-

tative behaviour does not change, and no true oscillations can
be expected. Indeed, simulations with this variant exhibit
decaying oscillations similar to those in figure 2 (see
electronic supplementary material, S4). The time scale is
larger, though, since the vegetative proliferation takes
longer to cross all size classes (figure 1b). Again, an equili-
brium population can be reached only with a special
combination of the parameters, such that λmax= 1.

In the Laney delay model, the situation is somewhat
different. Owing to the transition into a resting phase and
back, a short-term oscillation of two generations is induced
(for even n, this oscillation is sustained; see also electronic
supplementary material, S4). In real cultures, it would be dif-
ficult to observe such a behaviour, though, because, even
under high synchronization, the delay would probably be
subject to some distribution. Oscillations of the order of the
life cycle decay as in the basic model, with the same time
scale as can be deduced also from figure 1c. Sustained
oscillations have not been found.

As a result from this section, we can conclude that a delay
of one daughter cell with respect to further division changes
the growth law of the population but does not stabilize
oscillations in the life cycle.
3.3. Nonlinear processes
In this section, we answer the question of whether nonlinear
processes can cause sustained oscillations. In modelling popu-
lation dynamics, the assumption of limited resources that
inhibit the growth of a population is a typical feature for under-
lying models. But also biparental schemes introduce a second-
order nonlinearity by the required meeting probability of the
two mating types. For the life cycle scheme of diatoms, we dis-
cuss biparental schemes first, and then nutrient saturation.
Since linear eigenvalue analysis cannot be applied here, we per-
formed computer simulations for the corresponding models,
the biparental nonlinear model and the saturation nonlinear model.

Biparental reproduction should be modelled as second-
order kinetics similar to bimolecular chemical reactions, expres-
sing the dependence on density of the mating strains as
reported in the literature [33]. We note, however, that there is
a limit even in dense systems since the parent cells can only
supply a limited number of gametes. Thus, the number of aux-
ospores cannot surpass the number of parent cells, so there will
be a transition to first order with increasing cell number. Mod-
elling a biparental scheme accordingly with the expression for
the biparental nonlinear model (see Material and methods) results
in a slight shift of the targeted equilibrium with time. Simu-
lations showed decaying oscillations similar to the basic linear
model, but no further stabilization of these oscillations. An illus-
trating example is given in electronic supplementary material,
S4. The positive feedback that is introduced by the nonlinearity
(more small cells produce more auxospores than proportion-
ally) obviously is not able to counteract the size broadening
mechanism. Sustained oscillations of the life cycle probably
cannot be attributed to biparental nonlinearity. For the applica-
bility of the models to different sexual reproduction schemes,
however, we can conclude that the linear model is a good
approximation also for biparental schemes.

Now, nutrient saturation is discussed. Limitation of nutri-
ents (silica, nitrogen, iron, etc.) would reduce the growth of
diatoms if the population is too large and therefore provide
a kind of negative feedback. In selecting an appropriate non-
linear expression for saturation, measures have to be taken in
a discrete model that the number of individuals will not fall
below zero. Therefore, instead of assuming a logistic-type
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growth model [34], which is the textbook model for discrete
difference equations showing oscillations and chaos, we
apply the nonlinear model of Ricker [24] and extend it here
to our one-species-several-ages case. In the (one-dimensional)
Ricker model, the proliferation rate drops exponentially
down with the number of individuals as a result of compe-
tition for nutrients, but can never become negative as in
logistic growth. In our multi-dimensional model, we regard
the total number of cells as the limiting factor for saturation,
but note that in principle the total surface area or volume
could also be considered. Written in terms of our matrix
model, this means

xtþ1 ¼ Pxte
�g

P
i
xið Þ

t , ð3:4Þ
in which P is still the linear matrix (saturation nonlinear model).
The sum in the exponent is over all elements of the
population vector, i.e. counting the number of individuals.

In an alternate view of this model variation, we modify p
into an effective peff depending on the total population

peff ¼ p0e
�g

P
i
xið Þ: ð3:5Þ

γ is the inverse of the number of cells K for which the pro-
liferation rate drops to 1/e of the full rate, thus representing
an inverse carrying capacity. If we compare this with the
one-dimensional Ricker model written as

xtþ1 ¼ xtere�x=K, ð3:6Þ
with a critical value for the first bifurcation at r = 2, it becomes
clear that we can expect a similar bifurcation at a critical
value of p, i.e. pcrit = e2/2≈ 3.69 (the factor 1/2 arises from
the fact that one cell yields two cells in the next generation,
thus 2p≡ er). Numerical simulations confirm this behaviour
and show a decoupling of high-frequency oscillations due
to nonlinearity from the cycle through the size classes.
Figure 3 shows a representative simulation for p = 4. One
can see, on the one hand, a persistent high-frequency oscil-
lation in the total number of cells and, on the other hand,
the damped oscillation of the mean size and variance leading
to a steady-state distribution. A stronger coupling of the non-
linear term to the dynamic size distribution can be achieved
by defining the carrying capacity via the total cell surface
or volume, but, as respective simulations show, the general
behaviour at the end of the simulation does not change. As
long as there is an equilibrium distribution as attractor for
the trajectory in the linear model, oscillating behaviour is
controlled by the value of p, up to further bifurcations and
eventually chaos. For the Ricker model, however, a pcrit of
3.69 for the onset of oscillations is too large to be reasonable,
since, in the biological model, no cell can produce more than
two daughter cells in the next generation (i.e. p≤ 1). It might
be possible to redefine the time scale by assigning one dis-
crete step to several generations at the cost of complicated
proliferation schemes, but clearly the high-frequency oscil-
lations for large p-values are not the oscillations we are
looking for. It should be mentioned that we investigated sev-
eral other nonlinear models such as the three-parameter
Hassell model [35], and obtained similar results by detecting
persistent oscillations only in the cell numbers, whereas
oscillations in the size distribution still decay.

The effect of nonlinearity in providing an effective p to limit
the total population can be seen best below the bifurcation
onset. For instance, with n = 5 (for better numerical accuracy),
p= 1, α = β= 0.8, s = 0.2, γ = 10−3, an equilibrium population
of 421.85 cells per volume was obtained, giving rise to peff =
0.656, which perfectly fulfils the equilibrium condition

seff ¼ speff
p

¼ snpeff ¼ (1� peffb)
n

pn�1
eff

, ð3:7Þ

expected for the linear system.
In conclusion for the saturation nonlinearity, we can

exclude this effect as the cause for sustained oscillations



0

0

1

0

0

2

0

0

1

0

0

0

1

2

1

3

3

1 4 10

1

5

6

10

0

0

1

j
i

0

0

3

0

0

3

0

0

1

0

0

0

0

0

0

4

0

0

6

0

0

1

0

0

4/1

0

0

0

0

0

0

10

Figure 4. Age treatment of auxospores. i represents the size class and j the age. They retain their age or are set to pristine again (arrow). The 4 sizes × 3 ages
model, starting with the third generation. The narrowing distribution is indicated in the columns to the right of the matrices.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210146

8

with periods of the order of the number of generations. The
simulations showed clearly a decoupling of population con-
trol and size control. This did not change if we include the
size in determining the saturation according to

peff ¼ pe�g
P

i
x2ið Þ (total surface area) ð3:8Þ

or

peff ¼ pe�g
P

i
x3ið Þ (total cell volume volume), ð3:9Þ

even if there is an explicit dependence on the size
distribution.
3.4. Modelling with ageing
In this section, we answer the question of whether limited
lifespans of individual thecae can cause sustained oscil-
lations. The problem with all the models discussed up to
this point is that a newly generated theca stays in the
system and is not removed faster than thecae that are pro-
duced later. But in order to maintain a narrow distribution,
it is necessary that larger or older cells are removed. Thus,
a possible mechanism would be a limited lifespan of an
epithecal half. Indeed, there are some experimental reports
addressing this issue, such as the one by Jewson [36] for
the centric diatom Stephanodiscus neoastraea. Jewson [37]
deduced a lifespan of six to eight generations and extrapo-
lated a similar value for Aulacoseira subarctica. Laney et al.
[32] posed the hypothesis that, by the bias to the smaller
daughter cell, damaged cell material can be divided asymme-
trically, ensuring the quality of inherited material. The other,
larger half will accumulate defects and eventually die earlier.
This principle of genetic quality control by asymmetric cell
divisions and implications for population development is
found in several unicellular organisms, for instance in
Escherichia coli and in Saccharomyces cerevisiae, in which the
asymmetry in cell division is much more pronounced
[31,38]. For the latter, it is known that one single mother
cell can only produce 20–25 daughters by budding before
dying, which clearly defines a replicative lifespan. Budded
daughters always start as juvenile cells independent of the
age of the mother cell [39].

Therefore, we applied the ageing model in which the age of
a cell is defined by the number of cell divisions its epitheca
has already undergone. For the sake of simplicity, we
define a fixed number of generations a theca may survive.
Mathematically, this means that the population is represented
by an n ×mmatrix in which n (index i) denotes the number of
size classes and m (index j ) defines the lifespan in gener-
ations. In order to keep the concept of a distinct lifespan
meaningful, ageing for epithecae has to be more pronounced
than for hypothecae. In our model, the smaller, ‘younger’ cell
keeps its age, whereas the larger, ‘older’ cell ages by one gen-
eration. When a cell reaches its lifespan after m generations, it
is removed from the model.

We note that in the (biologically unrealistic) limiting case
that only the hypothecal daughter survives in each cell div-
ision (lifespan = one generation), a perfect oscillation would
be obtained. In this special case, the size for the single
remaining cell would permute through all size classes until
sexual reproduction would produce a single new initial cell.

Normally, we would assume that new initial cells are pris-
tine, i.e. we set the age to zero. It is also instructive, however,
to consider an alternative case in which new initial cells retain
a memory of the age of their parent cells. Such a situation
could hypothetically arise in the case of vegetative cell size
enlargement in order to start the cycle again. Both possibili-
ties are indicated in a small model system with n = 4 and
m = 3 in figure 4, indicating the very first generations.

Pristine initial cells definitely constitute the biologically
more plausible case, so we confine our analytical treatment
mainly to this case. We note, however, that, in the case of
an age memory upon re-entry of initial cells, the conditions
that mathematically prevent sustained oscillations are not ful-
filled any more (electronic supplementary material, S3) and
the process may become cyclic. Therefore, in the computer
simulations, both variations are treated for a comparison of
these contrasting behaviours.

In order to analyse the results for arbitrary lifespans
mathematically, we rewrote the state matrix as a vector of size
nm and therefore the propagation as nm× nm matrix (see
Material and methods section). Analytical treatment (electronic
supplementary material, S3) leads to the following conclusions
about the nm eigenvalues, although an analytical expression
could not be given: first, 0 is a (n− 1)(m− 1) fold eigenvalue;
second, there is exactly one positive real eigenvalue. Again,
for conservation of population number, this eigenvalue can be
1 for an exact combination of p (or peff in the case of
nonlinearity) and σ. Third, there are at most m negative
real eigenvalues. That leaves a spectrum ofminimum nm− (n−
1)(m− 1)− 1−m = n− 2 complex eigenvalues.

In order to see how they contribute to the time develop-
ment of the population, simulations were performed.
Respective results of a larger system are displayed in figure 5
for the variant with age memory of initial cells and in figure 6
for pristine initial cells. In all cases, a nonlinear Ricker term as
explained above was implemented to keep an upper limit for
the total number of cells.

If the auxospores retain their age, indeed sustained oscil-
lations with a periodicity of the number of size classes are
obtained (figure 5). This periodicity is induced by the circular
character of the matrix and the constant removal of the
generation formed m generations before. A closer look at
the size distributions reveals that, despite stable oscillations,
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a proper limit cycle in the sense of a cyclic propagation
through a set of defined population states is not followed.
Since the population distribution via Pascal’s triangle is cut
off after m values, the population becomes narrower from
generation to generation. This can be seen in the variance
plot of the simulations and in detail in the small model
system of figure 4. The population becomes more and more
dominated by the oldest size class. Thus, under the assump-
tion of an ‘age memory’ in the auxospore, an oscillation will
not decay and is subject to self-narrowing of the distribution
by the MacDonald–Pfitzer process. At the moment, however,
there is no hint that this assumption is justified in real diatom
species.

A different picture arises if new cells from auxospores are
juvenile again. Here, the circular character of the propagation
mechanism breaks down, and, in each generation, the re-
entry of large, young cells is possible. This leads again to a
smearing of the population distribution and results in a
damped oscillation towards a steady state (figure 6). Owing
to the permanent reset of age, the distribution is smeared
again, as indicated by the width of the auxospore peaks.
An interesting feature arises also in the periodicity of the



Table 2. Selection of simulation results under the assumption of a limited lifespan and juvenile initial cells. In all simulations p = α = σ = 1, γ = 0.001. The
table shows the other parameters, average oscillation period in generations from Fourier transform and fitting parameters for equilibrium distribution and
relaxation of population maxima and minima as given in the text.

n m β period cmax τmax cmin τmin nB a b

20 5 1 23.7 0.78 1.3 × 103 0.96 2.0 × 103 29.5 2.3 5.9

50 5 1 53.9 0.56 19.0 × 103 0.98 70.8 × 103 147.7 3.7 27.5

70 5 1 73.9 0.50 47.4 × 103 0.98 262.0 × 103 276.3 4.0 45.0

100 5 1 104.0 0.42 111.2 × 103 0.97 1049.6 × 103 531.0 4.3 71.6

140 5 1 144.0 0.36 214.5 × 103 1.02 3826.1 × 103 1342.6 4.7 157.5

50 2 1 51.0 0.72 177.8 × 103 0.99 330.6 × 103 133.3 1.7 8.8

50 4 1 52.9 0.56 26.2 × 103 1.01 102.4 × 103 150.1 3.1 22.9

50 8 1 56.8 0.65 14.9 × 103 0.92 32.8 × 103 127.3 5.3 32.1

50 12 1 60.6 0.80 13.5 × 103 0.88 16.9 × 103 100.5 6.6 27.3

50 20 1 68.2 1.04 10.7 × 103 0.80 6.7 × 103 68.7 6.4 13.0

50 5 1.9 54.0 0.45 15.6 × 103 0.98 125.8 × 103 244.3 4.2 65.8

50 5 1.4 53.9 0.50 17.4 × 103 0.98 96.1 × 103 192.4 4.0 44.2

50 5 0.8 53.9 0.60 19.3 × 103 0.98 57.5 × 103 124.4 3.4 19.6

50 5 0.5 53.8 0.71 18.7 × 103 0.98 36.3 × 103 89.1 2.8 9.2

50 5 0.2 53.5 1.01 14.9 × 103 0.93 13.4 × 103 58.8 1.5 2.2
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oscillations: now they deviate from the number of gener-
ations. Instead of the expected periodicity of 20 in figure 6,
the periodicity in the mean size, auxospore formation and
variance is 26 generations for n = 20 and m = 7. This period-
icity can be explained by considering the offspring of an
auxospore until the next pristine auxospore is formed. The
population moves diagonally through the n ×m matrix,
cells exceeding the right-hand border being extinguished.
After n +m− 1 generations, all cells derived from a single
auxospore have disappeared, with the exception of the
newly created auxospores (for details, see electronic sup-
plementary material, S3). This n +m − 1 periodicity has
been confirmed in numerical simulations by computing the
Fourier transform of the oscillations for various values of n
and m. Only for a large m/n ratio are some small deviations
detected which we can attribute to a nonlinear distortion and
numerical uncertainties. A selection of simulated data are
given in table 2, the full dataset with various variations in
the different model parameters is compiled in electronic
supplementary material, S6.

In all simulations with pristine auxospores, the oscil-
lations decay towards an equilibrium state, but on a large
time scale. Before discussing the interesting details of the
long-term relaxation process, we will have a look at the equi-
librium state, taken at the end of the simulations (after several
million generations).

The presence of a defined equilibrium is ensured by the
nonlinear Ricker term, which controls the total population.
From the structure of the nm × nm matrix that represents
the linear operation on the population matrix, it can be
shown that again only certain combinations of p—together
with the nonlinear Ricker term as peff—and σ lead to an
eigenvalue of 1, which means a stable population. The n ×
m matrix characterizing the population eigenstate expresses
a distinct size and age distribution in each age class. Compar-
able with observables, however, are mainly the cumulated
size distributions, summed over the age structure (figure 7).
It turns out that the total distribution has a maximum at a
specific size class. Age-resolved plots show that this distri-
bution is dominated by the oldest cells. For younger cells,
the distribution is shifted towards larger sizes, which may
be counterintuitive at first sight. However, considering the
fact that older cells on average went through more size-
reducing cell divisions, one can understand the reason
behind this. In figure 4, where the size distributions for differ-
ent ages can be read as columns, the tendency can already be
seen after a few generations.

Fitting attempts with several distribution functions
showed that this can be represented empirically by a
β-binomial distribution on an inverted size scale, i.e.

f(i) ¼ nB
n� i

� �
B(aþ n� i, nB þ b� nþ i)

B(a,b)
(1� d)þ d, ð3:10Þ
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in which i is again the size index and B(a,b) is the β distri-
bution with shape parameters a and b. In probability
distributions, nB would represent the upper limit, hence n,
but here it can be regarded just as an additional fit parameter
deviating from n and taking also non-natural values. d is an
offset with renormalization and is negligible in most cases.
The distribution function can thus only be taken as an empiri-
cal function without some statistical foundation, but it
describes the simulated data astonishingly well. Note that
this equilibrium distribution differs substantially from
the flat distribution function in the simple models. The
fitted parameter data are included in table 1. The maximum
of the age-cumulated size distribution, calculated as the
percentage relative to the largest size, shifts towards larger
cells for increasing n at constant m and towards smaller
cells for increasing m at constant n. The width of the distri-
bution, measured as full width at half maximum, decreases
in both cases.

Now we consider the relaxation process from an initial
condition towards this equilibrium. For this purpose, we
plotted the maxima as well as the minima of the total cell
number in each oscillation versus generation t. The decline
does not follow a simple exponential law—which is under-
standable considering the nonlinear term and the existence
of several complex eigenvalues—but can be reasonably
well described by a stretched exponential function, in
mathematics also known as the complementary cumulative
Weibull function,

N ¼ A2 þ (A1 � A2)exp(�(t=t)c), ð3:11Þ

in which A2 denotes the equilibrium cell number, (A1 –A2) is
the starting amplitude, τ is the scale parameter and c is the
shape parameter. The scale parameter can be taken as the
measure of the mean decay time and is represented graphi-
cally as the inflection point when the generation is plotted
on a logarithmic time scale (figure 8).

Fitted values describing the decline functions for various
model parameters are also compiled in table 1, with the full
set in the electronic supplementary material. The following
general trends can be extracted from the fits: for increasing
the number of size classes n, other parameters being constant,
the equilibrium population decreases almost exponentially,
i.e. with positive curvature, the scale parameter τ increases
with positive curvature. Interestingly, the shape parameter c
decreases steadily for the maxima whereas it does not vary
so much for the minima and passes through a transient maxi-
mum. For increasing lifespan m, other parameters being
constant, the equilibrium population increases and the scale
parameter decreases. The shape parameter increases for the
maxima, but decreases for the minima. The higher the prefer-
ence for younger daughter cells, i.e. for decreasing values of
β, the lower the population and the scale parameter in the
minima. The shape parameter for the decay in the maxima
becomes higher. Interestingly, the scale parameter of the
maxima and the shape parameter of the minima are maxi-
mized for certain values of β. Finally, a change in σ leads to
modifications in the decay parameters for maxima and
minima in opposite directions, respectively. In summary,
the relaxation parameters have a complex dependence of
the model parameters, but long-lasting relaxations (i.e.
large-scale parameters) are obtained for large n, small m
and high values of β.

Even if an equilibrium point exists, it may never be
reached in a real diatom population in a reasonable amount
of time. We note that the decay by persistent oscillations com-
prises many orders of magnitude, of the order of 104–105

generations in the maxima and even more in the minima.
This is much longer than any biological system can stay
undisturbed by external influences, so, for any practical
reason, the oscillation can be regarded as a persistent one.
Any perturbation that changes the parameters for vegetative
or sexual reproduction slightly would induce a new deflec-
tion from equilibrium and start the oscillation anew.
Possible factors that may contribute in natural environments
are light conditions, temperature, predator occurrence and
nutrient availability.
3.5. Periodic environmental influences
Fluctuating external factors can be of a periodic nature, typi-
cally following the seasons throughout a year. Photoperiod,
temperature and nutrients change within a year and favour
or disfavour the total growth of a diatom population.
Sexual reproduction may be limited to only a few weeks in
a year [15]. It can, therefore, be inferred that seasonal changes
of environmental factors act as zeitgeber and are coupled
to the inherent mechanism of the life cycle by varying the
reproduction parameters. This can be expressed as a non-
autonomous system in which p or s is a periodic function
of time. We investigate the influence of such an external
zeitgeber on the oscillations of the previous model. As the
basic mode, we assume a sinusoidal variation and note that
other annual variations can be expressed as the sum of the
basic mode and its higher harmonics. Usually, a year is
shorter than the complete life cycle and can be expressed
by z < n generations.

In figure 9a, the results of a computer simulation with the
p-zeitgeber model are shown for a variation of p between the
original value and 75% of that value in 1 year consisting of
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Figure 9. Simulation results for a system with sinusoidal variation of p down to 75% of its value, representing an annual zeitgeber. The nominal generation cycle
(number of size classes) is n = 50 generations, the zeitgeber cycle z = 20 generations. (a) Behaviour at the beginning. Given is the total cell number, mean size, the
auxospore number and the power spectrum of the total cell number. In both upper graphs, the sinusoidally varying value of p multiplied by a factor of 5 for better
visibility is indicated as the bottom line in red. (b) Long-term behaviour. Replacing auxospore number, the size distribution after 106 generations is displayed.
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z = 20 generations, with n = 50 size classes. The oscillating
behaviour seems complicated, especially in the seemingly
random auxosporulation events, but Fourier analysis reveals
the occurrence of the n +m− 1 generation period of 54 gener-
ations (frequency 0.0185) as well as the seasonal period of 20
generations (frequency 0.05). Interestingly, besides the usual
higher harmonics, new periodicities arise: the difference fre-
quency at 0.0315 and the sum frequency at 0.0685, which
can be attributed to nonlinear coupling of the two periodic
processes, since the Ricker term is still included. Like non-
linear saturation, the seasonal change of p couples only to
the cell number, but not to the size distribution. If the
simulation is performed further until 106 generations
(figure 9b), oscillations in the total cell number remain, but
have been decayed for the mean size, leading to an equili-
brium size distribution as in the other models. The only
remaining Fourier components for the cell number are
the 20 generation period, now being dominant, and the 54
(n +m− 1) generation period.

The situation is different if, instead of p, s is varied since
the variation concerns only the sexual part, i.e. the population
of only the initial cells. In figure 10, the results are displayed
for the same parameter set as in figure 9, but with a variation
of σ between the original value and 75% of that value
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(s-zeitgeber model). Since s = pσn, s drops down to virtually
zero during the course of the year. Auxospore formation
depends strongly on the phase relationship between total
cell number and external signal, so there are some years in
which there are almost no auxospores. The pattern in the fre-
quency space at the beginning is much more complicated,
with low-frequency components indicating periodicities
with long time scales, much longer than the generation
period. After 106 generations, again the annual period domi-
nates the population, but there is still an oscillation in the
mean size. The size distribution reveals the presence of a typi-
cal multimodal distribution (figure 10b, lower right), in which
each peak can be attributed to a single year. These peaks tra-
verse the size distribution, stabilizing the n +m− 1 generation
period. Here, we can see clearly that a variation in s directly
influences the cell size distribution and, therefore, keeps it
oscillating, whereas a variation in p (figure 9) only influences
the total cell number and, therefore, leads to the original equi-
librium distribution. If there is no ageing, a multimodal
distribution still exists, but is less narrow. The peak in the
power spectrum for the n +m− 1 vanishes, which means
that thev zeitgeber signal defines the only remaining time
scale (see electronic supplementary material, S4e).

We can state as result of this section that seasonally vary-
ing sexual reproduction behaviour may supply the necessary
driver for keeping the generation clock running. Without
ageing, however, the annual zeitgeber clock overwrites this
clock completely and imprints its own rhythm.



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210146

14
4. Conclusion
Is the life cycle of diatoms a clock? If we mean limit cycles that
consist of a series of defined population states that are adopted
sequentially and return exactly back to previous states, then, at
the moment, we would have to answer no with the present
knowledge about the proliferation mechanism. The problem
is the size distribution that needs some self-narrowing mechan-
ism in order to compensate broadening exactly. If we assume
finite lifetimes for a newly formed theca, then older, larger
cells are removed effectively and counteract the broadening.
With the additional assumption of age memory in auxospores,
self-sustained rhythms with even further size narrowing can
occur. But also without this somewhat arbitrary additional
assumption, the oscillatory decay towards an equilibrium is sig-
nificantly slowed down by the proposed finite lifetimes and
takes place on a time scale of millions of generations, enough
to keep the oscillations running by statistical fluctuations. If
we define a biological clock in the common sense as ‘an inherent
timing mechanism in a living system that is inferred to exist in
order to explain the timing or periodicity of various behaviours
and physiological states and processes’ [40], then the answer to
our question isyes, but it resemblesmore a cuckoo clock that has
to be wound up from time to time. This could happen by
environmental fluctuations, ranging from singular environ-
mental events bringing the size distribution again away from
equilibrium up to the annual period of the sexual phase.
The results presented here may help in guiding exper-
imental investigations of previously unknown or even
contradictory data connecting cell cycle and life cycle. If, for
instance, more data about the lifespan of a single theca and
the asymmetry in timing between the daughters were
known, population dynamics of diatoms could be under-
stood better. This may turn out to be useful—together with
knowledge about nutrient supply currents—for modelling
algal blooms and periodic events in the carbon cycle.
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