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Extraction of accurate cytoskeletal actin velocity
distributions from noisy measurements
Cayla M. Miller 1, Elgin Korkmazhan 2 & Alexander R. Dunn 1,3✉

Dynamic remodeling of the actin cytoskeleton is essential for many cellular processes.

Tracking the movement of individual actin filaments can in principle shed light on how this

complex behavior arises at the molecular level. However, the information that can be

extracted from these measurements is often limited by low signal-to-noise ratios. We

developed a Bayesian statistical approach to estimate true, underlying velocity distributions

from the tracks of individual actin-associated fluorophores with quantified localization

uncertainties. We found that the motion of filamentous (F)-actin in fibroblasts and endo-

thelial cells was better described by a statistical jump process than by models in which

filaments undergo continuous, diffusive movement. In particular, a model with exponentially

distributed jump length- and time-scales recapitulated actin filament velocity distributions

measured for the cell cortex, integrin-based adhesions, and stress fibers, suggesting that a

common physical model can potentially describe actin filament dynamics in a variety of

cellular contexts.
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The actin cytoskeleton is both dynamic and mechanically
robust, allowing it to simultaneously define cell shape while
facilitating membrane protrusion and cell migration. These

roles require cytoskeletal assemblies with distinct physical
properties1–4. Two such examples are the actin cortex, a thin
contractile mesh immediately beneath the cell membrane that
helps to maintain cell shape5, and stress fibers, bundles of
crosslinked actin and myosin that transmit force to the extra-
cellular matrix (ECM) through focal adhesions6. These and other
F-actin based structures generate force through a combination of
pushing forces resulting from F-actin polymerization and pulling
forces generated by motor proteins, most prominently non-
muscle myosin II. Imbalances in these push-pull forces drive
localized F-actin flows, which thus report on the local dynamics
of cytoskeletal remodeling and cellular force generation7.

Experiments quantifying local F-actin flow velocities in the
leading edge of migrating cells have yielded key insights into how
cell shape, migration, and force transmission arise at the mole-
cular level. Early work examining F-actin dynamics noted rapid
actin turnover and rearward flow from the cell edge toward the
cell body in the lamellipodia of both keratocytes and
fibroblasts8,9, a phenomenon termed retrograde flow that has
since been observed and characterized in many cell types2,3,10–13.
Speckle microscopy established the lamellipodia and lamella as
distinct regions with unique F-actin retrograde flow velocities and
polymerization kinetics, pointing to specialized roles in ECM
exploration and persistent advancement of the cell’s leading edge,
respectively2,14. Kymograph-based analysis of F-actin velocities in
fish keratocytes demonstrated that myosin II inhibition can speed
or slow retrograde flow, depending on the force balance in an
individual cell15. Multiple studies have also shown that actin flows
are slowed locally over integrin-based cellular adhesion com-
plexes, termed focal adhesions, a phenomenon that reflects
localized traction generation16–19. These and other studies sup-
port a consensus understanding, termed the molecular clutch
model, in which rearward flow of F-actin is coupled by frictional
slippage to focal adhesions in order to exert traction on the cell’s
surroundings16,20–22. Fewer studies have focused on actin
dynamics under the cell body, where directed, vectoral F-actin
flow is less apparent23,24. This knowledge gap is potentially
important, as the lamellipodia and lamella constitute a small
fraction of the cell’s surface in most cell types.

A separate body of work has used biophysical measurements to
infer the mechanical properties of the cytoskeleton. Experiments
that used magnetic beads attached to the cell’s exterior to exert
indirect forces on the cell cytoskeleton support a model in which
cells, and by extension the cytoskeleton, can be described as soft,
glassy materials close to the glass transition point, or else as
gels25–27. In these models, actin filaments form a crosslinked
network that rearranges over a broad range of timescales. This
general view is supported by a variety of measurements, including
optical trap experiments28, atomic force microscopy measure-
ments, and other techniques (reviewed in ref. 29).

The large majority of studies characterizing the cytoskeleton
have quantified bulk, or averaged, F-actin dynamics as opposed to
those of individual filaments. Cell rheological measurements, as
discussed above, necessarily average over large numbers of fila-
ments. Similarly, the large majority of F-actin tracking mea-
surements, such as those supporting the molecular clutch model,
employ speckle microscopy, in which F-actin is labeled at a
density such that puncta typically comprising several fluor-
ophores are tracked. This technique, though powerful, does not
straightforwardly report on the motion of individual fluor-
ophores, and hence individual filaments30. A few studies have
used sufficiently low concentrations of F-actin fiducials to track
single fluorophores19,31,32. However, where these data have been

analyzed to yield information on the dynamics of individual
filaments, the focus has remained on a relatively small number of
filaments near the cell edge19.

Recent results from our laboratory implied that actin filaments
attached to integrin-based adhesions do not undergo continuous
retrograde flow, but instead move with discontinuous stick-slip
motion33. This picture contrasts with earlier molecular clutch
models, which featured continuous, retrograde F-actin flow34.
Discontinuous movement at the level of individual filaments
would be consistent with a description of the cytoskeleton as a gel
or glass27,35. However, to our knowledge no measurement of
single-filament dynamics in living cells has been reported that
differentiates between continuous flow and discontinuous slip-
stick models of motion.

Here, we present a novel analysis that uses prior information
about the localization error and Bayesian inference to estimate true
underlying velocity distributions from noisy fiducial tracking data.
Our measurements revealed details of distinct velocity distributions
for F-actin populations inside and outside stress fibers, and also
showed how the velocity distributions evolve over sub-minute
timescales. At short timescales (<10 s), our analysis revealed the
presence of stationary or slow moving F-actin, which was pre-
viously undetectable due to measurement noise, along with a long
tail of faster-moving filaments. At longer timescales (10 - 40 s), the
velocity distribution became more narrowly distributed around a
peak velocity. We propose one physical model that is consistent
with these observations, namely a statistical jump process that
describes the movement of individual actin filaments.

Results
We quantified the motion of individual F-actin filaments in
human foreskin fibroblasts (HFFs) by sparsely labeling with very
low concentrations of SiR-actin, a probe whose fluorescence
increases 100-fold when bound to F-actin. The use of SiR-actin
provides several advantages: compatibility with many cell types
without genetic engineering, live cell permeability without harsh
electroporation or microinjection, and binding-specific fluores-
cence resulting in low fluorescence background36. The cells were
imaged using TIRF microscopy, limiting the fluorescence exci-
tation field to the basal surface ( <200 nm) of the cell. The F-actin
fiducials marked by SiR-actin were imaged every two seconds for
a total of two minutes (Supplementary Movie 1). Time-lapse
recordings revealed a small population of fast-moving, highly
directed actin flowing retrograde at the cell edge (Fig. 1, a-b, pink,
peach, and olive kymographs). While important in the context of
lamellipodial extension, this population constitutes a small min-
ority of the F-actin in most adherent cell types, and moreover has
been intensively studied2,3,10–15,17–19. We therefore focused on
F-actin populations under the cell body.

In general, F-actin in stress fibers moved slowly relative to
lamellipodial F-actin (Fig. 1a, b, teal and blue kymographs), as
previously shown22,24. We observed coherent motion of fiducials
in the same stress fiber, and in many cases approximately constant
velocities over the observation time window, suggestive of locally
coordinated flows. We note that, while these measurements report
on the motion of individual filaments, these motions are likely
composed of a combination of individual filament motion and the
coordinated movements of locally crosslinked structures. Finally,
we observed a large pool of F-actin belonging to neither the slow-
moving stress fiber population nor the fast-moving cell-edge
population. This population represents the cortical actin network.
It has been shown that this network is important for transmitting
tension along the contour of the cell membrane37, and exhibits a
wide range of speeds in yeast (0–1.9 µm/s)38. However, the motion
of this population is not well-characterized in mammalian cells.
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Accurate F-actin velocity distribution can be inferred from
noisy measurements. We used quantitative fluorescent speckle
microscopy (QFSM)39 to track SiR-actin puncta in all areas of the
cell (Fig. 1c, d). These tracks were then filtered to identify those
were likely to correspond to single fluorophores and processed to
yield subpixel localizations for each frame (Methods, Actin
Tracking Analysis). The resulting tracks showed that stress fibers
contain slow moving, longer lasting tracks, consistent with the
evidence from selected kymographs. However, velocities calcu-
lated from raw tracks are compromised by a potentially serious
overestimation of the displacement between time steps (Fig. 2)40.
For a fluorophore with a given localization error σxy in the
imaging plane which moves a true distance s between frames, the
measured distance d is sampled from a noncentral χ distribution
with 2 degrees of freedom, and d2

� � ¼ s2 þ 4σ2xy (Supplementary
Note 1).

Consequently, for small displacements, the localization error
overwhelms the measured distance. Figure 2a, b shows simula-
tions of measured distances between two positions with a true
distance s= 5σxy, as well as for a true distance of s= 0 (a
stationary point) with σxy= 1. In both cases, the distribution of
measured distances was in good agreement with the analytical
solution given by a noncentral χ distribution. For the longer
distance, the average measured distance is roughly correct, but for
a stationary particle (s= 0), all measurements are greater than the
true displacement of zero, giving a peaked distance distribution
(with peak at

ffiffiffi
2

p
σxy). For both true distances, the distribution of

measured distances is broader than the (Dirac delta-function)
true distribution.

In order to quantitatively characterize the localization error, we
treated chemically fixed cells with SiR-actin and tracked the actin
fiducials through time in the same way as our live-cell
measurements. The resulting distribution of measured displace-
ments was peaked at non-zero values, as predicted (Fig. 2c).
However, this distribution is not well-fit by a single noncentral χ
with s= 0, due to the varying localization errors of individual
puncta. We are able to capture this variation by a mixture of two
noncentral χ distributions, giving three fit parameters: σxy1 and
σxy2, the σs contributed from each of the two noncentral χ
distributions, and f1, the relative weighting of the noncentral chi
with the smaller σ. Here and hereafter we report maximum
likelihood estimates for fit parameters; MLE allows us to
maximally leverage the information in tracks
(n= ~70,000–360,000 displacements in fixed cells from each
experimental dataset), rather than fitting to the binned histogram.
On average across all experiments, the best fit parameters were
σxy1= 23 nm, σxy2= 50 nm, and f1= 0.57, defining the localiza-
tion error in our system (Fig. 2c, Supplementary Fig. 1).

With this information, we can consider more complex cases,
where the true distance, s, is not constant, but is a random
variable sampled from some distribution, fs(s). In this case, the
distribution of measured displacements depends on two factors:
the probability distribution of the true distances, fs(s), and the
conditional probability, fd(d∣s) of measuring a displacement, d,
given a true underlying distance, s. We use Bayes’ theorem to
infer the true displacement distribution from the distribution of
measured displacements:

f dðdÞ ¼
Z 1

0
f dðdjs ¼ SÞf sðSÞdS ð1Þ

where fd(d∣s= S) ~ χNC(S, σxy), where χNC is the noncentral χ
distribution. In our case, to capture the variability in localization
errors fd(d∣s= S) ~ f1 ⋅ χNC(S, σxy1)+ (1− f1) ⋅ χNC(S, σxy2). There-
fore, for a measured distribution of distances and quantified
localization error, one can infer the distribution of true distances.
It is important to note that the fitting is not model-agnostic, and
requires an assumed functional form for fs(s). However, the fitting
can be quickly solved numerically, and fitting to various
distributions is trivial.

As an illustrative example, we fit simulated F-actin track data
with true displacements drawn from a Weibull distribution, with
Gaussian localization error (Fig. 2d–f). The Weibull distribution
yields either an exponential or peaked shape, depending on the
choice of parameters, and thus is capable of capturing a wide
range of physical behaviors at a phenomenological level. For a
case where average displacement, variance, and localization error
are all the same magnitude, (Weibull shape= 1.5,
scale= σxy), the true and measured distances are shown together
in Fig. 2e. We fit the simulated distribution in (e) to Eq. (1), with
fs ~Wbl(k, λ), and the localization error fixed. The fit matched the
simulated data well (e), and the best fit parameters accurately
captured the true distribution (f). We used a similar workflow to
infer true distributions from our live cell F-actin displacements
given the localization error fit parameters from our fixed cell
measurement (Fig. 2g).

Fit velocity distributions show distinct physical properties for
stress fibers and cortical actin. Many previous F-actin tracking
measurements have avoided the high errors associated with slow
actin speeds by focusing on regions of the cell where movements
are fast, by filtering out nearly-stationary particles in a popula-
tion, or by imaging over longer timescales (minutes to tens of
minutes), where the displacements become larger. In our study,
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Fig. 1 SiR-Actin labeling reveals variation in F-actin velocities in
fibroblasts. a An HFF labeled with 50 nM SiR-Actin. This labeling strategy
was successfully repeated in live HFFs (5 experimental replicates), though
SiR-Actin concentration was varied to achieve similar labeling densities
(see Methods, Experimental Setup and Imaging). b Kymographs showing
actin motion in the cell in a over 120 s, at the cell edge (pink and peach),
closer to the cell body (olive), and in stress fibers (teal and blue). c Single
particle tracking for the same cell over the same 120 s interval. The first
point of each track is shown, color-coded by its apparent velocity. d Close
up of the boxed region in c, showing all points of the tracks in and
surrounding a stress fiber. The tracks are overlaid over the mean intensity
projection of the time series. Scale bar is 1 μm.
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we used non-subsequent frames to measure displacements over a
number of timescales ranging from 2 to 40 s with a constant
exposure of 0.3 s per frame. During our analysis, we sorted
F-actin fiducials into four mutually-exclusive populations based
on their location within or outside stress fibers, and over or not

over focal adhesions. For all of these subpopulations the peak of
the distribution moved rightward and the distribution broadened
at longer timescales (Fig. 3a). However, because of the contribu-
tion from localization error, the shapes and magnitudes of these
distributions cannot be directly interpreted.
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distances for 1000 such particles, as well as the best fit to the measured distribution. f The resulting inferred true distribution from the fit in e overlaid with
the true distribution of distances. g This method is applied to measurements of SiR-actin in cells: i, iv. Images of both GFP-paxillin-marked adhesions and
SiR-actin are acquired on a TIRF microscope. ii, v. QFSM39 is used to identify puncta and tracks through time. iii, vi. Tracks are filtered and sub-pixel
localized to generate a distribution of displacements across the cell. vii, viii. Using the fixed cell data as a measure of the localization error, we can infer the
true displacement distribution from live-cell measurements. Source data for a–f are provided in the Source Data file.
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We inferred true velocity distributions by fitting our live cell
measurements using Eq. (1), as described in the previous section
and in Supplementary Note 2. There are many functional forms
to choose from for fs(s), but for parsimony, we began with the

simplest: the exponential, Gaussian, and Rayleigh distributions.
These reflect actin movements driven by a single-step Poisson
process, averaged movements described by the central limit
theorem, and purely diffusive 2D motion, respectively. An
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exponential distribution fit F-actin displacements in stress fibers
reasonably well over all timescales examined here (2–40 s), but
did not fit the cortical actin population at longer timescales,
Supplementary Fig. 2). Because our distance data are constrained
to be positive, we fit to a folded Gaussian, rather than true
Gaussian distribution. This distribution fit most of the data
reasonably well but failed to capture the tails of the distribution
(Supplementary Fig. 3). If the true distribution were governed by
a 2D, purely diffusive process, we would expect the distribution of
step sizes to follow a Rayleigh distribution. This distribution
largely failed to capture the behavior of the F-actin tracks in both
stress fibers and the cortex (Supplementary Fig. 4).

We next tested the Weibull distribution, a two-parameter
model that interpolates between the exponential (Poisson
process) and Rayleigh (diffusive) distributions:

f ðsÞ ¼ k
λ

s
λ

� �k�1
eðs=λÞ

k

; ð2Þ

where k is the shape parameter, and λ is the scale parameter. This
distribution fit the data well for all four populations over all
timescales. Comparing the likelihood ratios of these fits with the
next best fitting, the folded Gaussian, revealed that the best-fit
Weibull is 102–1076 times more likely than the best-fit folded
Gaussian for each population (Supplementary Table 1).

We scaled the fit distance distributions by the observation time
to generate velocity distributions for all timescales (Fig. 3b). This
affects only the scale parameter, not the shape parameter, of the
distribution. The shape parameter, k, from these fits showed a
relatively constant value around 1, indicating that the behavior on
these timescales is more similar to exponential-like behavior
(k= 1) than Rayleigh-like behavior (k= 2) (Fig. 3c). Physically,
F-actin motion was thus more like Poissonian motion than
diffusive motion. Interestingly, average velocities varied inversely
with the timescale of the measurement, an effect that was not
captured by a simple Poisson process (see F-actin velocity
distribution fits can estimate physical parameters of underlying
motion below).

To determine to what extent the variation we observed is a
result of pooling together F-actin tracks from several different
cells for analysis, we examined the velocity distributions for
individual cells. We found relatively little cell-to-cell variability in
velocity distributions in both the cortex and stress fibers
(Supplementary Fig. 5a, b). Fits of the data from individual cells
yielded fit parameters that showed the same trends as the
population as a whole: in all cells, the stress fiber population was
best fit by smaller shape and scale parameters than was the
cortical population (Supplementary Fig. 5c, d).

As a separate comparison of the F-actin behavior in the stress
fiber and cortical populations, we also fit the lifetimes of our
speckles as described in Supplementary Note 4 and shown in
Supplementary Fig. 11. From this analysis, we found the turnover
rate to be almost twice as fast in the cortical population as in the
stress fiber population (with average lifetimes of 18 and 34 s,
respectively).

F-actin velocity distribution fits can estimate physical para-
meters of underlying motion. While the Weibull distribution
yielded an excellent empirical description of our data, it provided
limited physical insight into the mechanistic processes that drive
F-actin motion. We therefore sought to develop a reductionist
physical model of F-actin motion that could potentially account
for our observations. As with all reductionist models, it likely fails
to capture important aspects of cellular behavior (here, F-actin
dynamics) that arise from the complex molecular milieu of
the cell. Moreover, as with all such models, its correctness
cannot be “proven,” but only invalidated by experimental data.

Nevertheless, we view such models as useful in testing physical
intuition, and in generating predictions that can potentially sti-
mulate future experiments.

F-actin movement in the cell may plausibly arise from some
combination of diffusive motion, bulk drift, and jump processes.
We therefore interpreted our data by comparing two extremes:
one in which F-actin moves solely by diffusion with drift (Fig. 4a),
and one in which F-actin moves solely by a jump process (Fig. 4b,
described in Supplementary Note 3). For a population which
moves with some drift velocity in one direction and diffusion in
two dimensions, the step size is described by a Rice distribution
(mathematically equivalent to the noncentral χ distribution with
two degrees of freedom, but parameterized in a way that is more
intuitive in this context). Statistical jump processes are less often
modeled in a biological context, and describe a system where
particles undergo abrupt jumps in location, termed a position
jump model, or else in velocity, termed a velocity jump model.
Both position and velocity jump models yield descriptions of actin
filament motion that are essentially identical at the spatiotemporal
resolution of our experiment (Fig. 4b). However, the position jump
model yields an analytically tractable model (see below). Although
the motion of the F-actin cytoskeleton cannot be truly
instantaneous, a position jump model provides a useful framework
to approximate processes like the rapid slipping and sticking in the
molecular clutch model41, or those that might be expected from
soft glass or gel descriptions of the cytoskeleton25–27. For the
simplest jump motion process, we assume both the jump time and
jump distance are exponentially distributed.

Consistent with our observations from the Weibull fits, the data
were much better fit by the (Poisson-like) position jump process
than by the model of diffusion with drift (Fig. 4c, d). In this simple
formulation, any piece of the cytoskeleton moves some random
distance after waiting a random time. At each time, a new distance
and wait time are sampled. The distance and the time are both
exponentially distributed, and fits to this model gave mean
switching distances and timescales of ~5−25 nm and ~20−70 s,
respectively (Fig. 4f), with stress fibers showing slightly longer but
less frequent jumps than the other three populations.

A drawback to the 1D jump model is that, similar to the Weibull
fits, it yields a timescale dependence in the best fit parameters,
indicating that this model does not sufficiently account for the
timescale evolution of our data. A number of factors may contribute
to this timescale dependence: reversals in the direction of motion,
F-actin motion that is not constrained to 1D, or nonzero velocities
between jumps. Models incorporating these possibilities are not
analytically tractable, but can be fit to the data using an iterative
fitting approach combined with Monte Carlo simulations. Here we
present the simplest model that adequately describes the data: 1D
jumps with exponentially distributed jump distances and wait times
as above, that switch direction with some probability Pswitch (Fig. 4b).

The 1D jump model with reversals successfully fit data from
each F-actin population across timescales from 2 to 40 s using only
3 global parameters (Fig. 4e and Supplementary Fig. 6). The best
fit time between jumps varied most: actin in stress fibers was best
fit by average wait times of 17 s while that in cortical actin was
only 5 s (Fig. 4g). The two populations over adhesions, with and
without stress fibers, were best fit by intermediate timescales of 10
and 6 s, respectively. There was less variation in characteristic
jump distances, with stress fibers yielding a best fit of 70 nm
and the other three populations yielding jump distances of
45–51 nm. The resulting inferred velocity distributions are plotted
in Supplementary Fig. 7. The best fit jump distance and times are
similar to those from the analytical solution for the 1-D position
jump without reversals, which requires far less computational
time to fit. Interestingly, the reversal probability was lower over
adhesions than for either cortical or stress fiber F-actin, an
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observation that is consistent with the recruitment of F-actin
nucleators to integrin-based adhesions (see Discussion).

The jump models introduce a discontinuous point at zero,
given that there is finite probability that a particle does not jump
at all during an observation time (Supplementary Fig. 7). The
fraction of the population that is motionless is set only by the
characteristic timescale of the jumps and the timescale of

observation, and is independent of the characteristic jump length.
This probability is high at short timescales (89% for stress fibers
and 67% for cortical at the 2 s timescale) and diminishes at longer
timescales (9% for stress fibers and 0.03% for cortical at the 40 s
timescale). This recovered population from fitting is consistent
with the observation that many puncta appeared to be stationary
by eye or by kymograph, particularly in stress fibers.
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Fig. 4 F-actin velocity distributions in HFFs are well-fit by a jump process model with exponentially distributed waiting times and jump distances.
a Schematic of the diffusion with drift model. Persistent drift (left) is coupled with diffusion (center), leading to the motion shown on the right. b Schematic
of the jump model, both with (right) and without (left) direction reversals. The one-dimensional motion is shown both in two-dimensional distance-time
space and in one-dimensional space (arrows). The solid lines represent the motion of a position jump model, while the dashed lines represent the
analogous velocity jump model. c–e The best fits to the stress fiber population data by each of the models in a and b: diffusion with drift (c), 1-D position
jump (d), and 1-D position jump with reversals (e). The fits are shown for four timescales and are for representative data from one experiment (n= 9 cells).
f The best fit parameters for the 1-D jump process, for all timescales measured, averaged over four experiments. Error bars show 95% confidence intervals
on the fit parameters, propagated across the four datasets (see Methods, Model Fitting for details). g The best fit parameters for the 1-D jump process with
reversals, fit to all timescales (2–40 s), averaged over four experiments, n= 32 total cells. Error bars show standard error of the mean of the fit parameters
from four independent datasets. Groups were compared with one-way ANOVA and asterisks denote comparisons with p-values < 0.05. P-values for
comparisons between all groups are tabulated in Supplementary Table 3. Source data for c–g are provided in the Source Data file.
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We also tracked F-actin fiducials in human umbilical vein
epithelial cells (HUVECs), which when plated on glass formed
numerous, well aligned stress fibers. F-actin in this cell type was
best fit by a jump process with best fit parameters similar to
HFFs, but somewhat shorter waiting times between jumps in the
stress fiber population (Supplementary Fig. 8 and Movie 3).

We next examined how the motion of individual actin
filaments varied in response to perturbations known to affect
cytoskeletal dynamics at a more global level. The kinetics of
biological macromolecules are temperature sensitive, with rates
that typically change by a factor of 2–4 with every 10 °C change in
temperature42,43. When we quantified F-actin dynamics in HFFs
imaged at a lower temperature (26 °C), we found that F-actin
motion was best fit by similar jump distances, but less frequent
jumps when compared to measurements at 37 °C (Supplementary
Fig. 9). We also explored the effect of decreasing the overall
abundance of F-actin by treating cells with latrunculin A, which
depolymerizes F-actin and sequesters G-actin monomers44.
F-actin velocities in HFFs treated with 200 nM latrunculin A
were best fit by increased jump distances and waiting times
between jumps, as well as an increased probability of reversal,
suggestive of a disruption of the cytoskeletal network (Supple-
mentary Fig. 10). The effects of treatment with 25 μM
blebbistatin, a concentration chosen to preserve the presence of
some stress fibers and adhesions, were more muted (Supplemen-
tary Fig. 10).

Discussion
We have described and applied a method to infer velocity dis-
tributions for slow single particle tracks in living cells. While
recent microscopy techniques have allowed precise measurements
with single nanometer accuracy in vitro45, these advances are
often difficult to apply to commonly used in vivo fluorescent
probes. Because our technique does not require high precision to
reconstruct a population with slow-moving molecules, we
anticipate that it may be useful in the analysis of other particle
tracking measurements that face limitations imposed by low
signal-to-noise ratios. The approach we outline here is also
applicable to the statistical description of noisy distance mea-
surements, for example in the context of two-color STORM/
PALM microscopy experiments, and may thus be generally useful
in interpreting superresolution data.

While F-actin motion often has the visual effect of steady flow
at the bulk level, it was unknown how the motion of individual
filaments might be represented statistically. Like diffusion of
particles down a concentration gradient, which has the visual
effect of steady unidirectional movement, the paths of individual
particles need not demonstrate steady forward motion. Here, we
measured the motion of single puncta, and found these move-
ments to be inconsistent with a model in which individual par-
ticles move at a constant velocity (Fig. 4, Supplementary Fig. 16).
Our findings are however consistent with previous studies whose
results implied heterogeneity in the velocities of individual actin
filaments19, and in particular that a subset of F-actin filaments
should have zero actin velocities33,46. Thus, single-molecule and
bulk measurements are not inconsistent: relatively rapid and
heterogeneous movements at the single-filament level, averaged
over many filaments and multiple filament lifetimes, are expected
to yield the ensemble-level movements seen previously.

Though a number of models can be fit to the data, goodness
of fit allowed us to eliminate several simple distributions (expo-
nential, Gaussian, Rayleigh), which constrains possible models
of actin motion and force transmission. We find that of the
analytical distributions we tested, the Weibull fit best and was
able to capture a range of actin behaviors. We used numerical

simulations to fit the same data to a mechanistic model of actin
motion. Surprisingly, jump-type models fit the data significantly
better than the more common, continuous diffusion with drift
framework for all populations, despite the diversity of organiza-
tion and function of these structures. While the analytically
tractable 1D position jump was sufficient to fit our measured
displacement distributions for a given timescale, the inclusion of
stochastic directional reversals was sufficient to recapitulate our
data across timescales with only 3 fit parameters. The ability to
describe a variety of F-actin populations with a relatively simple
model suggests that the emergent physical properties of the
cytoskeleton may be understandable within a common physical
framework despite the considerable complexity of the cytoskele-
ton at the molecular scale.

While we don’t observe obvious jump-like movements in our
videos, the average jump distance for most populations and time-
scales is roughly 50–70 nm, close to our localization precision and
to our pixel size of 64 nm. Given the exponential distribution of
jump distances, the most common jump sizes would be expected to
be close to zero, and a majority of jumps would be less than one
pixel. Physically, F-actin motion is unlikely to be truly instanta-
neous, as in this formulation of a position jump process but could
be much faster than our frame rate of 2 s.

As in other studies, we noted fast, inward-directed fiducial
motion at the cell’s periphery, consistent with retrograde flow in
lamellipodia, but these make up a small number of our tracks
(Supplementary Movie 1). It is plausible that F-actin motion in
the lamellipodia is dominated by advective flow, i.e., drift, with
respect to the laboratory rest frame, as in previous studies that
focused on lamellipodial F-actin dynamics. Whether filaments
additionally undergo jump-type motion within flowing lamelli-
podial/lamellar actin remains to be determined. Perhaps relatedly,
the best fit jump model in regions over adhesions, which are often
close to the cell edge, yielded fairly low probabilities of switching
direction (~10%). It is possible that this low probability of reversal
may reflect F-actin polymerization at adhesions, for example by
by formins or VASP47,48.

Although we emphasize the provisionality of the jump model,
it is interesting to consider its physical interpretation. In the
context of a position jump model, one interpretation is that, on
this timescale, F-actin exists in a crosslinked network that is close
to mechanical equilibrium. Disruption of this equilibrium by
either crosslinker unbinding or force generation by myosin occurs
in discrete jumps reflecting the intrinsically quantized, molecular
nature of these processes. In this interpretation, the characteristic
lengths, waiting times, and reversal probability of the actin cortex
and stress fibers reflect the emergent properties of each structure.
This picture is consistent with the structural arrest and rearran-
gements that would be expected from descriptions of the cytos-
keleton as a soft glass or gel25–27.

Variations in the local density of actin crosslinkers and binding
proteins may contribute to population changes in jump distance, as
evidenced by the increase in jump size observed in cells treated with
latrunculin A. In this regard it is intriguing that the magnitude of
jump distances (~50 nm) is similar to the actin network mesh size
(10–100s of nanometers)49. Waiting times between jumps may
reflect the balance of kinetics between force-generating myosin
motors and structure-stabilizing actin crosslinkers. Times that span
roughly 5–25 s are commensurate with the timescale of F-actin
crosslinker rearrangement inferred in a recent study from our
laboratory33. The longer time between jumps in the stress fiber
population may likewise reflect the greater stability of these
structures, which have numerous cross-linking proteins in addition
to force-generating myosins. At a lower temperature (26 °C), which
is expected to slow molecular-level kinetics, the best fit character-
istic time between jumps is increased, but both cortical and stress
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fiber populations exhibit similar average jump distances relative to
those measured at 37 °C. Last, the probability of switching may
reflect the inherent directionality of local forces. For example, the
switching probability was lowest over focal adhesions, where there
is consistent inward-oriented traction forces as well as local actin
polymerization, both of which might be expected to yield direc-
tional F-actin movement.

It is perhaps surprising that the jump model, or any model, fits
the data given the compositional complexity of the cytoskeleton.
It is likely that the best fit characteristic times, distances and
reversal probabilities emerge from a distribution of timescales
(and possibly length scales) that might be expected from the
myriad of actin-binding proteins with varied kinetics, and that
may be characterized by localized heterogeneities in space and
time. Whether these emergent parameters arise in some limiting
manner (e.g., due to central limit or extreme value theorems) or
instead have a more complex physical origin remains to be
determined. Alternative jump model formulations may also be
useful in describing cytoskeletal motion. For example, a velocity
jump model, in which particles move at constant velocity before
“jumping" to a new velocity, is functionally similar to the position
jump model at the spatiotemporal resolution of our measure-
ment, as both models capture local heterogeneity of F-actin
velocities in both space and time.

In summary, while any number of models may also account for
our observations, we find that a jump model is sufficient to
describe the motion of four cellular F-actin populations in the cell
types examined here. Future work can help to elucidate the
underlying molecular mechanisms that set the observed velocity
distributions and more particularly, the biophysical origins of the
distances and timescales implied by the jump model. It will
likewise be of interest to determine how these properties vary
across cell types, lending insight into how cells tune the
molecular-scale dynamics of the cytoskeleton to fulfill different
biological functions.

Methods
Cell culture. HFF cells CCD-1070Sk (ATCC CRL-2091) were cultured in DMEM
high-glucose medium (Gibco, catalog no. 21063-029) in the absence of phenol
red and supplemented with 10% fetal bovine serum (Corning 35-011-CV),
sodium pyruvate (1 mM, Gibco 11360070), MEM nonessential amino acids (1×;
Gibco 11140050), and penicillin/streptomycin (100 U/ml; Gibco 15140122).
HFFs stably expressing eGFP-paxillin (fused at the C-terminus) were prepared
as previously described50. HUVEC cells (Lonza C2519A) were cultured in EGM-
2 basal medium (Lonza CC-3156) with the addition of EGM-2 MV Bullet Kit
(Lonza CC-4147), with the exception of gentamicin. Instead, penicillin-streptomycin
(Gibco 15140122) is added to a concentration of 100 U/ml. All cells were grown at
37 ∘C with 5% CO2.

Experimental setup and imaging. Halo-PEG coverslips were prepared as
previously33. Coverslips with coverwell chambers were functionalized with an
RGD-presenting protein force sensor, here without fluorescent dyes, as described
previously33. In brief, Halo-ligand functionalized coverslips were incubated at
room temperature for 30 min with 100 nM unlabeled RGD-presenting sensor,
which contains a HaloTag for attachment. The coverslip chambers were then
rinsed with PBS before cells were seeded and allowed to spread for at least 1 h.
After a 9 min incubation with 20–80 nM SiR-Actin (Cytoskeleton Inc., CY-SC001),
the sample was incubated with Prolong Live Antifade Reagent (Invitrogen P36975)
for 1 h. Optimal SiR-Actin concentration varied from batch to batch of the SiR-
Actin reagent, but was chosen such that stress fibers could be identified in early
frames, while still allowing for individual speckle tracking. For each cell, a 100 ms
exposure of the GFP-paxillin channel (for masking) was first acquired, followed by
a 60 frame sequence in the far red channel (SiR-Actin) with 300 ms exposures
taken every 2 s. During experiments, temperature was maintained using an
objective heater set to 37 °C, and the sample was stored at 37 °C before imaging.
For the experiment in Supplementary Fig. 9, the objective temperature was instead
set to 26 °C, and the sample was given time to cool from 37 °C before imaging. For
fixed cell data, cells were allowed to spread on functionalized coverslips and then
fixed in 4% paraformaldehyde for 15 min at room temperature. After rinsing, the
cells were treated with SiR-Actin and Prolong reagent as above.

Actin tracking analysis. Speckles and tracks were first identified using QFSM
software made available by the Danuser lab39. Next, the data were denoised using
noise2void51, and puncta previously identified by QFSM were fit to subpixel
positions by Gaussian fitting of the denoised images. A small sample of repre-
sentative tracks is shown in Supplementary Fig. 16. Any puncta which could not be
successfully fit to a Gaussian were discarded. Unsuccessful fitting was defined as a
fit center >2 pixels away from the original center position, or a fit standard
deviation that did not lie within a factor of 1.5 of 0.25λ/NA following denoising,
where λ, the wavelength of light was ~ 675 nm, and the NA of the objective was
1.49 (Supplementary Movie 2). Drift was calculated for each movie using the drift
estimation module of NanoJ52. The calculated drift values in x and y were then
subtracted from the positions of each point in the track before calculating frame-
to-frame displacements.

The total cell area was masked using a mean threshold of the GFP-paxillin image,
where cytoplasmic paxillin signal was used to segment the cell. After dilating and
eroding to fill small holes, the edge of this mask was smoothed by fitting to a cubic
spline curve. Adhesions were masked by an Otsu threshold of the same GFP-paxillin
image after background subtraction to remove the diffuse cytoplasmic signal. Actin
stress fibers were masked as the brightest 2% of pixels of a time-series projection of
the actin tracks. Finally, the cytosol was taken as regions within the cell mask which
are excluded from both the actin mask and the paxillin mask. Tracks were sorted into
subcellular populations according to the location of the first point of the track.

To derive an empirical estimate of the localization error, we acquired SiR-actin
tracks in paraformaldehyde fixed cells exactly as described above and used the
displacements of these tracks to determine the measurement noise. The displacements
of these fixed cell tracks were fit to a mixture of two noncentral χ distributions
(described in Supplementary Note 1) with s= 0 by MLE. For each day’s experiments, a
corresponding fixed cell dataset was collected, tracked, and fitted, though variation in
fixed cell samples across datasets was low. (Standard errors of the means (SEMs) across
11 fixed cell datasets for the two fit sigma values were 1.2 and 1.3 nm, while SEM for
the fractional weighting of the mixture was 0.03.)

Model fitting. Frame-to-frame displacements were calculated for varying frame
intervals, from 1 frame (2 s) to 20 frames (40 s). The displacement distribution for
each interval was first fit by least-squares to quickly estimate the best fit parameters,
and these parameters were used to seed the MLE fit to equation (1), which was
numerically integrated as described in Supplementary Note 2. The resulting dis-
tributions were rescaled by the time interval to give velocity distributions. The error
bars on fit parameters represent 95% confidence intervals on the parameters from
normal approximation. In short, these ranges were calculated from a normal dis-
tribution with means given by the best fit parameters and variances given by the
diagonal elements of the asymptotic covariance matrix estimated by MATLAB
function mlecov. Mean fit parameters over multiple experimental replicates are
presented in Figs. 3c and 4f, with error bars propagated from the ranges on
parameters from individual experiments.

For the 1D position jump model with reversals, we used Monte Carlo
simulations to iteratively fit the data. First, 10,000 particles were simulated using a
Gillespie algorithm for at least 40 s. Each particle waits an exponentially distributed
time, and then moves an exponentially distributed distance. There was a constant
probability at each step of reversing direction from the previous step. The location
of each particle at various observation times (0, 2, 4, ..., 38, and 40 s) was then
determined, and Gaussian noise was added to the x and y position of each
localization, according to the parameters from the fixed cell fits. For example, for
fixed cell fit parameters of f1= 0.6, σ1= 25 nm, and σ2= 50 nm, the noise was
sampled from a Gaussian distribution with σ= 25 nm with 60% probability and
from a Gaussian with σ= 50 nm with 40% probability.

Displacement distributions were then calculated for twenty timescales (2, 4,
..., 38, and 40 s) from the simulated particles. Within each estimated pdf, bins
with zero counts were set to 1/(N ⋅ w), where N is the number of particles in the
distribution and w= 30 nm is the width of the bin; this prevents infinite
likelihoods but overestimates rare events, as it represents an approximate upper
bound on the expected value of that bin. To calculate likelihoods for our
experimentally measured displacements, probability densities were linearly
interpolated from the two closest points. To keep computational times
reasonable, we calculated likelihoods from a randomly sampled subset of our
data: for each of the twenty timescales, if there were more than 1000
displacements measured, a random sample of 1000 were chosen, resulting
in ~20,000 observations included in the fit sample. Negative log likelihoods were
minimized using MATLAB’s genetic algorithm global optimization function.
Due to the rough nature of the fit landscape (in part due to the stochasticity of
the simulations), ten optimizations were completed for each dataset and the best
fit (highest likelihood) was chosen for each. For each population, best fit
parameters from different experimental replicates were averaged and the
standard error of the mean on each parameter is presented (Fig. 4g).

The resulting velocity distributions from each fit parameter were generated using
similar simulations, but without the addition of Gaussian noise to each localization.
The discrete probability of zero displacement was calculated analytically as P(s= 0)= e
−μτ, where μ is the average jump rate and τ is the observation timescale. For values > 0,
probability distributions were calculated numerically from simulations with 100,000
particles.
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For the drug perturbations presented in Supplementary Fig. 10, 95% confidence
intervals were estimated using the profile likelihood method as described in ref. 53.
In short, each parameter was systematically varied in turn above and below its best
fit value. At each sampled value, the other two parameters were again optimized
using MATLAB’s genetic algorithm, and the log-likelihood of this optimized set of
parameters was recorded. These log-likelihood values were then fit to a parabola as
a function of the varied parameter with its minimum fixed at the log-likelihood of
the best fit parameter. The 95% confidence intervals were then estimated by the
domain over which the parabolic fit to the log10-likelihoods rises by 0.8338 from
the minimum.

As an additional test of the robustness of our measurement, we measured
the effects of photobleaching and speckle density (Supplementary Fig. 12),
variations in speckle brightness (Supplementary Fig. 13), spatial variation within
the cell (Supplementary Fig. 14), and track lifetime (Supplementary Fig. 15 and
Supplementary Table 2) on our measurements. While changes in some of these
factors, in particular those which are correlated with localization error, caused
shifts in the best-fit parameters, these changes were minimal, and trends in the
data were preserved (Supplementary Note 5).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The microscopy data and corresponding tracked puncta generated in this study have
been deposited in the Zenodo database under https://doi.org/10.5281/zenodo.660964154.
Source data for all graphs in both main text and supplementary figures are provided in

the Source Data file. Source data are provided with this paper.

Code availability
Sample code used to generate the results of this study has been deposited in the Zenodo
database under https://doi.org/10.5281/zenodo.660973155.
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