

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data supporting the co-expression of *PDHA1* gene and of its paralogue *PDHA2* in somatic cells of a family

Ana Pinheiro^{a,1}, Maria João Silva^{a,b,1}, Hana Pavlu-Pereira^a, Cristina Florindo^a, Madalena Barroso^a, Bárbara Marques^c, Hildeberto Correia^c, Anabela Oliveira^d, Ana Gaspar^e, Isabel Tavares de Almeida^{a,b}, Isabel Rivera^{a,b,*,1}

^a Metabolism & Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal

^b Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Portugal

^c Department of Human Genetics - Molecular Cytogenetic Unit National Institute of Health Doctor Ricardo

Jorge, I.P., Lisboa, Portugal

^d Department of Medicine, Hospital Santa Maria, Lisboa, Portugal

^e Department of Pediatrics, Hospital Santa Maria, Lisboa, Portugal

ARTICLE INFO

Article history: Received 21 June 2016 Received in revised form 4 August 2016 Accepted 13 August 2016 Available online 20 August 2016

Keywords: Pyruvate dehydrogenase Complex gene expression Testis-specific gene

ABSTRACT

This article presents a dataset proving the simultaneous presence of a 5'UTR-truncated *PDHA1* mRNA and a full-length *PDHA2* mRNA in the somatic cells of a PDC-deficient female patient and all members of her immediate family (parents and brother).

We have designed a large set of primer pairs in order to perform detailed RT-PCR assays allowing the clear identification of both *PDHA1* and *PDHA2* mRNA species in somatic cells. In addition, two different experimental approaches were used to elucidate the copy number of *PDHA1* gene in the patient and her mother.

The interpretation and discussion of these data, along with further extensive experiments concerning the origin of this altered gene expression and its potential therapeutic consequences, can be found in "Complex genetic findings in a female patient with pyruvate dehydrogenase complex deficiency: null mutations in the *PDHX* gene associated with unusual expression

DOI of original article: http://dx.doi.org/10.1016/j.gene.2016.06.041

http://dx.doi.org/10.1016/j.dib.2016.08.029

2352-3409/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author at: Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade deLisboa, Portugal.

E-mail address: iarivera@ff.ulisboa.pt (I. Rivera).

¹ Both authors contributed equally to this work.

of the testis-specific *PDHA2* gene in her somatic cells" (A. Pinheiro, M.J. Silva, C. Florindo, et al., 2016) [1]. © 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific sub- ject area	Molecular Genetics
Type of data	Tables, figures
How data was acquired	Agarose gel electrophoresis after RT-PCR analyses quantitative real time PCR, microarray analyses, in silico analyses (BLAST software)
Data format	Raw, analyzed
Experimental factors	Genomic DNA and total RNA isolated from whole blood samples and fibroblast cultures
Experimental features	Genomic DNA was amplified by quantitative real time PCR and microarray analyses. Total RNA was reverse transcribed and amplified by semi-quantitative RT-PCR and by quantitative real time PCR using TaqMan assays. Alignment of sequences was performed using the BLAST software.
Data source location	Lisboa, Portugal
Data accessibility	Data provided within the manuscript and available in public databases (NCBI) in case of sequence alignment: GenBank accession numbers GenBank: NM_000284.3 (PDHA1) and GenBank: NM_005390.4 (PDHA2)

Value of the data

- These data, reporting on *PDHA2* gene expression in somatic cells, may trigger new research related to the activation of a paralogue gene as a therapeutic target to loss-of-function mutations.
- Data revealing the co-existence of both *PDHA1* and *PDHA2* mRNAs in somatic cells will be useful for future experiments addressing the impact between both isoforms in the assembly of a fully functional PDC.
- Data concerning gene copy number may assist the choice of the underlying methodology.
- These dataset may contribute for designing further experiments aiming the development of alternative therapies for metabolic disorders.

1. Data

The E1 rate-limiting enzyme of pyruvate dehydrogenase complex (PDC) is a heterotetramer ($\alpha_2\beta_2$) and its α subunit is encoded by *PDHA1* gene, located in X chromosome and presenting ubiquitous expression in somatic tissues. Nevertheless a paralogue gene exists, *PDHA2*, which is located in chromosome 4 and expressed only in spermatocytes and spermatids [2].

Table 1 shows the primers used for the amplification of the analyzed genes, according to the used methodology. Fig. 1 presents the results of *PDHA1* and *PDHA2* gene expression in somatic cells of the individuals under study and in controls. Fig. 2 displays the alignment of *PDHA1* and *PDHA2* mRNAs

Table 1					
List of pri	mers	used	in	this	study.

Primer	Sequence	Position
cDNA amplification		
PDHA1 messenger		
PDHA1-F	5'-AGCATCCCGTAATTTTGC-3'	+75 to +92
PDHA1-R	5'-CTTTAGTTCTTCCACACTGG-3'	+989 to +1008
PDHA1-5'-F	5'-GGGCACCTGAAGGAGACTT-3'	-85 to -66
PDS1	5'-TGTGAGGAGTCGCCGCTGCC-3'	−37 to −18
PDSTr-F	5'-GCCACTGCCTGTGCTTCAT-3'	-17 to $+2$
PDSTr-R	5′ – ACTCCATTCGGCGTACAGTCT – 3′	+207 to +226
PDHA2 messenger		
PDHA2-F	5'-TGCCATCTACAGCACTCCGT-3'	-27 to -8
PDHA2-R	5'-CCTCCTTGAGTTGAGAACAC-3'	+1235 to +1254
PDHX messenger		
PXF2	5'-CTGCTGCGTTATCTTGTGGGCT-3'	+37 to +58
PXW2	5'-TGAGTGAATGTGCCCACTGCATTG-3'	+812 to +835
PXP2	5'-CAATGCAGTGGGCACATTCACTGA-3'	+812 to +835
PXR2	5'-TAACAACTACTGAATCAACTAAGC-3'	+2060 to +2083
Genomic DNA amplif	ication	
PDHA1 gene		1000 - 1100
PDHAI-PI-F	5' - CCCTTGTTGCTTGGTGTGTGTGTGTG	4383 to 4403
PDHAI-PI-K	5' -AGATIGUTUTGUTGAUTAUG-3'	4/62 to 4/84
PDHAI-P2-F	5'-IGAGCAIGCIGCIAAICIICA-3'	4642 to 4682
PDHAI-P2-K	5'-CGGCGIGACAGAGICGIAAI-3'	5114 to 5133
PDHAI-P3-F		4900 10 2983
PDHAI-P3-K		4323 10 4340
PDHAI-P4-F	5' - IGCIICAIGAGGAAGAIGCI-3'	5140 to 5159
PDHAI-P4-K	3 -AGGGIGCIGIIIGAACGAAG-3	5526 10 5645
PDHA2 gene		0.44
PDHA2-A-F	5'-GAGTAAGGAAAAGTGGAATGTCA-3'	-841 to -819
PDHA2-A-K	5' - AICCIGCICCAIAAIGIGCC-3'	-200 to -181
PDHA2-B-F	5'-GULAILAGGAIAAAIGIGGU-3'	-65/t0 - 638
PDHA2-B-K		-322 10 -303
PDHA2-C-F		-415 10 - 393
PDHA2-C-K	5' -AUGGAGIGUIGIAGAIGGUA-3'	-2/10 - 8
	5' - CAGGACCIGCTCIAICACC - 3'	-142 10 + 123
		+244 to +203
		+212 10 +231
	J -CETCETTGAGTTGAGAACAC-3	+ 1290 10+1317
PDHX gene		5414 to 5422
		+3414 10 + 3433
PAIK	5 - AAGCAGGCCCTCAATCATAA = 3	+5/51 10 + 5/70
DYDR	5-1000AAICIIIIA0AUIII00A-3 5/_TCCTC&&CCC&C&AAACCTT 3/	+20,144 to $+20,105$
DY2E	5-10C10AACCCAGAAAACC11-3 5/_CAACCCACAAATACCTACCCA_3/	+20,331 t0 + 20,330
PX3R	5 - CAMACCONGRANATAGE INCOGR-3 5/ _ CAMATTA A A A ATA ACC ACCCA A A A _ 2/	+30,235 to $+30,275\pm 36557 to \pm 36581$
PX4F	5^{-} CACTCATCCCCTTTTACTT_2/	± 46205 to ± 46225
PX4R	5' = ACACCAACTTCCTACCTCATC=2'	± 46549 to ± 46570
PX5F	5' -CTCACCATCTCTCCCACTCA-2'	+40,545 to +40,570 +49,159 to +40,570
PX5R	5'-TTATTCAGAAAACAACTCTTCCAT_3'	± 49549 to ± 49573
PX6F	5'-TCACCTGCGTTTTCTCAAAGT-3'	+55435 to + 55456
PX6R	5'-CTCACCCAACATTCTCCCCAT_3'	\pm 55 779 to \pm 55 708
PX7F	5'_TTCCACTTGTGGTTTAACCCA_3'	$\pm 58,968$ to $\pm 58,988$
PX7R	5'-TTTCCTCTACCACAAATATACCCA-3'	+59,300 to $+59,300$
PX8F	$5' - ACAAGTTTCAAGTTCTAATCCTCA_3'$	± 66918 to ± 66941
PX8P	5'_CACCCACATCAAACCATACCA_3'	± 67178 to ± 67198
PXQF	5'-TTTTTCTCTAACCCCTTCC- $3'$	\pm 73 376 to \pm 73 395
PXQR		\pm 73 700 to \pm 73 719
		T 13,100 to T 13,113

Table 1	(continued)
---------	------------	---

Primer	Sequence	Position
PX10F	5′-GGTAACAAAATCAAATCAAGGCA-3′	+81,064 to +81,085
PX10R	5'-TTCAGATAAATGAAAGGCTGACA-3'	+81,315 to +81,337
PX11F	5'-ACGGAAAGGGGACTTTGATT-3'	+83,725 to +83,744
PX11R	5'-TTGAGGACTAGGCAAGTCGG-3'	+84,031 to +84,050
PDHA2 gene methylation	analysis	
CpGI-M-F	5'-ATAAATTAGTTAGTTTAGGTTGCGT-3'	-188 to -164
CpGI-M-R	5'-ATAACGTCATTTAAAAAATTACGAA-3'	+74 to +98
CpGI-U-F	5'-ATAAATTAGTTAGTTTAGGTTGTGT-3'	-188 to -64
CpGI-U-R	5'-ATAACATCATTTAAAAAATTACAAA-3'	+74 to +98
CpGII-F	5'-TGGAATTGAAGGTAGATTAGTTGTATAAAT-3'	+205 to+234
CpGII-R	5'-ATACCATTACCCCCATAAAAATTCT-3'	+406 to +431
Gene dosage analysis		
PDHA1 gene		
PDHA1-exon7F	5'-AGGAGGCCTTTCTGTGCTTT-3'	11,341 to 11,359
PDHA1-exon7R	5'-CGGCCCCACCACAGGGTTCCT-3'	11,616 to 11,636
PAH gene		
PAH-exon1F	5'-GCTTTACTGTGCGGAGATCACCAC-3'	5315 to 5339
PAH-exon1R	5'-CTTATGAAACCAGGAAGCAC-3'	5606 to 5625

showing that the specific primers were designed to anneal to regions with null or very low homology between the two genes, thus proving the simultaneous presence of both transcripts. Fig. 3 depicts the scheme of *PDHA1* mRNA with the localization of all the primers used to prove the presence of the 5'UTR truncated *PDHA1* mRNA detected in the family samples, and to localize the truncation point. Table 2 and Fig. 4 show the results of the two different methodologies used to evaluate *PDHA1* gene copy number: quantitative real time PCR (Table 2) and microarray analyses (Fig. 4).

2. Experimental design, materials and methods

2.1. Sample preparation

Lymphocytes were isolated from three independent peripheral blood samples obtained from the index case and her parents and brother, as well as from control individuals.

Patient's fibroblast cultures were established from a diagnostic skin biopsy and grown under standard conditions.

Positive controls for *PDHA2* gene expression were obtained from two different sources; a commercially available human testis total RNA sample (Clontech Laboratories Inc., Mountain View, CA, USA) and human testis specimens from eight cases requiring open testicular biopsy for the retrieval of testicular sperm for intracytoplasmic sperm injection [3].

2.2. Nucleic acids preparation

Genomic DNA, total RNA and cDNA were prepared according to standard methods and described in [1].

Fig. 1. RT-PCR analyses of PDH E1 α transcripts. (a) Using *PDHA1* and *PDH2* specific primers. PL - patient lymphocytes; PF - patient fibroblasts; T - whole testis tissue; C1 and C2 - control lymphocytes; B1 without PCR control using whole testis total RNA; B2 - PCR control using no biological sample. M - 100 Base Pair Ladder (New England Biolabs). (b) Using forward *PDS1* primer and reverse *PDHA1* specific primer. PL - patient lymphocytes; PF - patient fibroblasts; C - control lymphocytes; B2 - PCR control using no biological sample. M - 100 Base Pair Ladder (New England Biolabs).

2.3. PCR of genomic DNA and cDNA

Amplification of the 11 individual exons of the *PDHA1* gene and related intron–exon boundaries were amplified using primers already published [4]. *PDHA1* and *PDHA2* cDNAs were amplified under conditions previously described [5] and using primers listed in Table 1, which were designed to annealing to regions displaying no homology between transcripts [6].

2.4. Evaluation of PDHA1 and PDHA2 expression and PDHA1 gene dosage

PDHA1 and *PDHA2* transcriptional levels were evaluated by quantitative real time RT-PCR under conditions previously described [1].

The copy number of *PDHA1* gene was evaluated by two methods, quantitative real time PCR and microarray analysis, as previously described [1].

PDHA1	-145	AGCGCATGACGTTATTACGACTCTGTCACGCCGCGGTGCGACTGAGGCGTGGCGTCTGCT	-86
PDHA2	-63	AGAGCAGC	-55
PDHA1	-85	PDHA1-5' PDS1 GGGGCACCTGAAGGAGACTTGGGGGGCACCCGCGTCGTGCCTCCTGGGTTGTGAGGAGACTCG	-26
PDHA2	-54	 CTTCCGGCGGTCGTTACGGGACG	-32
PDHA1	1 -25	PDSTr-F +1 M R K M L A A V S R CCGCTGCCGCC-ACTGCCTGGCTTCATGAGGAAGATGCTCGCCGCCGCCTCTCCCGCG	31
PDHA2	-31	CCCCTCCCATCTACAGCACTCCCGTGAAGAATATGCTGGCCGCCTTCATCTCCCGCG	25
	11	PDHA2-F +1 PDHA1-F V L S G A S Q K P A S R V L V A S R N F	
PDHA1	32	TGCTGTCTGGCGCTTCTCAGAAGCCGGCAAGCAGAGTGCTGGTAGCATCCCGTAATTTTG	91
PDHA2	26	TGTTGAGGCGAGTTGCCCAGAAATCAGCTCGCAGAGTGCTGGTGGCATCCCGTAACTCCT	85
PDHA1	31 92	A N D A T F E I K K C D L H R L E E G P CAAATGATGCTACATTTGAAATTAAGAAATGTGACCTTCACCGGCTGGAAGAAGGCCCTC	151
PDHA2	86	CAAATGACGCTACATTTGAAATTAAGAAATGTGATCTTTATCTGTTGGAAGAGGGTCCCC	145
DDHA1	51	PVTTVLTREDGLKYYRMMQT	211
PDHA2	146	CTGTCACTACAGTGCTCACTAGGGCGGAGGGGCTTAAATACTACAGGATGATGCTGACTG	205
	71	PDSTr-R V R R M E L K A D Q L Y K Q K I I R G F	
PDHA1	212	TACGCCGAATGGAGTTGAAAGCAGATCAGCTGTATAAACAGAAAATTATTCGTGGTTTCT	271
PDHA2	206	TTCGCCGCATGGAATTGAAGGCAGATCAGCTGTACAAACAGAAATTCATTC	265
PDHA1	91 272	C H L C D G Q E A C C V G L E A G I N P GTCACTTGTGTGGTCGGCAGGAAGCTTGCTGTGTGGGCCTGGAGGCCGGCATCAACCCCA	331
PDHA2	266	GTCACCTGTGCGATGGTCAGGAAGCTTGTTGCGTGGGCCTTGAGGCCGGCATAAACCCCT	325
PDHA1	111 332	T D H L I T A Y R A H G F T F T R G L S CAGACCATCTCATCACAGCCTACCGGGGTCACGGCTT-TACTTTCACCCGGGGCCTTTCC	390
PDHA2	326	I I	384
DDUAL	131	V R E I L A E L T G R K G G C A K G K G	45.0
PDHAI	391		450
I DIII L	151	G S M H M Y A K N F Y G G N G T V G A O	
PDHA1	451	GGATCGATGCACATGTATGCCAAGAACTTCTACGGGGGCAATGGCATCGTGGGAGCGCÅG	510
PDHA2	445	GGATCGATGCATATGTATACCAAGAACTTCTATGGGGGGCAATGGCATCGTCGGTGCACAG	504
PDHA1	171 511	V P L G A G I A L A C K Y N G K D E V C GTGCCCCTGGGCGCTGGGATTGCTCTAGCCTGTAAGTATAATGGAAAAGATGAGGTCTGC	570
PDHA2	505	GGCCCCTGGGCGCTGGCATTGCTCTGGCCTGTAAATATAAAGGAAACGATGAGATCTGT	564
1 הנותם	191	L T L Y G D G A A N Q G Q I F E A Y N M	620
PDHAI	565		624
- 171172	211	A A L W K L P C I F I C E N N R Y G M G	024
PDHA1	631	GCAGCTTTGTGGAAATTACCTTGTATTTTCATCTGTGAGAATAATCGCTATGGAATGGA	690
PDHA2	625	GCAGCTTTATGGAAATTACCTTGTGTTTTCATCTGTGAGAATAACCTATATGGAATGGGA	684
PDHA1	231 691	T S V E R A A A S T D Y Y K R G D F I P ACGTCTGTTGAGAGAGGGGGGGGGGGCAGCCAGCACTGATTACTACAAGAGAGGGGGGAGTTTCATTCCT	750
PDHA2	685	ACATCTACTGAGAGAGCAGCCAGCCCTGATTACTACAAGAGGGGGAATTTTATCCCT	744
DDUA	251	G L R V D G M D I L C V R E A T R F A A	0.7.0
PDHA1	/51		804
Γυπαζ	Fig. 2. Alignment	of PDHA1 and PDHA2 cDNA sequences and primers' localization	004
		r r r r r r r r r r r r r r r r r r r	

PDHA1	271 811	A Y C R S G K G P I L M E L Q T Y R Y H GCCTATTGTAGATCTGGGAAGGGGCCCATCCTGATGGAGCTGCAGACTTACCGTTACCAC	870
PDHA2	805	AACTACTGTAGATCTGGAAAGGGGGCCCATACTGATGGAGCTGCAAACCTACCGTTATCAT	864
PDHA1	291 871	G H S M S D P G V S Y R T R E E I Q E V GGACACAGTATGAGTGACCCTGGAGTCAGTACCGTACACGAGAAAATTCAGGAAGTA	930
PDHA2	865	GGACACAGTATGAGTGATCCTGGAGTCAGTTATCGTACACGAGAAGAAATTCAGGAAGTA	924
PDHA1	311 931	R S K S D P I M L L K D R M V N S N L A AGAGTAAGAGTGACCCTATTATGCTTCTCAAGGACGGGGGGGG	990
PDHA2	925	AGAAGTAAGAGGGATCCTATAATAATTCTCCAAGATAGAATGGTAAACAGCAAGCTCGCC PDHA1-R	984
PDHA1	331 991	S V E E L K E I D V E V R K E I E D A A AGTGTGGAAGAACTAAGGAAATTGATGTGGAAGGAGGAGGAGATGAGGAGGAG	1050
PDHA2	985	ACTGTGGAAGAATTAAAGGAAATTGGGGCTGAGGAGAAAGAA	1044
PDHA1	351 1051	Q F A T A D P E P P L E E L G Y H I Y S CAGTTTGCCACGGCCGATCCTGAGCCACCTTTGGAAGAGCTGGGCTACCACATCTACTCC	1110
PDHA2	1045	CAGTTTGCTACCACTGATCCTGAGCCACATTTGGAAGAATTAGGCCATCACATCTACAGC	1104
PDHA1	371 1111	S D P P F E V R G A N Q W I K F K S V S AGCAACCAACCTTTTGAAGTCGTGGTGCGATCAGTGATCAAGTTAAGTCAGTC	1170
PDHA2	1105	AGTGATTCATCTTTTGAAGTTCGTGGTGCAAATCCATGGATCAAGTTTAAGTCCGTCAGT	1164
PDHA1	1171	TAAGGGGAGGAGAAGGAGAGGGTTATACCTTCAGGGGGGCTACCAGACAGTGTTCTCAACTT	1230
PDHA2	1165	TAAAGGGAGGCTACCTAC	1178
PDHA1	1231	GGTTAAGGAGGAAGAAAACCCAGTCAATGAAATTCAATGAAATTCTTGGAAACTTCCATT	1290
PDHA2			
PDHA1	1291	AAGTGTGTAGATTGAGCAGGTAGTAATTGCATGCAGGTTTGTACATTAGTGCATTAAAAGA	1350
PDHA2	1179	GTGTGATT	1187
PDHA1	1351	TGAATTATTGAGTGCTTAAAGATTATTTTTGACTTAAAATAGTATACTTTGAACAAATAC	1410
PDHA2	1188	TAT	1190
PDHA1	1411	TCTAATTATGAAAAGGAAGAACAATTCCTTGTATGCCTGTTTCCCCTGCCCCAGCCACC	1470
PDHA2			
PDHA1	1471	TTTTTGGGAGGAGCCCATTATGGCGGGGCCCCTCACAGCATTCTACCAACCA	1530
PDHA2	1191	CATCAG	1196
PDHA1	1531	ACCCCGAGCAGCGCTGGTGCTGCAGCCTGTTCGCGCTGACCATTTCTCTACAAGATACAA	1590
PDHA2	1197	TCTCTCAA	1244
PDHA1	1591	TATTTATTATCAGGCAAGAGGACAGTTCCATTTTAAAATAAGACTTTTGTAATCATTCCA	1650
PDHA2	1205	TGGA	1208
PDHA1	1651	attttgtaatcatttcaaaggccacataacttagttttctctacttacattcagtata	1710
PDHA2			
PDHA1	1711	AATATGAAGCTATTTTCTGTTCATATCAAACATTAACTACAAGGCACATTCGTATCAGTT	1770
PDHA2	1209	ATGGG	1218
PDHA1	1771	TTGTGTTTCTCAAATTGAAGTACCATACCAGTTCTGAGGCAGTGTCCCAGCTTCCATGTT	1830
PDHA2	1219	TCAAATTTAAG	1229

Fig. 2. (continued)

PDHA1	1831	TGTTAAATACCCCTTGTTTGTTTCACCATTCCAGCAAGTGCTGAAGGGTGTACTTTTTT	1890
PDHA2	1230	AAACTG	1235
PDHA1	1891	GAGACAGGGTCGGGCTCGTTGCCCAGGCTGGAGTGCAGTGGTGTGATCATGGCTCACTG	1950
PDHA2	1236	CTCA	1243
PDHA1	1951	PDHAZ-R CAGCCTCCACACCTCCTGGGGCTCAAGCAATCCTCCCACCTCAGCCTCCTGCATAGCTGGG	2010
PDHA2	1244	ACTCAAG	1250
PDHA1	2011	ACTACAAGTGAATTTCCTAATATTCCGGGAGGTCAAAACCAAGGCTCACTGTTTTCACAA	2070
PDHA2	1251	GAGG	1254
PDHA1	2071	TACACACAGTTCTATGTTTATAAATAACAGGTTTCAAAAGAAACTCAGGACAGTATTTAA	2130
PDHA2	1255	AATAAAACTCATAA	1268
PDHA1	2131	AACAAGTTCTTAAACTATTAATTGAACAATGGCATTTTTAAATATGTAAACACAGCGGAA	2190
PDHA2	1269	AACAA	1273
PDHA1	2191	TTCGTGTATACACTAACAGAAGCTTTAACAAAACATGTAGCGTGGTGGGACACTCTGCCA	2250
PDHA2			
PDHA1	2251	CAGCTTAGCTGATTGGTATCAAGCCTTGTCTTTGGTTTCTGAGGCCTCCTGAGCCCTTCT	2310
PDHA2	1274	AAGCCTTGT	1282
PDHA1	2311	GTACTGGGAGACCGCACTCCAGAGTCTGCAGAGGAGACCACCCCTGGGAAACAAAC	2370
PDHA2			
PDHA1	2371	CTGTCTTCAGAGTCAGTGCTTCAAGCCCAACAGAGCCTTAAAACTGCAGTCCCTAATTTAAA	2430
PDHA2	1283	AAGCATTTA	1291
PDHA1	2431	AACCTAATGAAAAAAAAAAACATTCTCCTCACATATGGAGGTGACGCTCGTGTCCCAGCAG	2490
PDHA2			
PDHA1	2491	TAGTAGGACATGGCCTTAGAGGTACGTACCTGCAGAGAGCTGGCTATTTCAAATGACTCG	2550
PDHA2	1292	TTA	1294
PDHA1	2551	GGAACAAGAAGGCAGGCTGCAGTTTAAAGAAGGGGGGGGG	2610
PDHA2	1295	AAAGA	1299
PDHA1	2611	GCCATGTGCCTCCACCCACCCAGCCAGGCATTAATGGCAGGAGATTGGCCAGCTCTTC	2670
PDHA2	1300	GATT	1303
PDHA1	2671	${\tt TCTGTCACATTCCTATTTCTGACTTCTGCCTGGCTTTCAGTTTCTGCCCCACCTTGGCTT}$	2730
PDHA2			
PDHA1	2731	TTTCCCAGCTTGAACCTAATAGAACTCCAGAGTTTGGGGGGAGGCCCAGCCCTTTGTTTT	2790
PDHA2			
PDHA1	2791	$\tt CTGCTCTTGAAGCATATTCACACATAAAAAGTTGTATTCTCTTATACAAACTGTTTTGAG$	2850
PDHA2			
PDHA1	2851	GCTCTTACCGTAGTCGAAGGTATCTTAGATCTTCCTTAGTGATCTCATTAAGAATATCCG	2910
PDHA2	1304		1308
PDHA1	2911	AAAGTGTATAACCCTCTTCAACAATCTGAAACAAAGATCAGATCCTTAAGAGCTGAGCAG	2970
DDHA2	1300		1313
I MINE	1203	AAGAG	TOTO

Fig. 2. (continued)

PDHA1	2971	CTGTGTAACAACAGCATAAGAATTTCTTTGTTGTAA	ATTTACCTTTTCAATTGTCTTTGC	3030
PDHA2	1314		ATTG	1317
PDHA1	3031	ATCAGCTCCTTGCAGCCGCAACCAGTCTATAAGCTC	TTTATCTGTTCTCTGCCCGTAGGG	3090
PDHA2				
PDHA1	3091	GCCTGCTGGGTTCTCTGTAATACCTGTAACGATTGG	CAATTTGTTATATATTAGTCTAAC	3150
PDHA2				
PDHA1	3151	CATAAAACTCTTCAAAAGTAACCAGTTGGATTAATA	AATGATTCCAGAATGTAAATGTGA	3210
PDHA2				
PDHA1	3211	тдтдааааададатдааааааааааааааааааааааа	3245	
PDHA2	1318	AAGACA	1324	

Fig. 2. (continued)

PDHA1 cDNA

Fig. 3. Schematic representation of the *PDHA1* mRNA sequence showing the amplified *versus* non-amplified products in the RT-PCR analysis with the corresponding localization of the forward primers (PDHA1-5', PDS1, PDSTrF, PDHA1F) and reverse primers (PDHA1R and PDSTrR), as well as the identification of the predicted truncation point.

Table 2

Calculations for determining by qPCR the copy number of PDHA1 gene using as reference the autosomal PAH gene.

Sample	Ave ∆Ct	$\Delta\Delta Ct$	RQ $(2^{-\Delta\Delta Ct})$	Copy # $(2 \times RQ)$
Patient	0.26	0.91	0.5	1
Control Female 1	-0.65	0	1	2
Control Female 2	-0.33	0.32	0.8	2
Control Female 3	-0.59	0.06	0.9	2
Control Male 1	0.93	1.58	0.3	1
Control Male 2	-0.23	0.42	0.7	1
Control Male 3	-0.01	0.64	0.6	1

76

Fig. 4. Detailed view of the *PDHA1* region on chromosome X. (a) Allele difference and (b) copy number state showing absence of big deletions involving the gene. (c) OMIM genes: *PDHA1* (dark green horizontal bar) and *MAP3K15* (gray horizontal bar). Intron - horizontal pink lines; Exon - vertical pink bars. (d) Markers present in *PDHA1* region. Dark green - non-polymorphic probes; Light green - SNP, single nucleotide polymorphism. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Acknowledgments

This study was supported in part by grants from Fundação para a Ciência e a Tecnologia, Portugal (FCT),: SFRH/BD/31264/2006 awarded to Ana Pinheiro, POCI/SAU-MMO/57052/2004 awarded to Isabel Rivera, and PEst-OE/SAU/UI4013/2013.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2016.08.029.

References

- A. Pinheiro, M.J. Silva, C. Florindo, et al., Complex genetic findings in a female patient with pyruvate dehydrogenase complex deficiency: null mutations in PDHX gene associated with unusual expression of the testis-specific PDHA2 gene in her somatic cells, Gene (2016), Jun 22 [Epub ahead of print].
- [2] M.S. Patel, N.S. Nemeria, W. Furey, F. Jordan, The pyruvate dehydrogenase complexes: structure-based function and regulation, J. Biol. Chem. 289 (2014) 16615–16623.
- [3] A. Pinheiro, I. Faustino, M.J. Silva, et al., Human testis-specific PDHA2 gene: methylation status of a CpG island in the open reading frame correlates with transcriptional activity, Mol. Genet. Metab. 99 (2010) 425–430.
- [4] M.J. Silva, A. Pinheiro, F. Eusébio, A. Gaspar, I. Tavares de Almeida, I. Rivera, Pyruvate dehydrogenase deficiency: identification of a novel mutation in PDHA1 gene which responds to amino acid supplementation, Eur. J. Pediatr. 168 (2009) 17–22.
- [5] W. Lissens, L. De Meirleir, S. Seneca, et al., Mutation analysis of the pyruvate dehydrogenase E1α gene in eight patients with a pyruvate dehydrogenase complex deficiency, Hum. Mutat. 7 (1996) 46–51.
- [6] H.-H.M. Dahl, R.M. Brown, W.M. Hutchison, C. Maragos, G.K. Brown GK, A testis- specific form of the human pyruvate dehydrogenase E1α subunit is coded for by an intronless gene on chromosome 4, Genomics 8 (1990) 225–232.