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Sciences, Tehran, Iran

With the onset of the COVID-19 pandemic, quantifying the condition of

positively diagnosed patients is of paramount importance. Chest CT scans can

be used to measure the severity of a lung infection and the isolate involvement

sites in order to increase awareness of a patient’s disease progression. In this

work, we developed a deep learning framework for lung infection severity

prediction. To this end, we collected a dataset of 232 chest CT scans and

involved two public datasets with an additional 59 scans for our model’s

training and used two external test sets with 21 scans for evaluation. On

an input chest Computer Tomography (CT) scan, our framework, in parallel,

performs a lung lobe segmentation utilizing a pre-trained model and infection

segmentation using three distinct trained SE-ResNet18 based U-Net models,

one for each of the axial, coronal, and sagittal views. By having the lobe and

infection segmentation masks, we calculate the infection severity percentage

in each lobe and classify that percentage into 6 categories of infection severity

score using a k-nearest neighbors (k-NN) model. The lobe segmentation

model achieved a Dice Similarity Score (DSC) in the range of [0.918, 0.981]

for di�erent lung lobes and our infection segmentation models gained DSC

scores of 0.7254 and 0.7105 on our two test sets, respectfully. Similarly, two

resident radiologists were assigned the same infection segmentation tasks, for

which they obtained a DSC score of 0.7281 and 0.6693 on the two test sets. At

last, performance on infection severity score over the entire test datasets was

calculated, for which the framework’s resulted in a Mean Absolute Error (MAE)

of 0.505 ± 0.029, while the resident radiologists’ was 0.571 ± 0.039.
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COVID-19, deep learning, infection segmentation, lobe segmentation, CT scan,
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1. Introduction

Coronavirus 2019, or COVID-19, is a pandemic infectious

disease that was reported in December 2019 from Wuhan,

China, following an outbreak of the acute respiratory syndrome

virus SARS-CoV-2 (1–4). Common symptoms include fever,

cough, shortness of breath, and lethargy. Muscle pain, sputum

production, sore throat, nausea, and red eyes are some of the

less common symptoms (5, 6).

Reverse Transcription Polymerase Chain Reaction

(RT-PCR) test is considered the de facto standard for

diagnosing COVID-19 (7). However, lack of resources and

strict environmental requirements limit the rapid and effective

testing and screening of suspects. Moreover, RT-PCR has been

reported having a high false-negative rate and a low sensitivity

(8, 9).

Artificial Intelligence (AI) has risen its position in helping

solve healthcare challenges in recent years. By involving a

large amount of data, using advanced deep learning algorithms,

and utilizing modern GPUs, exemplary achievements have

been made in the fields of image classification and image

segmentation (10–12). AI algorithms have demonstrated equal

if not higher performance in medical image diagnosis in recent

years while being fast and utilizable in pandemic situations. For

example, Qin et al. (13), Ardila et al. (14), Nash et al. (15), Liao

et al. (16), Mei et al. (17), Zhu et al. (18), and Xie et al. (19) have

introduced algorithms with very successful and reproducible

performance levels on pulmonary diseases such as tuberculosis

and lung nodules and for lung cancer screening. With enough

hardware resources, these algorithms could perform on a very

large scale.

Machine learning and deep learning models have directly

challenged the Coronavirus and have been successful in

diagnosing the virus with high accuracy and reducingmanpower

efforts (20–22). Several deep learning models have been

developed to diagnose COVID-19 from chest X-Ray or CT scans

(17, 23–25). Furthermore, the fields of machine learning and

data science have also been used effectively to diagnose and

prognoses the virus and predict its outbreaks (26–28). Finally,

it has been shown that a model serving as an assistant to the

radiologists is successful in diagnosing the virus and in addition

to increasing the expert’s sensitivity, is also effective in increasing

their specificity (9).

One of the applications of deep learning in computer vision,

and in particular medical imaging, is segmentation, in which

trained models automatically separate parts of the image (29–

31). Several pieces of researches have been conducted in the

field of infection segmentation and measuring the volume of

infection for COVID-19 (32–35).

Pulmonary lobe segmentation has proven to be an important

task as knowing the location and distribution of pulmonary

diseases such as emphysema and nodule can be integral in

determining the most suitable treatment. To this end, models

for lobe segmentation have also been developed (36–39).

As an example, Hofmanninger et al. (40) has introduced a

well-performing lobe segmentation model trained on patients

diagnosed with COVID-19.

Measuring the severity of a lung infection in patients with

COVID-19 is a very challenging task and is an important

prognosis for a patient’s treatment process. Several diagnosis

methods, some specifically designed to assess the severity of

the disease, have been proposed based on the observation

that the imaging biomarkers in patients with COVID-19

such as Ground-Glass Opacity (GGO) and infection-associated

thickening of the interlobular septa are similar (41–44).

Additionally, several similar works have tried to predict the

severity of lung infection with the help of neural networks and

machine learning models (42, 45–47).

In this work, we propose a framework for accurate lung

lobe infection severity prediction. We do so by collecting and

labeling 253 chest CT-scan from three hospitals, involving 59

labeled external scans from public datasets, and with the help of

several deep learning andmachine learningmodels.We perform

lobe and infection segmentation to predict lung lobes’ infection

severity percentage and classify that percentage into an infection

severity score as the framework’s final output.

In short, the main advantages and novelties of our work are

as follows:

• In contrast to previous works, we isolate and predict the

infection severity within each lung lobe.

• Our research involves three datasets collected internally, as

well as two additional public datasets for more verity and

range.

• The data involved was labeled for lobe segmentation,

infection segmentation, and infection severity. In addition,

our test sets were labeled with more precision and accuracy.

• Separate distinct deep learning models were trained for

the lobe and infection segmentation tasks and a machine

learning model was trained for predicting the infection

severity score.

• For a more thorough evaluation, our train and test data are

from different hospitals.

• Our framework’s performance was comprehensively

compared with the performance of resident radiologists,

for which our framework outperformed.

• In a post-COVID world, this framework is usable and

extendable to other pneumonia infections.

The rest of this paper is structured as follows; In the

second section, we explain the data involved and the used

methods for this research in detail. In the third section, we

outline our model’s results for lobe segmentation and infection

segmentation and present the framework’s performance in
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infection severity prediction, in addition to comparing our

performance result’s with that of human experts. Finally, in the

last section, we conclude with a discussion on the results, our

work’s limitations and challenges, and possible future directions.

2. Data and method

In this paper, we first adopt a deep learning model to detect

the lobes. Next, by utilizing the subset of the data with an

infection mask label to train an infection segmentation model,

we finally combine the results with a k-Nearest Neighbors (k-

NN) model to reach a final infection severity prediction.

In this section, we start by describing the different datasets

involved and an overview of the distinct used pre-processes

in Section 2.1. In Sections 2.3, 2.4, we discuss the adopted

deep learning models and infection severity prediction methods

in each lobe, respectively. Section 2.5 discloses our evaluation

methods and criteria. Finally, we conclude the section with

an explanation for our methods of evaluating radiologists and

residents in Section 2.6.

2.1. Datasets

Three datasets for training and two datasets for evaluation

were involved in this work. A 232-case cohort was collected from

the Ghiassi Hospital database and the MosMedData (48, 49)

datasets that are available publicly. Two smaller sets of External

Test 1 and External Test 2 from Kasra Hospital and Imam

Hossein Hospital, respectively, were involved in the model’s

final evaluation. All three aforementioned centers are located in

Tehran, Iran. A complete taxonomy of the data can be found

in Table 1.

Three distinct scan labels are included in this work. The first

is for infection segmentation and was extracted from 81 subjects.

The second is for lobe segmentation which is extracted from a

chest CT scan (masked with 5 colors; outside of the lung masked

with black) in order to isolate each lobe; and the third is for lobe

infection severity which we explain next.

According to the systematic report standard found on

the Radiologyassistant (50) website, each severity percentage is

categorized from 0 to 5. This can be found in Table 2. Radiology

experts, relying on their experience and expertise in interpreting

chest CT scans and their knowledge of the cross-sectional

anatomy of different areas of the lung, have performed the

lung lobe divisions and visually estimated the infection-resulted

severity, which were present in a myriad of forms notably GGO

and consolidation, in each lobe lattice with percentage and

standard systematic report.

In this research, 2 radiology residents generated systematic

reports for all the scans in the study by referring to Table 2.

Moreover, the External Test sets 1 and 2 scans that were

labeled by two radiology residents were rectified by two senior

radiologists each with more than 10 years of experience.

Lobe segmentation was performed semi-supervised by

inputting the DICOM of scans into the 3D Slicer software.

Within the Interactive Lobe Segmentation section, the Chest

Imaging Platform (CIP) module is used to generate the Label

Map Volume, in complement with a Fisser Volume file, for

the selected scans. A Gaussian filter is applied to enhance

the lobe segmentation performance. Other parameters, such as

dimensions are chosen by an expert.

By marking several points on the generated Fissers in

different scan views, especially sagittal, all five lobes are

segmented and distinctly colored. The resulting export is then

evaluated for authenticity by two radiology experts and if

needed, is rectified by a skilled technician (rectification follows

the standard procedure).

The Ghiassi Hospital cohort scans were taken using a

TOSHIBA 16 CT scan machine. Each scan was taken with

a low-dose setting and has a slice thickness of 2 mm. The

232-case cohort overall includes 30,157 axial view slices,

containing 60 scans with infection segmentation and 54 with

lobe segmentation labels. The entire cohort is labeled with lobe

infection severity labels. The age and sex distribution of cohort

subjects can be found in Supplementary Figure S1.

As lobe segmentation and infection labeling is a time-

consuming process, it was performed restrictively and to

necessity by two resident radiologists. The resulting set was

involved in the training and validation of the machine learning

model. Two additional sets, External Test 1 and External Test 2

were collected for final evaluation. The External Test 1 includes

11 scans from patients from Kasra Hospital, Tehran, Iran,

captured on a General Electric (GE) CT scan machine with

120 KV and 130 MA parameters and 7 mm slice thickness,

totaling 481 2D slices. The External Test 2 contains 10 scans from

patients from Imam Hossein Hospital, Tehran, Iran, captured

with a low-dose setting and 2 mm slice thickness. The obtained

scans were in an axial view, each unprocessed slice in all the

datasets was 512 × 512, and each pixel had a dimension of

0.76 × 0.76mm. Labeling for the two test sets was performed

manually by two resident radiologists and subsequently revised

by two expert senior radiologists.

Detailed information on the two public datasets involved

in this research, MosMedData and Medical_Seg, are brought

in Morozov et al. (48) and Jenssen (49). From the overall

combination of these two sets, 80% was used for training and

20% for the validation of the framework.

Charts on the number of normal and infected slices,

distribution of infection severity in scan slices, and sample count

in each 6 class for different degrees of infection separated by lobe

and for the training, validation, and test sets are described in

Supplementary Figures S1–S7.

All collected data from hospitals in this research has

been anonymized, official permissions have been obtained
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TABLE 1 Involved datasets with their respective label count.

Dataset Scans
Scans with

Inf-Seg Label

Scans with

Lobe-Seg Label

Scans with

Lobe-Inf severity label
Slice thickness

Train and

validation

Our dataset
232

(30157)

60

(8428)

54

(7014)

232

(30157)
2 mm

MosMedData
50

(2049)

50

(2049)
- - 8 mm

Medical_Seg
9

(829)

9

(829)
- - 1-6 mm

Test
External Test 1

11

(481)

11

(481)

11

(481)

11

(481)
8 mm

External Test 2
10

(1443)

10

(1443)

10

(1443)

10

(1443)
2 mm

Each set possibly includes a limited count of infection segmentation, lobe segmentation, or lobe infection severity labels.

TABLE 2 Lobe infection severity percentage categorized by the number of points.

# Points Present in the Infection 0 1 2 3 4 5

Infection severity percentage 0% <5% 5–25% 25–50% 50–75% 75–100%

from the relevant department heads or supervisors, written

consents were taken from all the participating patients, and

the ethical license of IR.SBMU.NRITLD.REC.1399.024 was

obtained from the Iranian National Committee for Ethics in

Biomedical Research.

2.2. Data pre-processing

In this section, we describe the used pre-processes in

detail; starting with the image pre-processing for infection

segmentation models and following with the mask pre-

processing for infection segmentation model outputs.

2.2.1. Image pre-processing for infection
segmentation models

In this pre-processing, first, a 3D resizing on the coronal,

axial, and sagittal views is applied using the zoom function (51)

with regards to the 2D cross-sections. For the 2D slices, the 3D

image is initially resized to the following dimension:

512× 512× number of slices,

but for extracting 2D slices from coronal and sagittal views,

the 3D image, regardless of its initial dimensions, is resized to

256× 256× 256, and 256 slices are selected subsequently.

The window-level and window-width parameters were set

to –600 and 1,500, respectively. This resulted in the image pixel

intensity distribution to position between –1,024 (the lowest

pixel value in all images) and 150. Next, this pixel range value

was moved to the range [0, 255] using a linear transformation.

The final result yielded three exact images from each 2D slice.

Lastly, as our models utilized weights obtained from training

on the ImageNet [a dataset of 1.2 million images categorized to

1,000 classes (10)], all images were also additionally normalized

to the same luminance of mean = [0.485, 0.456, 0.406] and

SD = [0.229, 0.224, 0.225]. Data augmentation operations

such as random white-noise addition and vertical-flip with

probabilities 0.3 and 0.5, respectively, were also performed for

the model’s training.

2.2.2. Infection mask pre-processing for
training infection segmentation models

This pre-processing was only applied to the manual

segmentation masks on the training and validation sets

just before the model learning and its goal was to rectify

manual mask edges. To this end, the manually masked area

is enlarged using the Dilation (52) method to the point

that it covers all of the infection areas initially left out.

As seen in Figure 1, the red contour depicts the manual

mask edge, while the blue contour shows the enlarged

manual mask.

For the final mask, pixels contained within the blue contour

that have a value within the 95% distribution range of all

the pixels within the red contour are kept (and regarded as

“infection” pixels) while the other non-relevant pixels within the
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FIGURE 1

Mask pre-processing in the infection segmentation dataset. Left is the raw CT scan slice, middle is the lung image in the same slice (with

infection in the upper-left lobe), and right is the segmented infection area in the image. In the right, the red contour depicts the radiologist

manual mask edge, the blue contour is the dilated red contour, and the green contour s the rectified mask edge.

blue contour are removed. The resulting final mask edge colored

in green is also depicted.

This process helps with mask-edge correction by removing

“normal” (for air, etc.) and very bright (organ or bone) pixels

from the initial area and adding any left-out small areas.

Finally, this pre-processing method was carefully and

manually reviewed on a large sample set ad after evaluation

from an expert radiologist, its resulting rectified masks replaced

undesirable ones. The test set rectified masks went through

a more thorough and manual evaluation process under two

senior radiologists.

2.3. Deep learning models

The deep learning models adopted by this research perform

two tasks; lobe segmentation and infection segmentation. In this

section, we explain each in detail.

2.3.1. Lobe segmentation deep learning models

For this task, the deep learning models described in

Hofmanninger et al. (40) were adopted. These models include

U-Net (53), ResU-Net (54, 55), Dilated Residual Network-D-22

(56), and Deeplab v3+(57). From these models, the U-Net R231

(40) model performed the best on our test set data, for which

the results can be found in Section 3, and was thereby selected

for our framework. The output of the selected model would

segment a lung image to its five lobes using 2D slices in the axial

view and as its results were sufficiently desirable, we refrained

from developing our custom model for the lobe segmentation

task. The model performance on our dataset is discussed in

Section 3.

2.3.2. Infection segmentation deep learning
models

For this task, we adopted several FPN (58), PSPNet (59),

LinkNet (60), U-Net (53), and U-Net++ (61) models based

on their respective EfficientNet (62), SE-ResNet (63), etc.

architectures. As the performance of these models was closely

similar, a detailed discussion on the subject was omitted.

In the end, an SE-ResNet-18 basedU-Netmodel was selected

for our framework. Three separate instances of the model are

used. The first is for infection segmentation on 2D slices of the

axial view. The input for this model instance, with dimensions

512 × 512 × 3 (3 is for the RGB channels) is the largest it can

be in order to extract as many features as possible. The second

and third model instances are used similarly for the coronal

and sagittal views, respectively, but with a 256 × 256 × 3 input

dimension. Overall, as previously discussed in Table 1, 119 CT

scans with an infection segmentation label were used for the

training and validation of these models.

The encoder part of these model was initialized with pre-

trained ImageNet weights and their last layer activation function

is Sigmoid. Additionally, the prediction layer of the models

includes an infection detection channel. The cost function used

for all the models is:

Loss = (1−
2× P ∩ T

P + T
)

+ (−
1

N

N∑

i=1

[Ti log(Pi)+ (1− Ti) log(1− Pi)]),

where T and P are the pixel label and prediction, respectively,

the first RHS term is the Dice loss, and the second RHS term is

the binary cross-entropy error function.

The Keras package was used for everything deep-learning

related and the NiBabel (51) and PyDicom (64) packages were

used for working with medical images. All of the development
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FIGURE 2

Overview of the lung lobes infection severity prediction framework. An input image is simultaneously given the lobe segmentation and infection

segmentation models. Then, by combining the output of these two models, the infection percentage of each lobe is predicted and given as the

input of the k-NN model to predict the severity of infection in terms of the 6 classes of infection severity for all the 5 lobes.

and evaluation processes were executed with the Python

programming language version 3.7.9.

2.4. Framework overview

In this section, we break down our framework into its

principal machine learning and deep learning components,

as showcased in Figure 2, and characterize the final output

construction methodology.

On an input, we first utilize the lobe segmentation model

to determine what lobe each pixel belongs to (or if it does

not belong to any). Next, we employ the three distinct U-

Net models mentioned in Section 2.3.2 to obtain infection

segmentation across the three different views. The outputs are

then combined with a weighted-averaging ensemble learning

technique (a weight of 5 for the sagittal and coronal views and

a weight of 1 for the axial view) to produce a final infection

segmentation for the framework input.

As the axial view in our data has a higher image resolution

and will probably result in higher model accuracy, the used

ensemble learning technique gives it a larger weight compared

to the similar coronal and sagittal view weights. This assumption

is studied in Section 3.

Next, using the ensemble model output, each lobe pixel

is evaluated in terms of containing infection to determine the

overall percentage of each lobe’s pixels involved with infection.

Finally, the lobes infection severity percentage is fed to a k-NN

model to learn according to the label given by the specialist in

order to classify the percentage into the 6 classes of infection

severity predicted by the experts.

The k-NN model is used since the expert did not necessarily

calculate the infection severity by counting the pixels, but based

on the experience in the field. The overall structure of the flow

described in this section is showcased in Section 3.

2.5. Statistical inference

In order to more reliably evaluate our results, we chose

different criteria for different parts of our research. Our results

are also reinforced by performing the same evaluations on a

team of experts.

By incorporating error propagation and Bayesian statistics,

the marginalized confidence region is calculated at a 95% level

for each output. The prediction result significance is determined

by calculating the p-value statistics systematically. In order to

achieve a conservative decision, the 3σ significance level is

considered.

The lobe and infection segmentation models were evaluated

with the following criteria on the scan:

Dice score =
2× P ∩ T + ǫ

P + T + ǫ

where ǫ is a small value, added to prevent the denominator from

becoming zero.
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TABLE 3 Average Dice score of the lobe segmentation model on 21 CT scans.

Upper right Middle right Lower right Upper left Lower left

Dice score 0.969± 0.075 0.918± 0.171 0.958± 0.101 0.980± 0.094 0.981± 0.086

At last, theMean Absolute Error (MAE) was used to evaluate

the infection severity prediction performance.

2.6. Experts evaluation

As the train and validation sets of our data were manually

labeled by two resident radiologists and were therefore prone to

error, and since the segmentation labeling and infection severity

categorization tasks were time-consuming and the data for it

was not present in radiology reports by default, we opted to

involve the data with the least possible amount of error in our

framework evaluation. To this end, the External Test sets 1 and

2 were collected which were also used to evaluate our experts.

For the evaluation of experts, which included two resident

radiologists, we asked them to label each case with segmentation

and infection severity labels. Labels from one expert were

regarded as the ground truth while labels from the other as

a prediction. The metric similarity between the two experts is

reported as theminimum expert accuracy. It is important to note

that the labels produced by the two resident radiologists were

rectified by the two senior radiologists for the final test set. This

difference between the initial labels and the rectified labels is why

the expert evaluation metric is accompanied by a bias value.

3. Results

In this research, overall 291 CT scans were involved in

training and validation and 21 CT scans for final evaluation.

This section starts off and continues with the evaluation results

for the lobe segmentation and infection segmentation models,

respectively, and closes with the framework performance

evaluation and its comparison with that of experts.

3.1. Lobe segmentation results

For this task, a pre-trained model from Hofmanninger et al.

(40) was adopted as its performance was sufficiently desirable.

This model was evaluated on 21 CT scans based on the Dice

score for which the results are shown in Table 3. Furthermore,

a sample output of this model for segmenting a lung’s lobes is

presented in Figure 3.

3.2. Lobe infection severity prediction

Sixty scans from our own dataset and two 50 and 9

scan sets from the involved public datasets, all with infection

segmentation labels, were used to train three U-Netbased SE-

ResNet18 for the axial, coronal, and sagittal views and their

outputs were combined using a weighted-average ensemble

learning technique to gain a final infection segmentation result.

These models were evaluated on the validation and External

Test sets 1 and 2 using Dice score and the final ensemble

performance results can be seen in Table 4.

As the results demonstrate, the infection segmentation Dice

score in the coronal and sagittal views are lower than the axial

view, for which the ensemble performance of the three views

barely matches. Moreover, the two resident radiologists’ Dice

score is on average lower than our framework. As the validation

set was not labeled by both radiologists, the experts’ performance

over this set is not reported.

By incorporating the obtained lung lobe segmentation in the

CT scan and having the infection segmentation model output,

our framework predicts the overall infection severity with a

number in the range [0, 100], which we report as a percentage.

In Figure 4, the framework’s output for lobe segmentation,

infection segmentation, and per-lobe infection severity

prediction is showcased for a slice from a COVID-19 diagnosed

patient axial chest CT scan.

But as the experts’ prediction of the infection severity is

purely visual and not by infected pixel count, our framework

categorizes the infection severity percentage into 6 distinct levels

utilizing a simple k-NN model with k = 7 with the combined

outputs of the ensemble lobe and infection segmentation as its

input to learn over infection severity score manually labeled

by the experts. This k-NN model was eventually evaluated on

21 scans from the External Test sets 1 and 2, for which the

framework achieved an MAE error of 0.505 ± 0.029 on all lung

lobes. Amore detailed overview of the framework’s performance

can be seen in Table 5. For amore comprehensive evaluation, the

MAE error was calculated for the two resident radiologists. The

expert’s error of 0.571 ± 0.039 was obtained, showing the better

performance of our framework over expert human prediction.

As seen in Table 5, the prediction error for the right middle

lobe is larger than other lobes due to this lobe being generally

more difficult to predict for the framework (with the lowest Dice

score of 0.918) and the experts.

To gain a better insight into the relationship between the

predicted infection severity percentage by the framework and
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FIGURE 3

Lobe segmentation from three di�erent views.

TABLE 4 Dice score of the infection segmentation models and their comparison with the performance of two resident radiologists.

Set Dice (axial) Dice (coronal) Dice (sagittal) Dice (ensemble) Res.1 vs. Res.2

Validation 0.7312± 0.0423 0.7122± 0.0452 0.7191± 0.0509 0.7413± 0.0403 -

Test 1 0.7167± 0.0345 0.6386± 0.0387 0.6498± 0.0330 0.7254± 0.0341 0.7281± 0.0390

Test 2 0.7017± 0.0354 0.6582± 0.0411 0.6475± 0.0361 0.7105± 0.0399 0.6693± 0.0544

FIGURE 4

Framework output for a COVID-19 diagnosed patient scan on the 72nd slice of the axial view. On the left, red contours show the infection and

on the right, di�erent colored contours show distinct lung lobes. The reported infection severity percentages correspond to each lobe and are

reported the same for each slice.

its corresponding infection severity score label, the prediction

distribution over all 6 lobe infection severity classes are

showcased as a violin plot in Figure 5. As depicted in the

figure, the largest errors belong to classes 0 (normal) and

1 (infection severity lower than 5%). Notably, the infection

severity percentages of these two classes are marginally close.

In a similar manner, the violin plot of labels produced

by resident radiologists is shown in Figure 6, which clearly

demonstrated the error produced by classes 0 and 1 while

asserting the fact that diagnosing smaller infections is

generally harder.

4. Conclusion and discussion

In this research, we collected chest CT scans of patients

positively diagnosed with COVID-19 for training from one

center and additional scans from two other hospitals with
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TABLE 5 Model and expert (two resident radiologists) MAE error for di�erent lung lobes over the 21 scans of our test sets.

MAE Upper right Middle right Lower right Upper left Lower left All lobes

Framework 0.429± 0.040 0.571± 0.051 0.571± 0.038 0.429± 0.031 0.524± 0.044 0.505± 0.029

Expert 0.619± 0.061 0.714± 0.054 0.667± 0.057 0.381± 0.032 0.476± 0.041 0.571± 0.039

FIGURE 5

Violin plot of infection severity percentage predicted by the framework for 6 di�erent classes.

different imaging devices. Furthermore, two public datasets

were also involved to include a wide range of data from

different centers and several countries. These datasets were then

labeled with their corresponding lobe segmentation, infection

segmentation, and infection severity labels.

Next, we extracted lung lobes in each scan using our

framework’s lobe segmentationmodel. Thereafter, lung infection

segmentation was performed utilizing several task-specific deep

learning models in an ensemble manner. Finally, by measuring

infection severity percentage and incorporating a k-NN model,

each lung lobe was predicted for its infection severity score.

For lobe segmentation, we adopted the pre-trained U-Net

model from Hofmanninger et al. (40). This model performed

satisfactorily as it obtained aDice score of 0.958 on all lung lobes

except for the middle-right, for which the Dice score was 0.918.

As diagnosing the middle-right lobe is generally more difficult

for human experts, the model’s lower Dice score in this lobe

might have resulted from the labeling error.

For infection segmentation, the framework achieved a

0.725 Dice score, similar to that of the resident radiologists

on the External Test 1 set. The framework’s performance on

the External Test 2 set was marginally better. Our model’s

performance and the fact that these two test sets were collected

from two different centers with different imaging devices

attest that our framework is robust to the imaging device

configuration and parameters. Yet, as the results show, this claim

did not hold for the human experts. Overall, our framework

demonstrates performance at levels similar to that of at least a

resident radiologist.

Finally, we compared the MAE error of infection severity

prediction between our framework and a resident radiologist.

On all the combined data from the two External Test sets 1 and 2

and over all the lung lobes, our framework achieves a lower error

compared to the resident radiologist, which is shown in Table 5.

Moreover, the correlation between infection severity percentage

and infection severity score categorized in 6 levels was studied

and showcased via violin plots for both our framework and the

human experts. This study showed that the difference between

classes 0 and 1 is marginally small and differentiating these two

classes yields the largest error.

One of the previous works in the field, Ma et al. (32),

developed an infection segmentation deep learning model with
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FIGURE 6

Violin plot of infection severity percentage predicted by experts for 6 di�erent classes.

TABLE 6 Infection segmentation performance comparison over

several sample sets against several similar works.

Approach Sample set count Dice score

Ours 140 CT scans 0.71 - 0.74

Li et al. (33) 30 CT scans 0.74

Voulodimos et al. (35) 10 CT scans 0.65

Abdel-Basset et al. (34) 939 CT slices 0.80

a Dice score on the right and left lungs equal to 97.7 and 97.3,

respectively. Li et al. (33) managed to develop a deep learning

model for the same task to gain a 0.74Dice score, while the expert

score in their study was close to their model at 0.76. Voulodimos

et al. (35) developed an FCN and a U-Net model for infection

segmentation with a Dice score peaking at around 0.65. Lastly,

Abdel-Basset et al. (34) developed a novel model for learning on

a small-sized labeled set denoted Few-Shot Segmentation with a

Dice score of 0.80. An overview of the evaluation results in this

section can be found in Table 6.

The majority of similar research in the field aims to predict

infection severity in the entire lung, while our work narrows

down and isolates the prediction to each lobe. In a similar

fashion (65), the author developed a Support Vector Machine

(SVM) model utilizing the probability density function to

classify lung lobe infection severity with an Area Under Curve

(AUC) score in the range of [0.64, 0.87] on the validation set.

In our initial assessments for this research, we also

experimented on 3D convolutionmodels with a 3D-UNetmodel

for the infection segmentation for which its lower performance

results made us refrain from discussing it. However, the

interested reader is encouraged to study and evaluate different

models and methods for this task.

We used an Nvidia RTX 5000 graphics card for the

computational portions of this work. For a CT scan of about

100–150 slices, our framework will perform lobe segmentation,

infection segmentation, and infection severity prediction on all

slices and finish up with an overall infection severity for each

lung lobe in the scan in under 5 min.While doing the exact same

task takes more than an hour for a human expert.

As for the limitations of this research, the biggest one

involves data collecting. Labeling for lobe and infection

segmentation is a rather time-consuming process. The fact that

several licenses from multiple official bodies are required to

collect the data in the first place adds to the time consumption

of the data collecting process.

For this research, since the necessary grants were not

provided at the time of data labeling, the labels were produced

by the resident radiologists and only the External Test sets

1 and 2 were later labeled by senior radiologists. This

resulted in us only being to evaluate the resident radiologists.

Evaluating the senior radiologists with a thoroughness level

matching the rest of the research required expert manpower

beyond what we could manage to bring (at least 5 more

senior radiologists).
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Another limitation was the rather small size of level 4 and

5 infection severity samples in our datasets, which certainly

hampered our framework’s performance. In addition, a much

larger dataset of normal scans is required to reduce the

prediction error between classes 0 and 1.

A future improvement on this work might include involving

more data from more centers with different devices and

configurations in the models training. A study on the effect

of different scan dosages is also beneficial. To address one of

the other limitations of this work, data from patients with an

age distribution that includes younger subjects will certainly

improve the framework’s comprehensiveness. Improving the

error margin on the manual process of lobe and infection

segmentation labeling and infection severity estimation would

also help the framework’s performance.

In addition, we observed instances of the model incorrectly

recognizing pulmonary vessels around the umbilical cord area

as infection (which would get worsen with noisy data). To

address this, a more complex deep learning model trained on

data that also has vessel segmentation is likely needed. The pièce

de résistance would be a model that could predict the infection

severity score of a chest CT scan, without requiring to perform

lobe or infection segmentation.

To conclude, we developed a framework for infection

severity prediction in lung lobes by involving several datasets,

collected and public, and by utilizing multiple machine learning

and deep learning models, in order to serve as a prognosis

tool for the experts. Finally, we comprehensively evaluated

our framework and compared its performance to experts to

determine its benefit in helping the treatment process of patients.
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SUPPLEMENTARY FIGURE 1

Left: Age distribution of study subjects. Right: Sex distribution of study

subjects.
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SUPPLEMENTARY FIGURE 2

Number of normal and infected slices of the data used in the train and

validation sets.

SUPPLEMENTARY FIGURE 3

Slice infection percentage in the train and validation sets.

SUPPLEMENTARY FIGURE 4

Sample count of di�erent classes of infection severity for the 5 lung

lobes and overall.

SUPPLEMENTARY FIGURE 5

Number of normal and infected slices of the data used in the test set.

SUPPLEMENTARY FIGURE 6

Slice infection percentage in the test sets.

SUPPLEMENTARY FIGURE 7

Sample count of di�erent classes of infection severity in External Test

sets 1 and 2.
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