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Introduction
Even after an enormous financial and time-consuming invest-
ment of typically 10-15 years, the approval rate of new drugs 
remained stagnant at 2.01%, on average, from 2000 to 2008.1,2 
As a result, drug repositioning using existing drugs for nontar-
get diseases has become an alternative methodology for deriv-
ing new drugs to market.3–6 One method for this is a 
computational approach based on chemical-protein interac-
tions, chemical-disease interactions, and omic interactions.3,7–10 
A major advantage of computational drug repositioning is 
reducing the development risk as it relates to finances and time 
for bringing drugs to market.

Lamp11,12 introduced the concept of connectivity maps, 
which refers to the functional connections among diseases, 
genetic abnormalities, and drug efficacy. Connectivity maps 
are obtained from information about small molecules, chemi-
cals, and drugs. Classical drug studies have focused on one 
gene, one drug, and one disease target. However, these single-
target studies overlook the possibility of unintended beneficial 
effects and synergy effects of multitarget interacting drugs. 
Regarding this, Cheng et  al13 proposed network-based drug 
repurposing using drug-induced samples and protein-protein 
interactions. Yoo et al14 introduced the drug signatures data-
base (DSigDB) of drug and chemical compounds for drug 
repurposing. Takayuki9 reported the drug repositioning for 
dengue fever using a multiomic analysis including genomics, 
proteomics, and interactomics.

Pathways are functional gene sets that work together to 
control cell processes and inform molecular interactions and/or 
reactions provided by the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway,15 BioCarta,16 and pathway 

ontology.17 Abnormal activation of genes in the pathway may 
lead to cancer or other diseases. Therefore, finding enrichment 
pathways or gene sets from drug-induced datasets can help to 
discover a promising target candidate for treatment of these 
diseases. In addition, uncovering a pathway interaction can 
interpolate the insight of the drug efficacy systemically.

In this study, we are interested in the drug molecules associ-
ated with gene sets referred to in a pathway instead of the indi-
vidual gene, noting interpathway and intrapathway interactions 
using drug-induced datasets. An intrapathway interaction 
refers to interactions from enrichment pathways derived from 
a single-drug analysis. An interpathway interaction means one 
pathway was discovered from one drug analysis and another 
pathway was discovered from an analysis based on a different 
drug.

Materials and Methods
Materials

We downloaded a total of 22 268 probes, 182 drug-induced 
samples, and 36 control samples from the MCF7 breast cancer 
cell line in March 2018 from the Gene Expression Omnibus 
website (updated 2017). Gene expression data were generated 
using the Affymetrix HT human genome U133A array 
(GPL3921) platform by Lamb.11 From among the 182 drug-
induced samples containing 87 unique drugs, we extracted the 
following 6 drugs where the sample size was greater than or 
equal to 5: 11 samples of 17-allylamino-geldanamycin (17-
AAG; concentration: 1 µM); 8 samples of LY294002 (10 and 
0.1 μM); 7 samples each of sirolimus (0.1 μM), trichostatin A 
(0.1 and 1 µM), and valproic acid (10 mM, 1 mM, 500 μM, 
2 mM, and 50 μM); and 5 samples of wortmannin (0.01 and 
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1 μM). The sample sizes of the remainder of the drugs were 
less than 5. Although the drugs were administered at different 
concentrations, we ignored the induced concentration. Here, 
we briefly describe 6 of the study drugs. Sirolimus, also known 
as rapamycin, blocks the transcriptional activation of cytokines, 
thereby inhibiting cytokine production. Wortmannin is a ster-
oid metabolite and a nonspecific, covalent inhibitor of PI3Ks. 
LY294002 is an inhibitor of phosphatidylinositol 3-kinase. 
Valproic acid is a fatty acid with anticonvulsant properties used 
in the treatment of epilepsy, with unknown mechanisms of its 
therapeutic path.18 17-AAG, also known as tanespimycin, was 
developed for treating cancer and solid tumors.

We also downloaded gene set enrichment analysis (GSEA) 
tools and molecular signatures database v.6 (MSigDB) from 
http://software.broadinstitute.org/gsea.

Methods

To obtain abnormal gene sets by comparing individual drug-
induced samples to 36 control samples, we performed GSEA.19 
GSEA generates enrichment pathways ordered by false discov-
ery ratio or normalized enrichment score, and leading-edge gene 
sets refer to core genes obtained by using the highest enrichment 
score for each pathway calculated by the Kolmogorov-Smirnov-
like (KS) test, as in Subramanian et al.19,20

Here, we extracted the top 20 enrichment pathways from 
GSEA, ordered by normalized enrichment score, and extracted 
the leading-edge genes (or core genes) of each enrichment 
pathway. After we identified the enrichment pathways with 
core genes, we determined the strength pathway interaction 
using core genes that referred to the drug combination score 

(DCSC) as a summation of the absolute values of the signal-
to-noise of common genes. Computational drug repositioning 
approaches are usually based on similarities and shared proper-
ties.2 Using abnormally expressed common gene sets is one of 
the valuable methods for presenting similarities:
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where sA  and sB  are the signal-to-noise of core genes from 
pathways identified from drug A and drug B, respectively. The 
signal-to-noise is calculated by dividing the average signal by 
the standard deviation of the noise. M M N Nc n c n, , , and  repre-
sent the average of cancer datasets, average of normal datasets, 
total standard deviation of cancer, and standard deviation of 
normal, respectively.

In this study, we identified 2 types of interactions: intrapa-
thway and interpathway interactions using drug-induced data-
sets. An intrapathway interaction refers to interactions from 
enrichment pathways derived from a single-drug analysis. We 
first extracted enrichment pathways and then created pairs of 
the enrichment pathways based on common genes. Finally, we 
calculated DCSC by summation of the signal-to-noise of the 
common genes of both pathways. An interpathway interaction 
refers to an interaction between one pathway discovered from 
one drug analysis and another pathway being discovered from 
analysis of a second drug.

A schematic diagram of the interpathway interaction 
method is presented in Figure 1. Red arrows represent 

Figure 1. The overall flowchart for the method of drug-induced pathway interactions. First, different kinds of drug-induced samples are extracted and 

compared with the control samples via GSEA. Enrichment pathways from each drug are selected. Red arrows represent drug A performance, while blue 

arrows represent drug B performance. GSEA indicates gene set enrichment analysis.

http://software.broadinstitute.org/gsea
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generation of enrichment pathway A based on drug A, and 
blue arrows represent generation of enrichment pathway B 
based on drug B. Red and blue lines represent intrapathway 
interactions.

Here, we focused on different pathway interactions from 
different drug-induced samples. Although not all genes were 
commonly identified as core genes from the same pathways, 
and these pathways were generated from different drugs, the 
role of the drug in the pathway is functionally the same. 
Therefore, we ignored the efficacy of 2 different drugs generat-
ing the same pathway.

Results
Intrapathway interactions

To identify the pathway interactions, we selected 20 enrichment 
pathways that were generated by comparing each drug-induced 
sample to the control samples. Among the obtained pathway 
interactions using common genes, we presented one pair of 
pathways discovered by the most common genes. The result of 
17-AAG compared with the control datasets derived 20 enrich-
ment pathways. Using those 20 pathways, we obtained 21 path-
way interactions via common genes. One of the 21 pairs of 
pathways is GLYCOSAMINOGLYCAN_DEGRADATION 
and GLYCAN_STRUCTURES_DEGRADATION, via 5 
common genes (ARSB, HPSE2, HYAL1, IDUA, and SPAM1). 
For LY294002, we have a total of 20 pathway interactions, 
including the pair, APOPTOSIS and INSULIN SIGNALING 
PATHWAY, which had the highest number of common genes, 
12: AKT (2, 3), PIK3 (CA, CB, CG, R3, R5), and PRKA (CA, 
CB, R1B, R2B, R3B). The PIK3 family (as PI3K protein) is 
known to be inhibited by LY294002 drugs21 (from Selleckchem). 
Functional treatment of LY294002 through PIK3 achieves bal-
ance of apoptosis, which plays an important role in cancer.22,23 
According to STITCH 5,7 the false discovery ratios (FDRs) of 
the insulin signaling pathway and apoptosis discovered by 
LY294002 are 1.11e-14 and 1.7e-9, respectively, with 5 com-
mon genes: AKT1 and PIK3 (CA, CB, CD, CG).

For trichostatin A, a total of 11 pathway interactions were 
obtained. Among them, the pair INSULIN SIGNALING 
PATHWAY and ERBB SIGNALING PATHWAY shared 11 
common genes of AKT3, CBL, CBLB, KRAS, MAPK10, 
MAPK8, PIK (3CD, R2, R5), and SHC (2, 3). There were 37 
pathway interactions obtained for valproic acid, one of them 
being ARACHIDONIC ACID METABOLISM and 
LINOLEIC ACID METABOLISM with 12 common genes: 
ALOX15 CYP2C (18, 19, 8, 9) and PLA2G (2A, 2D, 2F, 3, 4A, 
5, 6). The pathway interactions of sirolimus totaled 59, one of 
them being the ERBB SIGNALING PATHWAY and 
GLIOMA via 24 common genes including AKT3. Those 2 
pathways also appeared in STITCH 57 with MTOR and AKT1 
common genes. For wortmannin, a total of 37 pathway interac-
tions were obtained, one being HISTIDINE METABOLISM 

and TYROSINE METABOLISM via 5 common genes 
(AOC2, AOC3, DDC, MAOA, and PRMT8). For detailed 
information, refer to the supplements.

Interpathway interaction

Among 15 drug pairs obtained from the 6 extracted drugs, in 
Table 1, we presented a pair of drugs and a pair of pathways 
with the largest DCSC pathway interaction. Here, we describe 
the top 3 DCSC pathway interactions in more detail.

With 17-AAG and LY294002, 20 pairs of pathway interac-
tions were derived, 8 of which interacted along the same func-
tional pathway, while the remaining 12 pairs interacted along 2 
different pathways from each drug. One pair of these 12 pairs 
of pathways is ERBB SIGNALING PATHWAY and 
INSULIN SIGNALING PATHWAY via 13 common genes 
with DCSC 8.19.

We individually discovered the ERBB (epidermal growth 
factor receptors [EGFR]) signaling pathway (with FDR 1.4e-
4) from 17-AAG and the insulin signaling pathway (with 
1.11e-14) from LY294002 with common gene AKT1 sourced 
from STITCH 5.7

For 17-AAG and sirolimus, we discovered 12 pairs of path-
way interactions, 9 of which followed different functional path-
way interactions: one pair is ERBB_SIGNALING_PATHWAY 
and GLIOMA via 12 common genes with 7.53 DCSC, and 
another interesting pair of pathways is ERBB_SIGNALING_
PATHWAY and INSULIN_SIGNALING_PATHWAY, via 
10 common genes with 6.63 DCSC. The ERBB signaling 
pathway from 17-AAG and glioma and the insulin signaling 
pathway from sirolimus were also found from STITCH 57 with 
FDRs of 1.1e-4, 1.04e-2, and 2.77e-9, respectively.

Among 6 pairs of different functional pathways out of a 
total of 11 pairs from 17-AAG and valproic acid, a pair is 
LINOLEIC ACID METABOLISM and ARACHIDONIC 
ACID METABOLISM, via 7 common genes with 5.88 
DCSC.

Among 4 pairs of different functional pathways out of a 
total of 5 pairs from wortmannin and sirolimus (rapamycin), a 
pair of pathways is EPITHELIAL_CELL_SIGNALING_
IN_HELICOBACTER_PYLORI_INFECTION and 
ERBB_SIGNALING_PATHWAY, via 6 common genes with 
DCSC 3.35. Those pathways were not discovered in STITCH.

With LY294002 and sirolimus, we found that a pair con-
taining an insulin signaling pathway and an ERBB signaling 
pathway has the greatest DCSC (9.16) of 22 pairs of pathways 
(with 17 common genes) and confirmed that the insulin sign-
aling pathway (FDR 1.11e-14) from LY294002 and the ERBB 
signaling pathway (FDR 3.89e-6) from sirolimus were in 
STITCH 5 with 3 common genes, MTOR, AKT1, and 
RPS6KB1.

Table 1 shows that the interesting pair of insulin signaling 
pathway and ERBB signaling pathway was present in 5 pairs of 
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drugs. The result suggests that even though 5 pairs of drugs 
demonstrated the same functional interaction, the strength of 
the pair LY294002 and sirolimus is greater than the strength of 
the remaining pairs. That implies that LY294002 and sirolimus 
are better treatments for breast cancer than the remaining pairs.

Wortmannin was suggested for treatment of Helicobacter 
pylori in gastric epithelial cells.24 The ERBB signaling pathway 
is involved in the development of human cancer and pursued as 
the target of the treatment.25 Figure 2 presents our findings 
with those of previous studies. Sirolimus is suggested to target 
the mammalian target of rapamycin via the mechanistic target 
of rapamycin (mTOR) signaling pathway in breast cancer,28 
presented as red arrows (Figure 2A). Chiu suggested that siroli-
mus is the inhibitor of both the mTOR and EGFR signaling 
pathways in pancreatic neuroendocrine tumors,26 shown as 
blue arrows (Figure 2B). Hynes25,27,29 reported that lapatinib is 
used for breast cancer treatment via the ERBB signaling path-
way, shown as a green arrow in Figure 2C. Comprehensively, 
our findings that sirolimus plays an important role in breast 
cancer treatment via the ERBB signaling pathway matches the 
results of previous studies.

An insulin receptor has arisen as a new target for cancer ther-
apy via PI3K.30 A recently published study states that PI3K 
inhibitor LY294002 resists pancreatic cancer cells31 through the 

AKT signaling pathway. In our findings, the 17 common genes 
between the ERBB signaling pathway and insulin signaling 
pathway based on sirolimus and LY294002 include PIK3 (CD, 
CG, R3, R5).

Conclusions
In this study, we analyzed statistical findings of pathway inter-
actions using drug-induced datasets. Of the 6 extracted drugs 
and 15 analyzed pairs of drugs, we were especially interested in 
the connections of different pathways from different drug 
pairs, which imply drug combination effects. The highest 
DCSC interactions were selected from 5 out of 13 pairs of 
drugs involving interactions of the ERBB signaling pathway 
and the insulin signaling pathway. Among the 5 pairs, the 
highest DCSC of 9.16, indicating the strongest combination 
efficacy of the drugs, was for sirolimus and LY294002.

Using open source STITCH5, some pathway interactions 
were confirmed. However, as we used disease-specific data-
sets, some pathways we found did not appear in the previous 
computational results. Our computational approach supports 
the exploration of pathway interactions based on drug pairs 
to discover the interactions of drugs, pathways, and diseases 
and to further identify suitable drugs for repurposing/
repositioning.

Table 1. Pairs of pathway interactions from 2 different drugs with the greatest DCSC score.

DRUGS T_INT/D_INT PAThwAy INTERACTION wITh hIGhEST DCSC DCSC NO. OF COMMON 
GENES

17-AAG_ly24 20/12 eRBB SIgnAlIng PATHwAy/InSulIn SIgnAlIng PATHwAy 8.19 13

17-AAG_sir 12/9 ERBB SIGNALING PAThwAy/GLIOMA 7.53 12

17-AAG_tri 6/3 eRBB SIgnAlIng PATHwAy/InSulIn SIgnAlIng PATHwAy 4.61 8

17-AAG_VPA 11/6 LINOLEIC ACID METABOLISM/ARAChIDONIC ACID METABOLISM 5.88 7

17-AAG_wort 3/1 ERBB SIGNALING PAThwAy/EPIThELIAL CELL SIGNALING IN 
hELICOBACTER PyLORI INFECTION

3.94 6

ly24_sir 24/22 InSulIn SIgnAlIng PATHwAy/eRBB SIgnAlIng PATHwAy 9.16 17

ly24_tri 6/2 InSulIn SIgnAlIng PATHwAy/eRBB SIgnAlIng PATHwAy 5.19 10

ly24_VPA 10/6 LINOLEIC ACID METABOLISM/ARAChIDONIC ACID METABOLISM 5.95 7

ly24_wort 3/1 APOPTOSIS/ SMALL CELL LUNG CANCER 2.55 6

sir_tri 11/10 InSulIn SIgnAlIng PATHwAy/eRBB SIgnAlIng PATHwAy 4.88 10

sir_VPA 15/11 ARAChIDONIC ACID METABOLISM/LINOLEIC ACID METABOLISM 5.70 8

tri_VPA 2/2 ERBB SIGNALING PAThwAy/T CELL RECEPTOR SIGNALING PAThwAy 3.53 7

wort_sir 5/4 EPIThELIAL CELL SIGNALING IN hELICOBACTER PyLORI INFECTION/
ERBB SIGNALING PAThwAy

3.35 6

wort_tri 2/0 No different pathway interaction — —

wort_VPA 1/0 No different pathway interaction — —

The first column presents the pair of drugs, the second column indicates total pairs of pathway interactions (T_int) and number of pairs of different pathway interactions 
(D_int) generated from each drug, the fourth column represents the score of the pathway interaction, and the fifth column represents the number of common pathways.
Abbreviations: 17-AAG, 17-allylamino-geldanamycin; DCSC, drug combination score; ly24, Ly294002; sir, sirolimus; tri, trichostatin A; VPA, valproic acid; wort, wortmannin.
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Figure 2. Interactions of drugs, pathways, and diseases in our and previous studies. (A) Red arrows present the drug to cancer pathway via MTOR as in 

Chiu et al.26 (B) Blue arrows present sirolimus to pancreatic cancer pathways via MTOR and ERBB as in hynes and MacDonald.27 (C) The ERBB 

signaling pathway is the primary choice for the breast cancer treatment.28–30 (D) Description of our findings (black arrows) compared with previous 

studies.




