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Abstract
Bile acids are possible candidate agents in newly identified pathways through which energy

expendituremayberegulated.Preclinical studies suggest thatbileacidsactivate theenzymetype

2 iodothyronine deiodinase, which deiodinates thyroxine (T4) to the biologically active

triiodothyronine (T3). We aimed to evaluate the influence of bile acid exposure and incretin

hormones on thyroid function parameters in patients with type 2 diabetes. Thyroid-stimulating

hormone (TSH) and thyroid hormones (total T3 and free T4) were measured in plasma from two

human studies: i) 75 g-oral glucose tolerance test (OGTT) and three isocaloric (500 kcal) and

isovolaemic (350 ml) liquidmealswith increasing fat contentwith concomitantultrasonographic

evaluation of gallbladder emptying in 15 patients with type 2 diabetes and 15 healthy age,

gender and BMI-matched controls (meal-study) and ii) 50 g-OGTTand isoglycaemic intravenous

glucose infusions (IIGI) alone or in combination with glucose-dependent insulinotropic

polypeptide (GIP), glucagon-like peptide 1 (GLP1) and/or GLP2, in ten patients with type 2

diabetes (IIGI-study). Inboth studies, TSH levelsdeclined (P!0.01) similarly followingallmeal and

infusionstimuli. T3andT4concentrationsdidnotchange in response toanyof theappliedstimuli.

TSH levels declined independently of the degree of gallbladder emptying (meal-study), route of

nutrient administration and infusion of gut hormones. In conclusion, intestinal bile flow and i.v.

infusions of the gut hormones, GIP, GLP1 and/or GLP2, do not seem to affect thyroid function

parameters. Thus, the presence of a ‘gut–thyroid–pituitary’ axis seems questionable.
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Introduction
Bile acids are water soluble, amphipathic molecules

synthesised in the liver from cholesterol. Upon meal

ingestion, the gallbladder contracts, whereby bile acids from

the liver and highly concentrated bile acids from the

gallbladder are released into to the intestinal lumen. Here
they interact with dietary lipids, lipid-soluble vitamins and

cholesterol, forming mixed micelles, and thereby facilitating

the transport and uptake of these molecules (1). Nowadays,

bile acids are no longer labelled as detergents necessary for

lipiddigestionandabsorption,butare increasingly recognised
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as metabolic integrators, capable of regulating glucose

homeostasis, lipid metabolism and energy expenditure

throughnuclear receptors and theGprotein-coupled receptor

TGR5 (2, 3, 4). A study by Watanabe et al. (4) carried out in

mice showed that cholic acid supplementation augmented

energy expenditure in brown adipose tissue, caused weight

reduction and improved insulin sensitivity. The effects

were mediated through TGR5-induced intracellular cAMP

formation and activation of the intracellular type 2 iodo-

thyronine deiodinase (D2), which converts thyroxine (T4)

into the active thyroid hormone triiodothyronine (T3).

Up to date, human studies have yielded conflicting

results regarding the association between circulating bile

acids and thyroid function parameters. Patti et al. (5) have

found that bile acids in serum correlated inversely with

thyroid-stimulatinghormone (TSH) innon-diabeticpatients

who had undergone Roux-en-Y gastric bypass surgery, and

recent reports have demonstrated similar associations of bile

acids with TSH in type 2 diabetes (6, 7, 8). In contrast, Brufau

et al. (9) could not demonstrate any effect of bile acids on

energy expenditure in patients with type 2 diabetes.

Recently, Ockenga et al. (8) showed that TSH concentrations

decreased post-prandially in both patients with liver

cirrhosis and healthy controls, and the result furthermore

indicated that post-prandial bile acids are capable of

increasing D2 activity, which in turn converts T4 into T3

presumably suppressing TSH upon meal intake. Such

inhibitory effect of nutrient ingestion on TSH secretion in

humans has been sparsely reported in the literature (10, 11).

As meal-stimulated gallbladder emptying leads to prompt

elevations of plasma bile acids concentrations (12, 13), we

speculatedwhethervariousdegreesofgallbladderemptying–

induced by meals with a wide range of fat content – would

modulate thethyroidhormoneaxis accordingly inboth type

2diabetes patients andcontrols.Moreover, in a second study

in type 2 diabetes patients, using oral glucose tolerance test

(OGTT) and isoglycaemic intravenous glucose infusions

(IIGI), we analysed i) whether i.v. glucose per se could affect

thyroid function parameters and ii) whether any changes

could be elicited by infusion of the gastrointestinal

hormones glucose-dependent insulinotropic polypeptide

(GIP), glucagon-like peptide 1 (GLP1) and GLP2, which are

known to be secreted after nutrient ingestion.
Subjects and methods

Meal-study

Detailed description of the experimental procedures

and subjects was provided previously (14). In short,
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measurement of TSH, total T3 and free T4 was carried out

with chemiluminescence immunoassays in the plasma

from 15 patients with type 2 diabetes (mean duration of

diabetes, 7.5 years (range 6–20); age, 59.4G9.6 years

(meanGS.D.); BMI, 28.0G2.2 kg/m2 and HbA1c, 7.5G

1.4%) and 15healthy age, gender and BMI-matched control

subjects (age, 59.7G10.0 years; BMI, 27.9G2.0 kg/m2 and

HbA1c, 5.2G0.2%) undergoing four separate ‘meal’ tests: a

75 g-OGTT and three isocaloric (500 kcal) and isovolaemic

(350 ml) liquid meals (low fat: 2.5 g fat, 107 g carbohydrate

and 13 g protein; medium fat: 10 g fat, 93 g carbo-

hydrate and 11 g protein and high fat: 40 g fat, 32 g

carbohydrate and 3 g protein). Four type 2 diabetes patients

were treated with diet alone, eight were also treated with

metformin and three with sulphonylurea (any oral anti-

diabetic therapy was omitted for a period of no less than a

week before each study day). Gallbladder emptying was

evaluated by calculating gallbladder ejection fraction using

ultrasoundmeasurements as previously described (14).
IIGI-study

Detailed experimental procedures and patient charac-

teristics were reported previously (15). In short, measure-

ment of TSH, total T3 and free T4 was carried out with

chemiluminescence immunoassays in plasma from ten

patients with type 2 diabetes (mean duration of diabetes,

4.8 years (range0.5–14); age, 50.8G10.7years (meanGS.D.);

BMI, 33.2G4.9 kg/m2 and HbA1c, 6.5G0.7%) undergoing

six separate test days: 50 g-OGTT, IIGICsaline (placebo),

IIGICGIP, IIGICGLP1, IIGICGLP2 and IIGICGIPC

GLP1CGLP2 (saline and peptides were infused intrave-

nously). Nine patients were treated with metformin

alone and one with metformin and sulphonylurea in

combination (any oral antidiabetic therapy was omitted

for a period of not less than a week before each study day).

All participants gave their informed consent to the

studies, which were performed in accordance with the

Declaration of Helsinki and Danish legislation.
Calculations and statistical analyses

The results are reported as means with 95% CIs unless

otherwise stated. For evaluation of TSH suppression

within groups, repeated measures two-way ANOVA with

Dunnet’s post hoc test was used (mean baseline concen-

trations were chosen as control mean). For between-group

comparison of TSH responses, area under the curve (AUC)

was calculated by applying the trapezoid rule for TSH.

For analysis of variations and differences between AUC
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values, repeated measures ANOVA with Sidak’s post hoc

test was used. The data were transformed logarithmically

(log10) to approximate a Gaussian distribution. A two-

sided P!0.05 was used to indicate significant differences.
Results

Meal-study

As previously reported, gallbladder ejection fraction

increased similarly in the two groups with increasing meal

fat content (with similar ejection fraction following the

medium fat meal and the high fat meal nevertheless) (14).

BaselineTSHlevelswerewithinnormal range (0.3–4.0 mIU/l)

in all participants. As shown in Fig. 1, AUC levels and

basal TSH concentrations were higher in controls vs type 2

diabetes patients during oral glucose (P!0.05, Fig. 1); a

tendency to this was also seen during the meal stimuli
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Figure 1

Meal-study. Plasma levels of thyroid-stimulating hormone (TSH), thyroxine

(T4) and thyroid hormone triiodothyronine (T3) during a 75 g-oral glucose

tolerance test (OGTT) and three isocaloric (500 kcal) and isovolaemic
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(PZ0.05–0.09). TSH levels declined significantly after the

applied stimuli in both groupswithmaximumchanges from

baseline amounting to K0.54 UI/l (K0.75, K0.33) (OGTT),

K0.59 (K0.78, K0.41) (low fat), K0.62 (K0.84, K0.39)

(medium fat) and K0.70 (K1.10, K0.34) (high fat) in the

type 2 diabetic group and K0.96 (K1.40, K0.53) (OGTT),

K0.75 (K1.06, K0.45) (low fat), K0.92 (K1.33, K0.51)

(medium fat) and K0.76 (K0.99, K0.52) (high fat) in

controls, with no statistical significant differences within or

between groups. Neither, incremental AUC values differed

within or between groups. The concentrations of T3 and T4,

respectively, were similar in the two groups and did not

change after any of the oral stimuli.
IIGI-study

TSH declined similarly on all study days following oral

glucose intake and all of the i.v. stimuli respectively.
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(350 ml) liquid meals with low fat, medium fat and high fat, in healthy

control subjects (nZ15, closed symbols) and patients with type 2 diabetes

(nZ15, open symbols). MeanGS.E.M. values are shown.
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Figure 2

IIGI-study. Plasma levels of thyroid-stimulating hormone (TSH), thyroxine

(T4) and thyroid hormone triiodothyronine (T3) during 50 g-oral glucose

tolerance test (OGTT) and isoglycaemic intravenous glucose infusions (IIGI)

with concomitant infusions of saline, glucose-dependent

insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1), GLP2 or

a combination of the three hormones in patients with type 2 diabetes

(nZ10). MeanGS.E.M. values are shown.
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Accordingly, maximum changes from baseline amounted

to K0.76 (K1.15, K0.37) (OGTT), K0.56 (K0.79, K0.33)

(IIGICsaline), K0.64 (K0.89, K0.38) (IIGICGIP), K0.57

(K0.82, K0.32) (IIGICGLP1), K0.55 (K0.82, K0.28)

(IIGICGLP2) and K0.63 (K0.92, K0.34) (IIGICGIPC

GLP1CGLP2), with no statistical significant differences

between the different study days. Also, values of AUCs

were similar during the different study days (Fig. 2). The

concentrations of T3 and T4, respectively, were

comparable along the entire time course on all study

days. Neither suppression nor elevation of T3 or T4 was

demonstrated.
Discussion

This study demonstrates a similar degree of TSH suppres-

sion in type 2 diabetes patients and healthy controls to

oral glucose and isocaloric and isovolaemic meals with

increasing fat content (giving rise to different gallbladder

emptying rates), and suggests that the oral route of

nutrient administration and subsequent release of the

gut hormones, GIP, GLP1 and GLP2 do not seem to play

a major role in post-absorptive TSH suppression. To our

knowledge, no previous study has compared thyroid

function parameters following both OGTT and various

meal tests (isocaloric and isovolaemic) affecting gallblad-

der emptying differentially in type 2 diabetes patients and

matched healthy controls, or thyroid function parameters

after oral and i.v. glucose in type 2 diabetes.

In both studies, basal and stimulated TSH concen-

trations were within normal range, but tended to be lower
http://www.endocrineconnections.org
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in type 2 diabetes patients vs controls (meal-study). This

contrasts to the common observation of subclinical

hypothyroidism in type 2 diabetes patients (16, 17).

Interestingly, recent data indicates that metformin may

suppress TSH concentrations in type 2 diabetes patients,

thus providing a plausible explanation of the low(er) TSH

levels in our type 2 diabetic patients (18). However,

contrasting results have also been reported (19). In spite

of the observed TSH suppression, concentrations of T3 and

T4 did not exhibit post-prandial changes and were similar

in type 2 diabetes patients vs controls. This is supported by

a previous study in hypothyroid patients, showing that T3

and T4 were relatively insensitive to small alterations in T4

(administered daily) compared with TSH, which was very

sensitive to fine adjustments of T4 dosage (20). The notion

of oral glucose eliciting a similar degree of TSH suppres-

sion as compared with IIGI suggests that gastrointestinal

factors are less likely to play a role in nutrient-induced TSH

suppression. Supporting this notion, possible candidate

‘gut factors’, such as GIP, GLP1 and GLP2, infused

intravenously during IIGI neither altered the suppression

pattern of TSH or thyroid hormones. By contrast, a

previous study indicated that peripheral T3 formation

was stimulated by oral, but not by i.v., glucose suggesting

that the intestine or liver might involve in the regulation

of T3 formation (21).

As plasma bile acid concentrations reflect intestinal

bile acid absorption, as the fractional hepatic uptake of

bile acids is constant (13), the degree of gallbladder

contraction can be considered an ‘indirect’ measure of

the amount of bile acids that reaches the systemic
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circulation (‘spill-over’ from liver). On the basis of this

assumption, our results do not support a role for post-

prandial bile acids in modulating bile acid–TGR5-D2

activation in peripheral tissues (skeletal muscle and

brown adipose tissue). However, we acknowledge that

the study design does not allow drawing causal inferences

in this regard. Indeed, gallbladder emptying and even

bile acids provide only surrogate information of the

complexity of the enterohepatic circulation of bile acids

even though both are positively correlated with portal

venous concentrations (22).

A prompt inhibitory effect of nutrient ingestion on

TSH secretion in humans has been sparsely reported in

the literature (8, 10, 11) and the mechanism underlying

the suppression of TSH after ingestion of meals or glucose

remains to be established. In fact, TSH concentrations are

generally believed to decrease following long-term fasting

and increase upon refeeding (23, 24, 25). Considering

the role of gallbladder emptying and systemic bile acid

fluctuations, bile acid–TGR5 signalling might, as

hypothesised by Ockenga et al., acutely activate D2 in

pituitary thyrotropes, which are known to express D2 (26)

and possibly TGR5 (8), resulting in feedback on TSH upon

meal challenge. Importantly, such activation of D2 may

also be potentiated from the skeletal muscle where D2

activity is sufficiently high that it can provide significant

quantities of circulating T3 (27). Intriguingly, in rodents

TGR5 expression has been described in the paraventricular

nucleus and in the supraoptic nucleus of the hypo-

thalamus, suggesting that bile acid–TGR5 signalling may

regulate the thyroid axis at the level of thyrotropin-

releasing hormone (8, 28). In support of this, Ockenga

et al. (8) demonstrated an association between bile acid

and TSH concentrations after a nutrient challenge

(0–60 min) and found a close correlation between meal-

stimulated bile acid levels and energy expenditure after

60 min (most evident in patients with liver cirrhosis).

However, D2 activation might also simply be enhanced

by nutrients – especially glucose (29, 30) – reaching the

systemic circulation either via the oral route or during i.v.

stimulation. Interestingly, this is corroborated well in

another human study, which showed that 62 h of fasting

reduced D2 mRNA expression in skeletal muscle, whereas

5 h of insulin infusion increased D2 mRNA expression (at

62 h) (31). However, D2 activities were very low and were

not influenced by hypothyroidism, fasting or insulin.

Another explanation for the acute post-prandial TSH

decline observed in this study could be somatostatin being

released concomitantly from the intestine and/or hypo-

thalamus upon nutrient stimulation (10, 11, 32).
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However, the physiological role of somatostatin for the

inhibition of TSH secretion in man has been questioned

(33). Accordingly, our observation of i.v. glucose infusions

suppressing TSH levels to similar levels as observed during

oral glucose argues against gut-derived somatostatin

playing a role in post-prandial inhibition of TSH release.

In contrast, hypothalamic somatostatin secretion could

have been stimulated during both oral and i.v. glucose and

thereby contribute to the observed TSH suppression

patterns (11). Also, as GIP and GLP1 increase somatostatin

secretion, at least in animals (34), suppression of TSH

during incretin infusion might have been augmented,

which, however, was not demonstrated in this study.

Moreover, hypoglycaemia, which is known to suppress

somatostatin levels, has also been shown to reduce TSH

concentrations (35), indicating that other factors apart

from somatostatin are responsible for TSH suppression

under normal physiological circumstances.

Finally, TSH concentrations display pronounced circa-

dian changes – typically with nocturnal increases and

daytime nadirs, which might also offer an explanation for

the decline observed after all stimuli (36). However, a recent

study in 475 000 outpatients has indicated that TSH

concentrations are constant from 0600 to 1900 h (37).

Accordingly, TSH baseline concentrations in this study

were similar, and suppression was noticeable only after the

nutrient stimuli were applied. Nonetheless, it remains an

obvious limitation to this study, as well as the study by

Ockenga et al. (8), that TSH concentrations were not

evaluated followingnon-nutrient stimuli (negative control).

In conclusion, patients with type 2 diabetes and

healthy controls display significant post-prandial TSH

suppression to a series of meal-related stimuli, but

independently of the degree of gallbladder emptying and

of the gut hormones GIP, GLP1 and GLP2. Obviously,

further studies are warranted to clarify whether bile

acids affect energy expenditure and diet-induced thermo-

genesis (via brown adipose tissue) in humans, but the

present findings do not support the presence of a ‘gut–

thyroid–pituitary’ axis.
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