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Abstract

TLR4 is a member of the toll-like receptors (TLR) immune family, which are activated by

lipopolysaccharide, ethanol or damaged tissue, among others, by triggering proinflamma-

tory cytokines release and inflammation. Lack of TLR4 protects against inflammatory pro-

cesses and neuroinflammation linked with several neuropathologies. By considering that

miRNAs are key post-transcriptional regulators of the proteins involved in distinct cellular

processes, including inflammation, this study aimed to assess the impact of the miRNAs

profile in mice cortices lacking the TLR4 response. Using mice cerebral cortices and next-

generation sequencing (NGS), the findings showed that lack of TLR4 significantly reduced

the quantity and diversity of the miRNAs expressed in WT mice cortices. The results also

revealed a significant down-regulation of the miR-200 family, while cluster miR-99b/let-7e/

miR-125a was up-regulated in TLR4-KO vs. WT. The bioinformatics and functional analyses

demonstrated that TLR4-KO presented the systematic depletion of many pathways closely

related to the immune system response, such as cytokine and interleukin signaling, MAPK

and ion Channels routes, MyD88 pathways, NF-κβ and TLR7/8 pathways. Our results pro-

vide new insights into the molecular and biological processes associated with the protective

effects of TLR-KO against inflammatory damage and neuroinflammation, and reveal the rel-

evance of the TLR4 receptors response in many neuropathologies.

Introduction

Toll-like receptors (TLRs) are a family of pattern-recognition receptors (PRRs) that recognize

conserved structural motifs in a wide array of pathogens or PAMPs (pathogen-associated

molecular patterns), as well as damaged tissue or DAMPs (damage-associated molecular pat-

tern) [1]. These receptors are expressed in immune cells and TLRs activation leads to the

downstream stimulation of different signaling pathways that trigger the production of large

amounts of inflammatory proteins and cytokines. These pathways include type I interferons

(IFNs), antiviral proteins through the activation of interferon regulatory factor (IRF) 3, IRF7,

activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κβ) [2]. In the central nervous
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system, most TLRs are expressed in glial cells [3]. Recent evidence demonstrates the participa-

tion of the TLRs response in neurodegenerative disorders [4, 5].

TLR-signaling pathways are strictly regulated at many levels to prevent excessive inflamma-

tion and to achieve balanced output. Recently, several studies have demonstrated the regula-

tory role of miRNAs in the control of the immune response and TLRs to the pathogens and

regulators involved in TLR-signaling [6, 7].

MicroRNAs (miRNAs, miRs) are short (17–24bp) RNA species expressed across cell types

that are active against a high proportion of the transcriptome [8]. The sequence-complemen-

tary mechanism of miRNA activity exploits the combinatorial regulation of gene expression by

repressing the translation of their complementary target genes [9]. These small RNAs play a

crucial role in the regulation of diverse biological processes, such as tissue development and

homeostasis [10], cell proliferation and differentiation, apoptosis, and immune system func-

tion [11]. However, dysregulated miRNAs contribute to the development of several diseases,

such as cancer, and cardiovascular or neuroinflammatory and neurological diseases [12].

Ethanol is a neurotoxic compound and its abuse can cause neural damage. However, the

mechanism of its neurotoxicity remains unclear. We have shown that by activating TLR4

receptors in glial cells [13, 14], ethanol triggers the release of cytokines and inflammatory

mediators to cause neuroinflammation and brain damage in mice with chronic alcohol con-

sumption [15]. The critical role of the TLR4 response in the neuroinflammatory effects of etha-

nol has been further supported by demonstrating that TLR4-deficient mice are protected

against ethanol-induced neuroinflammation and neural damage [16]. To explore the regula-

tory action of miRNAs in the effects of ethanol on the brain and the influence of the TLR4

response, we used high-throughput sequencing methods along with a bioinformatics analysis

in the cortices of the TLR4-WT and TLR4-KO mice treated with and without ethanol. The

results demonstrate that ethanol treatment induces a differential expression of some miRNAs,

such as the miR-183 cluster (miR-183C) (miR-96/-182/-183), miR-200a and miR-200b, which

were down-regulated, while mirR-125b was up-regulated in the alcohol-treated WT versus
(vs.) untreated mice. Some of these miRNAs modulate the target genes related to the genes

associated with the innate immune TLR4 signaling response (Il1r1, Mapk14, Sirt1, Lrp6 and

Bdnf). However, changes in the neuroinflammatory target genes associated with alcohol abuse

were abolished mostly in the ethanol-treated TLR4-KO mice [17]. These results raise the ques-

tion as to what the impact of the inflammatory or anti-inflammatory associated miRNAs pro-

file is on mice lacking the TLR4 response.

Using high-throughput sequencing (NGS) data from the WT and TLR4 knockout mice cor-

tices, along with a bioinformatics analysis, the aims of this study were to evaluate whether: 1) a

differential or specific expression exists in certain miRNAs that modulate the inflammatory

pathways associated with TLR4; 2) compensatory changes occur in certain anti-inflammatory

miRNAs that could explain the reduction in neuroinflammation associated with alcohol

intake.

Material & methods

Animals

Female wild-type (TLR4_WT, TLR4+/+, WT) (Harlan Ibérica S.L., Barcelona) and TLR4

knockout (TLR4_KO, TLR4-/-, KO) mice were used, which were kindly provided by Dr. S.

Akira (Osaka University, Japan) with C57BL/6J genetic backgrounds. Animals were kept

under controlled light/dark (12 h/12 h) conditions at 23˚C and 60% humidity. The animal

experiments were carried out in accordance with the guidelines set out in the European
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Communities Council Directive (86/609/ECC) and Spanish Royal Decree 1201/2005, and

were approved by the Ethical Committee of Animal Experimentation of CIPF (Valencia,

Spain).

Alcohol treatment

For the chronic alcohol treatment, 44 (11 animals/group) 7-week-old WT (C57BL/6J) and

TLR4-KO female mice were housed (4 animals/cage) and maintained with either water (WT

and TLR4-KO control) or water containing 10% (v/v) alcohol. They were placed on a solid

diet ad libitum for 5 months. During this period, daily food and liquid intake were similar for

both the WT and TLR4-KO mice and the alcohol-treated/untreated groups. Body weight gain

at the end of the 5-month period was similar in both the WT (C57BL/6J) and TLR4-KO mice

treated with or without alcohol, as previously described [15]. The peak blood alcohol levels

(BALs) detected in mice after the chronic ethanol treatment were around�125 mg/dl (range

of 87–140 mg/dl) in the ethanol-treated WT mice, and� 122 mg/dl (range of 98–135 mg/dl)

in the ethanol-treated-KO. The use of females instead of males was based on our previous

studies showing that females were more vulnerable to the effects of ethanol than males [15].

Cerebral cortex dissection

Mice were sacrificed by cervical, brains were removed and cerebral cortices were dissected fol-

lowing the mouse brain atlas coordinates instructions [18]. Brain cortices were weighed and

immediately snap-frozen in liquid nitrogen. Samples were stored at -80˚C until processed.

Total RNA isolation

The frozen cortex samples (100–200 mg) were used for the total and small RNA (sRNA)

extractions. Briefly, 100–200 mg of tissue were disrupted with 1 ml of QIAzol (Qiagen, Mary-

land, USA), followed by the phenol chloroform method [19]. Total RNA and sRNA were iso-

lated using the miRNeasy columns from the Qiagen Kit to obtain a separate sample for each

RNA type. sRNAs were used for the deep sequencing protocol. Total RNA was employed for

RT-qPCR to evaluate miRNAs and genes.

DNA isolation and genotyping

The genomic DNA from the WT and TLR4-KO mice was isolated using the commercial Max-

well 16 mouse tail DNA purification kit and the Maxwell 16 Instrument (Promega, Barcelona,

Spain). Following the manufacturer’s instructions, DNA was collected in 300 μl of elution

buffer. DNA was amplified with specific primers designed to differentiate WT and TLR4-KO

strains. For genotyping purposes, three primers were designed according to previous studies

[20]: primer “b”, which was recognized by both genotypes (WT and TLR4-KO); primer “a”,

which was specific for the WT mice; primer “c”, which was specific for the TLR4-KO mice.

PCR was performed using 2 μl of DNA extract with master mix 2x PCR TaqNova-RED (Blirt,

Gdańsk, Poland). The thermocycler (Eppendorf) program was 40 cycles: 30 seg 94 ˚C+ 90 seg

67 ˚C and 60 seg 74 ˚C. Amplicons were loaded in 1.5% agarose gel and visualized in BioRad.

The employed primers are described in Table 1.

RNA quantity and quality determinations

The quantities of each total RNA sample were determined using NanoDrop™, and quantity

and qualities were measured in an Agilent 2100 bioanalyzer. Total RNA integrity was analyzed

by the RNA Nano6000 kit (Agilent Technologies, Santa Clara, CA, USA) and the sRNA kit
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Table 1. The RT and RT-qPCR primers used.

PRIMER SEQUENCE

PRIMER A CGTGTAAACCAGCCAGGTTTTGAAGGC

PRIMER B TGTTGCCCTTCAGTCACAGAGACTCTG

PRIMER C TGTTGGGTCGTTTGTTCGGATCCGTCG

PPIA_F/PPIA_R GCGTCTGCTTCGAGCTGTTTGC / ACATGCTTGCCATCCAGC

TLR4_F/TLR4_R TGCCTCTCTTGCATCTGGCTGG/CTGTCAGTACCAAGGTTGAGAGCTGG

TRIL_F/TRIL_R CCAACGGCAACGAGATTG / CGGTTAGATTCCAGGTGTAGG

IL1Β_F/IL1B_R CTCATTGTGGCTGTGGAGAA / TCTAATGGGAACGTCACACA

IL6_F/IL6_R AAGCCAGAGTCCTTCAGAGAGA / TCTTGGTCCTTAGCCACTCCT

COX2_F/COX2_R CATTGACCAGAGCAGAGAGATG / GGCTTCCAGTATTGAGGAGAAC

IL1R_F/IL1R_R TGAAGAGCACAGAGGGGACT / CATTGATCCTGGGTCAGCTT

TRAF6_F/TRAF6_R AACGTCCTTTCCAGAAGTGC / GAATGTGCAAGGGATTGGAG

RT-MIR-592-5P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACATCATCGA

PCR-MIR-592-5P ACACTCCAGCTGGGATTGTGTCAATATGCG

RT-MIR-377-3P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACAAAAGTTG

PCR-MIR-377-3P ACACTCCAGCTGGGATCACACAAAGGCAAC

RT-MIR-382-3P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAAAGTGTTG

PCR-MIR-382-3P ACACTCCAGCTGGGTCATTCACGGACAAC

RT-MIR-27B-5P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTTCACCAATC

PCR-MIR-27B-5P ACACTCCAGCTGGGAGAGCTTAGCTGATTG

RT-MIR-96-5P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCAAAAATG

PCR-MIR-96-5P ACACTCCAGCTGGGTTTGGCACTAGCAC

RT-MIR-1982-3P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTGTGGGAGAAC

PCR-MIR-1982-3P ACACTCCAGCTGGGTCTCACCCTATGTTC

RT-MIR-5122 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCACAGCCCCGG

PCR-MIR-5122 ACACTCCAGCTGGGCCGCGGGACCCGG

RT-MIR-182-5P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGGTGTGAGTTC

PCR-MIR-182-5P ACACTCCAGCTGGGTTTGGCAATGGTAGAAC

RT-MIR-183-5P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTGAATTCTAC

PCR-MIR-183-5P ACACTCCAGCTGGGTATGGCACTGGTAG

RT-MIR-429-3P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACGGCATTACC

PCR-MIR-429-3P ACACTCCAGCTGGGTAATACTGTCTGGTAAT

RT-MIR-141-3P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCCATCTTTACCAG

PCR-MIR-141-3P ACACTCCAGCTGGGTAACACTGTCTGGTA

RT-MIR-9-5P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCATACAGCTAG

PCR-MIR-9-5P ACACTCCAGCTGGGTCTTTGGTTATCTAGC

RT-MIR-136-3P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAGACTCATTTG

PCR-MIR-136-3P ACACTCCAGCTGGGATCATCGTCTCAAATG

RT-MIR-99B-5P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGCAAGGTCGGT

PCR-MIR-99B-5P ACACTCCAGCTGGGCACCCGTAGAACCG

RT-MIR-125A-5P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCACAGGTTAAAG

PCR-MIR-125A-5P ACACTCCAGCTGGGTCCCTGAGACCCTTTAAC

RT-MIR-125B-5P GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCACAAGTTAGG

PCR-MIR-125B-5P ACACTCCAGCTGGGTCCCTGAGACCCTAAC

REVERSE PRIMER CCAGTGCAGGGTCCGAGGT

TLR7_F / TLR7_R TGTGGACACGGAAGAGACAA / CCCTCAGGGATTTCTGTCAA

TLR8_F/ TLR8_R AACCATCGTCAACTGCATGA / CATTTGGGTGCTGTTGTTTG

IL12_F / IL12_R ACGGCCAGAGAAAAACTGAA / CTACCAAGGCACAGGGTCAT

INFΑ_F / INFA_R AGTGAGCTGACCCAGCAGAT / CAGGGGCTGTGTTTCTTCTC

https://doi.org/10.1371/journal.pone.0237066.t001
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was employed for sRNAs (Agilent Technologies, Santa Clara, CA, USA). The best nine samples

for each condition were selected and combined to obtain three pooled samples, which gave 12

pooled sRNA samples. Briefly for each condition, nine animals were used and divided into

three sample pools. With this approach, an attempt was made to minimize differences due to

individuals and, in turn, to increase differences due to the studied variables. Then the sRNA

profiles were measured again with the small-RNA kit (Agilent Technologies, Santa Clara, CA,

USA) following the manufacturer’s instructions. Total RNA integrity was measured by the

RNA Nano6000 kit (Agilent Technologies, Santa Clara, CA, USA).

Small RNA library preparation

First 100 ng of the sRNA fraction from the pooled cortex samples were used to prepare the

sRNA libraries with the Truseq library prep Small RNA Sample Preparation kit (Illumina, San

Diego, USA). These samples were employed for sequencing in HiSeq following the Illumina

pooling manufacture’s guidelines. The cDNA from miRNAs was obtained by the Superscript

II Reverse Transcriptase kit (Thermo Fisher Scientific, Carlsbad, CA, USA) and unique indices

were introduced during PCR amplification for 15 cycles. The sRNA libraries were visualized

and quantified in an Agilent 2100 bioanalyzer. A multiplexed pool was prepared that consisted

of equimolar amounts of sRNA-derived libraries. Libraries were sequenced for 50 single read

cycles in HiSeq2000 (Illumina).

Reverse transcription miRNA (miRNA-RT)

First of all, 500 ng of total RNA from cortical brain tissue were used. Samples were treated

with DNase I (Invitrogen, Foster City, CA, USA) to avoid genomic DNA contamination. The

retrotranscription reaction was run with specific RT-primers (1nM) (Integrated DNA Tech-

nologies, Inc.) for each analyzed miRNA using the High Capacity cDNA Reverse Transcrip-

tion kit (Thermo Fisher Scientific, Foster City, CA, USA) following the manufacturer’s

protocol; the specific primers are detailed in Table 1. The reaction was carried out in an

Eppendorf 5341 Master Cycler (Eppendorf AG, Hamburg, Germany) at 25 ˚C for 10 min, then

at 40 ˚C for 1 h, and finally at 85 ˚C for 5 min to inactivate the enzyme. Total RNA was also

converted into cDNA. Briefly; 2 μg of total RNA from the cortical brain tissue were retrotran-

scribed with the High Capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific,

Foster City, CA, USA) following the manufacturer’s protocol.

Real-time quantitative PCR

RT-qPCR was performed in a Light Cycler1 480 System (Roche, Mannheim, Germany). The

reactions contained Light Cycler 480 SYBR Green I Master (2X) (Roche Applied Science,

Mannheim, Germany), 5 μM of the forward and reverse primers, and 1 μL of cDNA. The

amplification efficiency (E) of the primers was calculated from the plot of the Cq values against

the cDNA input according to the equation E = [10(-1/slope)]. The relative expression ratio of a

target/reference gene was calculated by the Pfaffl method [21]. Housekeeping cyclophilin-A

(Ppia) was used as an internal control for messengers and RNAU6 for small RNAs. The primer

gene sequence is detailed in Table 1.

Bioinformatics /pipelines analysis

The preprocessing of reads was done with Cutadapt (version 2.0) [22]. After removing adapt-

ers, the trimmed sequences were aligned against the reference genome (GRCm38.pp6) by
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Bowtie2 (v. 2.3.5.1) [23]. As the genomic alignment of miRNAs is challenging given their size

ranges (~21 nucleotides) [24], Bowtie2 was configured to increase sensitivity [25] (Fig 2A).

A read count was performed by custom R scripts, and these scripts used the library RSu-

bread [26]. In order to annotate the reads aligned against miRNAs, the genome coordinates

from the miRBase/gff3 file [27] were used, which allowed the mature miRNA of interest to be

detected and annotated. After generating the count matrix of the six samples, the gene expres-

sion data were evaluated by multidimensional scaling and clustering methods to detect any

abnormal patterns in the samples. Finally, the Top 10 most abundant miRNAs by read counts

in the samples were annotated, along with their corresponding GO terms (Biological Process)

from the QuickGO database [28] for descriptive purposes.

The count matrix was normalized by the TMM method (Trimmed Mean of M values). The

differential expressions were analyzed by the Bioconductor package of edgeR [29]. P-values were

corrected from the False Discovery Rate (FDR) as proposed by Benjamini and Hochberg [30].

Gene Set Enrichment Analysis (GSEA)

The bioinformatics functional analysis was performed using the mdgsa (Multi-Dimensional

Gene Set Analysis) package [31], while Cluster-Profiler [32] was utilized for the graphics/

results representation. This functional profiling included several steps:

First, miRNA was linked with its targets using TargetScan Mouse (Release 7.2: August

2018). Two types of miRNA-to-Gene lists were used: one inferred by bioinformatic methods

and the other validated by the experimental assays.

Second, the differential expression results were used in the mdgsa package to transform the

miRNA expression level into a gene level, which allowed the gene inferred differential inhibi-

tion score or index to be obtained. This transferred index contained the effect of multiple miR-

NAs against the same gene. By this approach, it was possible to obtain a miRNA regulation

model and the effects of many miRNAs against their target.

Third, the inferred gene index was used in a univariate gene set analysis [33].

The above methodology allowed us to correlate a large set of genes with different functional

annotations (GO terms, KEGG and Reactome pathways, etc.). In fact as we herein obtained a

ranking of genes with differential inhibition indices, it was possible to determine if a functional

annotation was inhibited in either the WT or the TLR4-KO group. The employed functional

annotations were Gene Ontology (Biological Process) terms [34], the Kyoto Encyclopedia of

Genes and Genomes (KEGG) [35] and the Reactome pathways database [36]. Multiple testing

corrections were made with the FDR developed by Benjamini and Hochberg. Data representa-

tion was carried out with ClusterProfiler, a Bioconductor package.

Statistical methods

The SPSS, version 17.0, and the R version 3.4.3 software 40 were used for the validation analy-

sis and bioinformatics, respectively. The RT-qPCR data were analyzed by a Student’s t-test

when comparing TLR4_WT and TLR4_KO. A two-way ANOVA was used in the ethanol

treatment experiments when comparing more than two groups. Differences at a value of

P< 0.05 were considered statistically significant.

Results

Lack of TLR4 attenuates inflammatory pathways

To assess whether lack of the TLR4 receptor would lower the expression of the inflammatory

pathways, we firstly checked the genotypes of the WT and TLR4-KO mice. The agarose gel
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(see Fig 1A) illustrated that while the WT mice only showed a band that was derived by the

amplification with primers “a” and “b”, the TLR4-KO mice only presented amplification when

primers “c” and “b” were utilized, which confirmed the two herein used genotypes. We also

proved the absence of mRNA TLR4 in the TLR4-KO mice (Fig 1B).

We next measured the expression of the different genes and proteins involved in the TLR4

pathway. Fig 1B shows that while the gene expressions of Tril (TLR4 interactor with leucine-

rich repeats) and interleukin Il-6 lowered in the TLR4-KO cortices, no change or up-regula-

tion was observed in the gene expressions of Traf6 (tumor necrosis factor receptor-associated

factor 6) and receptor Il-1r1, respectively, compared to the WT mice.

To further confirm our previous results, which demonstrated that lack of TLR4 attenuated

the inflammatory response in TLR4-KO mice, we also evaluated the levels of some inflamma-

tory-related genes in the mice cortices of the WT and TLR4-KO control with ethanol. Fig 1C

shows that while ethanol treatment increased the gene expression levels of IL-1R, IL-1β, Il-6

and COX-2 in the WT mice cortices, the same ethanol treatment did not affect the levels of

these genes in the TLR4-KO mice with the same treatment. These findings indicate that the

inflammatory signaling response did not occur in the TLR4-KO mice cortices.

Analysis of the mature miRNA’s sequences from the WT and TLR4-KO

mice cortices

With the deep sequencing analysis data (see Ureña et al., 2018, GEO Series accession number

GSE120373), we next evaluated the mature miRNAs profile in the WT and TLR4-KO mice

cortices. For this purpose, we followed the methodology scheme shown in Fig 2A, where

sequences were mapped against the mouse reference genome (GRCm38.pp6) using Bowtie2

aligner (version 2.3.5.1). We also employed the miRNA annotation GFF file from miRbase

(Release 22.1), which extracts the reads mapped to mature miRNAs sequences. The read count

with R custom scripts and the Rsubread library were used to obtain a yield of 1.264.521

miRNA reads for the six samples.

Fig 2B shows the most abundant mature miRNA in our NGS data, where 50% of the total

miRNA found belonged to only six miRNA: mmu-miR-181a-5p, mmu-miR-127-3p, mmu-

miR-26a-5p, mmu-miR-434-3p, mmu-miR-22-3p and mmu-miR-128-3p. When focusing on

samples separately, the MDS plot identified that both the WT and TLR4-KO samples clustered

correctly. It is noteworthy that sample KO1 exhibited an abnormal pattern compared to sam-

ples KO2 and KO3. Therefore, we decided to eliminate this outliner sample to perform further

bioinformatics analyses. In relation to this action, each individual sample was formed by a

pool of three independent cortices.

Table 2 shows the functional annotation for the top miRNAs found. The more representa-

tive miRNA in the samples have GO terms that relate to the regulation of the biosynthesis of

interleukins (mmu-miR-26a, mmu-miR-128-3p, mmu-miR-181a-5p) or neurodevelopment

regulation (mmu-miR-22-3p, mmu-miR-26a, mmu-miR-125a-5p). We also found the positive

regulation of microglial cell activation and neuroinflammatory response (mmu-miR-128-3p)

or central nervous system myelin maintenance (mmu-miR-26a-5p), among others. These

results indicate the major regulation of these routes in mice cortices. All the annotated miRNA

has a GO term related to gene silencing by miRNA.

Lack of TLR4 significantly reduces the quantity and diversity of the

miRNAs expressed in the WT mice cortices

Using the information provided by the NGS technology, we analyzed the miRNAs that were

either specific for each genotype or commonly expressed in the WT and TLR4-KO mice.
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Fig 1. Lack of TLR4 alters the ethanol-induced immune response in mice cortices. (A) The genotyping analysis of

the wild-type (WT) and TLR4KO mice with specific primers for the locus of the TLR4 receptor were confirmed by

agarose gel. (B) The RT-qPCR analysis in the WT and TLR4-KO mice cortices showed lack of TLR4 gene expression in

the TLR4-KO mice. (C) The RT-qPCR analysis indicated the deregulation of some TLR4 pathway components, such as

Il-6, Tril and IL1R, but not in others like the Traf6 gene. (D) The RT-qPCR analysis of IL1R1, IL1β IL6 and COX2

confirmed that ethanol treatment triggered the activation of specific TLR4 signaling pathway components in the WT

mice cortices, but ethanol treatment effects were blocked or attenuated in the TLR4-KO mice. A statistical analysis was

performed by the t-test for 1B and-1C and a two-way ANOVA for 1D. Asterisk indicates the significance with a p-

value �<0.05, ��<0.01 and ��<0.001. n = 5–10.

https://doi.org/10.1371/journal.pone.0237066.g001
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Fig 2. Bioinformatics analysis and mature miRNA profile of samples: (A) Pipeline methodology used (see page 8). (B)

The Top 10 abundant mature miRNA in samples, which were almost 50% of the total counts of the following mature

miRNA: mmu-miR-181a-5p, mmu-miR-127-3p, mmu-miR-26a-5p, mmu-miR-434-3p, mmu-miR-22-3p and mmu-

miR-128-3p.

https://doi.org/10.1371/journal.pone.0237066.g002
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Fig 3A illustrates a Venn’s diagram which shows that while 365 miRNAs were commonly

expressed in both genotypes, 52 miRNAs were exclusively expressed in the WT (Table 3; see

also S1 Table), and only four miRNAs belonged exclusively to the TLR4-KO mice (Table 4).

When we looked at the specific miRNAs with higher counts (illustrated in Table 3). We

noted that some, such as miR-382-3p, were related to the TLR4/MyD88/NF-κβ signaling path-

way [40], and miR-592-5p was involved in brain injury [38]. Notably, these miRNAs were not

detected in the TLR4-KO mice by our NGS data analysis. For the specific miRNA expressed in

the TLR4-KO mice shown in Table 4, we were unable to find any relevant functions or path-

way related to these miRNAs in the bibliography.

To confirm and validate the NGS data, we decided to evaluate the expression of some miR-

NAs related to inflammatory processes in the WT and TLR4-KO mice cortices by RT-qPCR

(the selected miRNAs are depicted in red in Tables 3 and 4). Fig 3B shows the differential

expression pattern of the selected miRNAs. Here we observed how miR-382-3p, miR-27b-5p,

miR-592-5p and miR-377-3p, which were exclusively found miRNAs in the WT mice, showed

a high expression level in the WT mice, but we noted a slight expression for the TLR4-KO

mice. These findings demonstrate that RT-qPCR was a more sensitive technique than NGS.

Table 2. The most represented mature miRNAs in mice cortices. The mature miRNAs were annotated with Gene Ontology in relation to a biological process using the

QuickGO database [27].

MIRNA NAME GO ID GO DESCRIPTION
MMU-MIR-22-3P GO:0035195 gene silencing by miRNA

GO:0051152 positive regulation of smooth muscle cell differentiation

GO:2001200 positive regulation of dendritic cell differentiation

MMU-MIR-26A-5P GO:0010459 negative regulation of heart rate

GO:0032286 central nervous system myelin maintenance

GO:0035195 gene silencing by miRNA

GO:0045379 negative regulation of the interleukin-17 biosynthetic process

GO:0045409 negative regulation of the interleukin-6 biosynthetic process

GO:0060371 regulation of atrial cardiac muscle cell membrane depolarization

GO:0090370 negative regulation of cholesterol efflux

GO:0150079 negative regulation of the neuroinflammatory response

GO:1903609 negative regulation of inward rectifier potassium channel activity

MMU-MIR-128-3P GO:0010985 negative regulation of lipoprotein particle clearance

GO:0035195 gene silencing by miRNA

GO:0042632 cholesterol homeostasis

GO:0055088 lipid homeostasis

GO:0090370 negative regulation of cholesterol efflux

GO:0150078 positive regulation of the neuroinflammatory response

GO:1903980 positive regulation of microglial cell activation

MMU-MIR-181A-5P GO:0032691 negative regulation of interleukin-1 beta production

GO:0032715 negative regulation of interleukin-6 production

GO:0032720 negative regulation of tumor necrosis factor production

GO:0035195 gene silencing by miRNA

GO:0050723 negative regulation of the interleukin-1 alpha biosynthetic process

GO:0050728 negative regulation of the inflammatory response

MMU-MIR-125A-5P GO:0010629 negative regulation of gene expression

GO:0035278 miRNA mediated inhibition of translation

GO:1903671 negative regulation of sprouting angiogenesis

https://doi.org/10.1371/journal.pone.0237066.t002
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Fig 3. Unique miRNA profile for each genotype: (A) The Venn’s diagram illustrated that 365 miRNAs were

commonly expressed in both genotypes; 52 miRNAs were exclusively expressed for the WT and only four miRNAs

belonged to the TLR4-KO mice. (B) RT-qPCR confirmed the differential expression pattern of some miRNAs, e.g.

miR-382-3p, miR-27b-5p, miR-592-5p and miR-377-3p, which were down-regulated in the TLR4-KO mice, while

miR-96-5p and miR-5122 were not deregulated as predicted by NGS. A statistical analysis was performed by the t-test

with n = 6–8. Statistical significance with a p-value of �<0.05 and ��<0.01. (C) Bioinformatics enrichment analysis of

specific miRNAs in the WT mice.

https://doi.org/10.1371/journal.pone.0237066.g003
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We noted that miR-96-5p, miR-5122 and miR-1982 showed a very low expression in both

genotypes, and no significant difference was found when comparing the WT vs. The

TLR4-KO mice. It is noteworthy that when PCR cycles were used, miR-96-5p and miR-5122

were detected, but miR-1982 was not detected by real-time PCR.

After corroborating that the TLR4-KO genotype presented an altered miRNAs pattern in

both quantity and diversity by RT-qPCR, we decided to perform a functional analysis with the

52 miRNAs found exclusively in the WT mice with the mdgsa package (Fig 3A). RT-qPCR

provided us with information which indicated that the miRNAs not detected in TLR4-KO by

the NGS data were detected by qPCR, but at a very low level compared to the WT mice. The

bioinformatics results are offered in Fig 3C. Remarkably this figure depicts a strong regulation

on routes like neuron death, apoptosis processes and synapsis organization, among others.

These results suggest a lower regulation of TLR4-KO during these important routes/processes

than the WT mice.

Table 3. Exclusive miRNAs in the TLR4-WT mice. The table shows the total counts and a selected article about their function.

MIRNA ONLY

IN TLR4-WT

TLR4-WT1 TLR4-WT2 TLR4-WT3 TLR4-KO2 TLR4-KO3 LITERATURE PMID MATURE SEQUENCE

MMU-MIR-

7A-1-3P

5 10 14 0 0 Differential stress induced c-Fos

expression in the dorsal raphe and

amygdala of high-responder/low-

responder rats.

[37] caacaaaucacagucugccaua

MMU-MIR-

592-5P

7 10 9 0 0 Effects of MicroRNA-592-5p on

hippocampal heuron injury

following hypoxic-ischemic brain

damage.

[38] auugugucaauaugcgaugaugu

MMU-MIR-

377-3P

7 9 3 0 0 miR-377-3p drives malignancy

characteristics by up-regulating

GSK-3β expression and activating

the NF-κB pathway in hCRC cells.

[39] aucacacaaaggcaacuuuugu

MMU-MIR-

382-3P

6 2 11 0 0 miR-382-3p suppressed the IL-1β
induced inflammatory response of

chondrocytes byia the TLR4/

MyD88/NF-κB signaling pathway.

[40] ucauucacggacaacacuuuuu

MMU-MIR-

27B-5P

3 10 5 0 0 Exosomal microRNA profiles from

serum and cerebrospinal fluid in

neurosyphilis.

[41] agagcuuagcugauuggugaac

MMU-MIR-

199A-3P

5 6 3 0 0 miR-199a-3p is involved in

estrogen-mediated autophagy

through the IGF-1/mTOR pathway

in osteocyte-like MLO-Y4 cells.

[42] acaguagucugcacauugguua

MMU-MIR-

96-5P

3 4 7 0 0 miR-96-5p prevents hepatic stellate

cell activation by inhibiting

autophagy via ATG7.

[43] uuuggcacuagcacauuuuugcu

MMU-MIR-

345-3P

2 7 4 0 0 Mitochondria- associated

microRNA expression profiling of

heart failure.

[44] ccugaacuaggggucuggagac

https://doi.org/10.1371/journal.pone.0237066.t003

Table 4. Exclusive miRNAs in the TLR4-KO mice. The table shows the total counts and a selected article about their function.

MIRNA ONLY IN TLR4-KO TLR4-WT1 TLR4-WT2 TLR4-WT3 TLR4-KO2 TLR4-KO3 LITERATURE PMID MATURE SEQUENCE

MMU-MIR-1982-3P 0 0 0 2 2 no items found ucucacccuauguucucccacag

MMU-MIR-5122 0 0 0 2 2 no items found ccgcgggacccggggcugug

MMU-MIR-5114 0 0 0 2 3 no items found acuggagacggaagcugcaaga

MMU-MIR-677-3P 0 0 0 3 2 no items found gaagccagaugccguuccugagaagg

https://doi.org/10.1371/journal.pone.0237066.t004
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The analysis of the differential expression of miRNAs in the WT vs. TLR4-KO mice shows

a deregulation of the miR-200 family and the miR-99b/let-7e/miR-125a cluster in TLR4-KO

We went on to evaluate the differential expression pattern of the miRNAs in the TLR4-WT

vs. TLR4-KO mice. The dendrogram diagram illustrated in Fig 4A shows a marked difference

in the expression levels of several miRNA in the WT and TLR4-KO mice cortices. Table 5 also

provides complete information on the fold changes, statistics and p-values for the different

miRNAs.

When we considered the data in Fig 4A and Table 5, we saw the systematic down-regula-

tion of the family miR-200 components in the TLR4-KO vs. WT mice. Fig 4B illustrates the

two subfamilies: the first is composed of miR-141 and miR-200c located in mouse chromo-

some 6 (chromosome 12 in the human genome); the second subfamily includes miR-200a,

miR-200b and miR-429, located in chromosome 4 in the mouse genome (chromosome 1 in

the human genome).

In the first subfamily, miR-200a-3p and miR-141-3p were down-regulated 5.02- and

4.63-fold in TLR4-KO compared to WT. Other components like miR-429-3p, miR-200a and

miR-200b showed a down-regulation of around 4.5-, 5- and 3.5–fold, respectively (Table 5 and

Fig 4A). Notably, these miRNAs are associated with the response to LPS activity [45].

With the heatmap (Fig 4A), we also detected two miRNAs that formed part of the cluster

formed by miR-99b/let-7e/miR-125a, which showed a higher expression in the TLR4-KO than

in the WT mice. Interestingly, this cluster acts as a negative regulation on the TLR signaling

pathway by controlling a set of target genes involved in the receptor pathway [46]. However,

before assessing the functional analysis of the pathways modulated by these miRNAs, we vali-

dated them by RT-qPCR.

Fig 4C shows that all the miRNAs down-regulated by NGS were also down-regulated by

RT-qPCR, which indicates that both techniques strongly correlate. The results showed that

whereas the miR-200 family components were down-regulated in TLR4-KO, the miRNAs of

cluster miR-99b/let-7e/miR-125a, such as miR-99b and mi-125a, tended to be up-regulated.

These results indicate that specific miRNAs clusters are deregulated in the TLR4-KO mice cor-

tices compared to the WT samples, which implies a differential miRNA profile related to the

genotype.

Functional analysis of miRNAs shows the major depletion of the

inflammatory pathways in the TLR4-KO mice

We next assessed the signaling pathways affected by the deregulation profile of the miRNAs in

the cerebral cortices of those mice lacking the TLR4 receptor vs. the WT. For this purpose, a

gene set analysis (GSA) was performed along with the Reactome, Biological Processes GO and

KEGG pathways. These approaches allowed us to identify etiologic pathways and functional

annotations and could, thus, provide novel biological insights [47]. Fig 5 illustrates the GSA

results using the bioinformatics and experimental validated targets. The size of the round node

was the number of genes in the function. Color was the adjusted p-value.

The Reactome pathways analysis (Fig 5A), run with an inferred bioinformatics targets list,

revealed that TLR4-KO was depleted of numerous pathways linked with the immunological

system and TLRs signaling. For instance, cytokines and interleukin signaling and immune sys-
tem, “MyD88 dependent cascade initiated on endosome”, “Toll-like Receptor 7/8 (TLR 7/8) Cas-
cade”, “TRAF-6 mediated induction of NF-kβ, MAP kinases upon TLR 7/8 or 9 activation”, etc.

Conversely in the WT group, the analysis showed depleted pathways in relation to the

metabolism of inflammatory regulation molecules. The analysis run with the experimental

inferred target lists also revealed depleted pathways related to the “Neuronal System” and
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Fig 4. Differential expression pattern between the TLR4 and TLR4-KO mice: (A) Heatmap diagram of the

comparative TLR4 vs. TLR4-KO mice. (B) Sequence of the five miR-200 family members with the human genomic

localization of two clusters containing miR-200 family members; http://atlasgeneticsoncology.org/Genes/GC_MIR141.

html. (C) RT-qPCR shows the expression of some mature miRNAs selected in WT and TLR4-KO (miR-141-3p,

miR429-5p, miR-182-5p, miR-136-3p, miR-9-5p, miR-125a-3p, miR-125b-5p, miR99a-5p) (n = 6–8). The statistical

analysis was performed by the Test-t-. Statistical significance is denoted by a p-value of<0.05.

https://doi.org/10.1371/journal.pone.0237066.g004
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“Potassium channels” in the knockout group, while the pathways associated with carbohydrate

metabolism and olfactory signaling were depleted in the WT mice.

Functional profiling for Biological Processes indicated a significant reduction in several

processes linked with the neurodevelopment and neuronal synapse processes in the TLR4-KO

group, while the responses to the pheromones processes were depleted in the WT group

(Fig 5B).

Table 5. Differential expression results for the miRNAs profiles in the comparative TLR4 vs. TLR4-KO mice.

miRNA logFC logCPM F PValue FDR
mmu-miR-182-5p -3.9719505 13.512520 404.36352 0e+00 0.00e+00

mmu-miR-183-5p -3.8092076 11.610893 244.90941 0e+00 0.00e+00

mmu-miR-429-3p -4.2064135 9.640591 143.75382 0e+00 0.00e+00

mmu-miR-200a-3p -5.0255762 8.843745 116.80459 0e+00 0.00e+00

mmu-miR-200b-3p -3.4471567 8.943224 87.78602 0e+00 0.00e+00

mmu-miR-141-3p -4.6305701 7.620256 58.62150 0e+00 0.00e+00

mmu-miR-9-5p -0.9452873 13.167504 30.57290 0e+00 6.00e-06

mmu-miR-451a -1.9476349 8.113536 28.13968 1e-07 1.92e-05

mmu-miR-200c-3p -2.5575429 7.183744 25.60193 4e-07 6.54e-05

mmu-miR-136-3p -1.2688583 9.777238 25.45641 5e-07 6.54e-05

mmu-miR-99b-5p 1.0160077 14.624300 50.12605 0e+00 0.00e+00

mmu-miR-125a-5p 0.9073845 15.386571 45.41301 0e+00 0.00e+00

mmu-miR-92b-3p 0.9775661 14.065904 42.16099 0e+00 0.00e+00

mmu-miR-125b-5p 0.8289091 14.400916 32.08300 0e+00 3.00e-06

mmu-miR-5121 0.9294424 11.644308 24.86325 6e-07 8.30e-05

https://doi.org/10.1371/journal.pone.0237066.t005

Fig 5. Enrichment analyses: Enrichment analyses results using miRNA to target the bioinformatics and experimental lists from the miR Database

and TargetScan. Analyses were performed with mdgsa [31] and clusterProfiler [32]. (A) Reactome pathways. (B) Biological Processes GO. (C)

KEGG pathways. Abscissa axis indicates if the pathway or function is depleted in the WT or the knockout group. Ordinate axis displays the GO term or

the pathway. The size of the round node is the number of genes in the function. Color is the adjusted p-value. Raw p-values were adjusted by FDR

(Adjusted p-value< 0.05).

https://doi.org/10.1371/journal.pone.0237066.g005
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Finally, the KEGG pathways analysis demonstrated the activity depletion of diverse diseases

routes, like diabetes and acute myeloid leukemia, as well as insulin and calcium signaling path-

ways, in the knockout group. However, the WT group revealed depleted pathways related to

retinol and olfactory transduction routes (Fig 5C).

In short, by the NGS technology and bioinformatics approaches, the results revealed new

insights into the molecular and biological processes associated with protective effects of

TLR-KO against neuroinflammation, brain damage neurodegeneration and alcohol abuse.

Functional enrichment analysis of Toll-like Receptors 7/8

To further elucidate the hierarchical functions of miRNAs in gene regulatory networks in

TLR4-KO vs. WT mice, we next performed a complementary and enrichment analysis of

some routes obtained by the bioinformatics analysis. We selected Toll-like Receptor 7/8 (TLR
7/8) because these receptors have been related to TLR4 pathways and alcohol abuse [48]. We

therefore performed a RT-qPCR analysis of TLR7 and TLR8, and of some genes associated

with their signaling response, such as IL12 and INFα. Fig 6 shows that while ethanol, an

inflammatory activator, increased the TLR8 mRNA levels in both genotypes, no changes in

Fig 6. Lack of TLR4 dismisses INFα activation by TLR7/8 Receptors. (A-D) The RT-qPCR analysis of the WT and TLR4-KO mice

cortices with and without EtOH treatment, the relative quantification of receptors TLR7/8, Interleukin IL12 and INFα showed a

differential expression of TLR8 by the ethanol inflammatory effect in both genotypes, but alcohol led to the activation of INFα only in

the WT mice. A statistical analysis was performed by a two-way ANOVA with n = 6. Statistical significance with a p-value of �<0.05 and
��<0.01.

https://doi.org/10.1371/journal.pone.0237066.g006
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gene expression were noted in TLR7. With the downstream genes, while no changes were

noted in Il12, INFα mRNA significantly increased with ethanol in the WT mice, but not in

TR4-KO.

Discussion

TLR4 receptors are highly conserved receptors that play a key role in the innate immune

system by recognizing microbial subproducts, such as pathogen-associated molecular pattern

and endogenous molecules, which results in inflammatory response activation [49, 50]. The

activation of these receptors induces intracellular signaling by the myeloid differentiation fac-

tor 88 (MyD88) dependent and MyD88-independent pathways. The final event induces the

activation of the downstream transcription factors, such as NF-κβ, among others, involved in

cellular responses and the production of proinflammatory cytokines [51].

Recent studies have demonstrated the importance of TLR4 receptors in both metabolic

functions and neuropathology because the absence of these receptors prevents metabolic dam-

age related to fatty acids [52], ischemic injury [53] or neuroinflammatory, neurodegenerative

and demyelination disorders [54, 55]. Our previous studies have shown the crucial participa-

tion of the TLR4 signaling response in ethanol-induced brain damage, neurodegeneration and

behavioral dysfunction alteration [56, 57], effects which were not observed in alcohol-treated

TLR4-KO mice. By NGS and bioinformatics tools, we recently identified miRNAs that were

differentially expressed in chronic alcohol-treated vs. untreated WT or TLR4-KO mice corti-

ces. In particular, we demonstrated the differential expression of the miR-183 cluster (miR-

96/-182/-183), miR-200a and miR-200b, which were down-regulated, while mirR-125b was

up-regulated in the alcohol-treated WT versus (vs.) untreated mice [17]. The functional enrich-

ment of the miR-183C and miR-200a/b family target genes revealed that neuroinflammatory

pathways networks are involved in TLR4 signaling associated with alcohol abuse. Notably, the

neuroinflammatory target genes were abolished in TLR4-KO mice. These results raise the

question about which miRNAs, genes or signaling proteins are down-regulated in TLR-KO to

be able to exert their protective effects.

Here our results demonstrate that the TLR4-KO mice presented a significant lack or down-

regulation in several mature miRNAs involved in the inflammatory response compared to the

profile observed in the WT mice. Indeed the Venn’s diagram (Fig 2A) shows that 52 miRNAs

were exclusively expressed in the WT mice, but these miRs had a very low expression in

TLR4-KO, as demonstrated by RT-qPCR. Some of these down-regulated miRNAs, such as

miR-382-3p, are involved in the regulation of IL-1β and TLR4 signaling inhibition [40], while

miR-27b-5p participates in microbial infection defense [58]. The Venn’s diagram also illus-

trates that four miRNAs were exclusively expressed in TLR4-KO (miR-1982-3p, miR-5122,

miR-677-3p, miR-5114). However, the information, functions and validated targets of this set

of miRNAs are practically inexistent and only miR-5122 was detected by RT-qPCR with a very

low expression. These results indicate that lack of TLR4 significantly alters the number and

expression of several miRNAs. Indeed our previous studies demonstrated that ethanol treat-

ment dysregulated miR-200s family and target genes (e.g. MAPK, IL1R1) in the WT, but not

in the TLR4-KO mice treated with alcohol (17). Moreover, we showed that the miR-200 family

was significant down-regulated in the TLR4-KO mice, which supports the absence of neuroin-

flammatory effects of ethanol on mice lacking this receptor.

The functional analysis of the miRNAs exclusively expressed in the WT mice cortices (Fig

3C) provided information on the role of these miRs in neuron death, apoptosis processes, syn-

apsis organization, peptidyl serine signaling or synapsis structure and activity. Interestingly,

the down-regulation of these miRNAs in the TLR4-KO mice offered some protection from
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neuronal death and brain injury in different pathologies. For instance, lack of TLR4 can pro-

tect mice from ischemic brain injury [59], brain damage/inflammation after experimental

stroke [60], neuroinflammation, brain injury [15], Parkinson’s disease [61] and demyelination

associated with alcohol abuse [16]. It is important to stress that the elimination of TLR4 not

only abolished the activation of glial cells and the production of inflammatory cytokines in the

brain, but could also block the recruitment of peripheral inflammatory cells and increase BBB

permeability by participating in some neurodegenerative diseases [62].

From the Venn’s diagram, we also detected 362 miRNAs that were commonly expressed in

both genotypes. Using the heatmap to assess the differential expression of the miRs in TLR4

vs. TLR4-KO (Fig 4A), we revealed the presence of different miRNAs belonging to the miR-

200 family. All the components of this miRNAs family showed a down-regulation (miR-141

and miR-200a and miR-200b, miR-200c, miR-429) in TLR4-KO vs. WT. Interestingly, miR-

200 components like miR-200b and miR-200c, alter the efficiency of TLR4 signaling through

the MyD88-dependent pathway, and lack of the TLR4 receptor can modify miR-200 family

levels by drastically lowering their expression [63]. Similarly, miR-141 and miR-200c regulate

inflammation, while loss of miR-141/200c significantly reduces inflammation, hepatic steato-

sis and injury in non-alcoholic fatty livers in mice [64]. MiR-141-3p is also involved in

chronic inflammatory pain [65], and miR-141 inhibition improves mortality, neurological

deficits, and decreased infarct volumes during post-stroke social isolation in aged mice [66].

Likewise, miR-141 and other miR-200 family members also regulate oxidative stress by target-

ing the p38 (MAPK14) transcript [67, 68]. The heatmap data also demonstrated the up-regu-

lation of the two components of the miR-99b/let-7e/miR-125a cluster (miR99b and miR-

125a) in TLR4-KO vs. WT, whereas some studies have demonstrated the anti-inflammatory

role of this cluster, which influences the production of pro-inflammatory cytokines in

response to LPS [46].

The Functional Profiling for Biological Processes identified the pathways that were affected

by the specific miRNA profile in each genotype. In general, inflammatory pathways are attenu-

ated in the TLR-KO genotype [69], such as cytokine and interleukin signaling and inflamma-

tory processes, as demonstrated after brain injury or diabetes in TLR4-KO [70, 71].

One interesting result was that lacks of TLR4 induced the depletion of other TLRs, like

TLR7/8. These receptors are located in endosomal membranes and recognize single patho-

genic stranded RNAs (ssRNA) and DNAs. TLR7/8 receptors have been associated with innate

immunity to autoimmunity [72, 73]. Some studies also suggest that ethanol exposure increases

TLR7 expression and the release of let-7b in microglia-derived microvesicles, which contrib-

utes to neuroimmune gene induction [74]. The functional analysis of these receptors demon-

strated that while ethanol increased the TLR8 mRNA levels in both genotypes, no changes in

gene expression were noted in TLR7 when comparing WT and TLR4-KO.

Other studies have demonstrated the role of miR-1906 as an important target of the TLR4

receptor in ischemic damage [75]. We detected miR-1906 in our samples, but with a very low

expression. Other authors have suggested the role of either miR-182-5p in the neuroprotective

effect of cerebral ischemia-reperfusion injury via regulation by TLR4 [76] or miR-124 and

miR-146a in reversing neuropathic pain through the TLR4 receptor [77].

In short, the present study provides insights into the role of miRs associated with the

TLR4 response. This receptor modulates and activates the inflammatory signaling response

to trigger inflammation and tissue damage as lack of these receptors (TLR4-KO) signifi-

cantly blocks or reduces the expression of the miRs associated with the inflammatory signal-

ing response by contributing to immune disorders, including neurodegeneration and

ischemic damage.
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