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Analyzing the time-course of several viral infections using mathematical models based on
experimental data can provide important quantitative insights regarding infection dynamics.
Over the past decade, the importance and significance of mathematical modeling has been
gaining recognition among virologists. In the near future, many animal models of human-
specific infections and experimental data from high-throughput techniques will become
available.This will provide us with the opportunity to develop new quantitative approaches,
combining experimental and mathematical analyses. In this paper, we review the various
quantitative analyses of viral infections and discuss their possible applications.
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INTRODUCTION
Based on a decline in the viral load of human immunodeficiency
virus type-1 (HIV-1) patients following the initiation of antiviral
therapy, the turnover of HIV infected cells in vivo was estimated
through mathematical modeling (Ho et al., 1995; Wei et al., 1995).
Starting with these landmark papers, mathematical modeling has
evolved into an important tool in modern virology. Developing a
quantitative understanding of virus infection dynamics is useful
for determining the pathogenesis and transmissibility of viruses,
predicting the course of disease, and evaluating the effects of
antiviral therapy in HIV (Perelson, 2002; Simon and Ho, 2003;
Rong and Perelson, 2009), hepatitis B/C virus (HBV/HCV; Dahari
et al., 2008, 2011; Rong and Perelson, 2010; Chatterjee et al., 2012)
and influenza virus infection (Beauchemin and Handel, 2011;
Murillo et al., 2013). The importance and significance of mathe-
matical modeling work is slowly being recognized by virologists. In
addition, in recent years, data from animal experiments have been
analyzed using mathematical models (Igarashi et al., 1999; Chen
et al., 2007; Dahari and Perelson, 2007; Dinoso et al., 2009; Klatt
et al., 2010; Miao et al., 2010; Wong et al., 2010; Graw et al., 2011;
Horiike et al., 2012; Pinilla et al., 2012; Oue et al., 2013). A syner-
gistic approach, combining animal experiments and mathematical
models, has strong potential applications for researching various
viral infections. For example, to determine certain aspects of virus
infection, such as sites of infection, target cells (Dinoso et al., 2009;
Horiike et al., 2012), and viral gene functions (Sato et al., 2010,
2012; Pinilla et al., 2012), designing an animal experiment and
estimating numerous parameters with a mathematical model are
useful and important. In the future, to understand the patho-
physiology of untreatable or (re-)emerging virus infections, and
to effectively develop therapeutic strategies against these viruses,
we need to establish a platform involving quantitative analyses
that are based on data from animal experiments (Perelson, 2002;

Simon and Ho, 2003; Dahari et al., 2008, 2011; Rong and Perel-
son, 2009, 2010; Beauchemin and Handel, 2011; Chatterjee et al.,
2012; Murillo et al., 2013). In this paper, we briefly review a his-
tory of quantitative approaches to virology and discuss the possible
applications of these in combination with animal experiments.

QUANTIFICATION OF VIRUS INFECTION DYNAMICS
Virological research has typically been conducted with a small
number of experiments. For example, in order to investigate
the fitness of virus strains, one typically measured viral loads
(e.g., the amount of viral protein and viral infectivity) at a few
times during infection and determined whether one strain pro-
duces significantly more virus than the other. However, the entire
time-course of an infection reflects complex processes involv-
ing interactions between viruses, target cells, and infected cells.
Therefore, viral load detection at one time point ignores the com-
plexity of the aforementioned processes during an entire infection
(Iwami et al., 2012b). It would be useful to translate virus infection
quantitatively into the parameters identifying the multi-composed
kinetics of viral infection from time-course data (Perelson, 2002;
Simon and Ho, 2003; Dahari et al., 2008, 2011; Rong and Perelson,
2009, 2010; Beauchemin and Handel, 2011; Chatterjee et al., 2012;
Murillo et al., 2013). Mathematical modeling of the entire time-
course of infection would allow us to estimate several parameters
underlying the kinetics of virus infection, including burst size
and basic reproductive number (Nowak and May, 2000). These
parameters cannot be directly obtained through experimental and
clinical studies.

HUMAN IMMUNODEFICIENCY VIRUS AND SIMIAN
IMMUNODEFICIENCY VIRUS
On average it takes about, 10 years for an HIV infection to
possibly progress to acquired immunodeficiency syndrome (AIDS;
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Richman, 2001). Because of this slow disease progression, HIV
is classified as a slowly replicating virus (Coffin, 1995; Richman,
2001). Several studies have indicated that slow disease progression
is not due to inactive viral replication, but is a result of aggressive
viral replication and its clearance (Coffin, 1995; Ho et al., 1995;
Wei et al., 1995; Perelson et al., 1996). Interestingly, these results
were based on mathematical analyses of clinical data. Estimat-
ing the decline in viral load of patients following the initiation
of antiviral therapy (or plasma removal by apheresis technique;
Ramratnam et al., 1999) shows us that HIV is cleared from patients
at a rapid rate, with a half-life of around 6 h (Ho et al., 1995;
Wei et al., 1995; Perelson et al., 1996). This estimation of rapid
virus turnover implies that HIV resistance to any single drug could
quickly emerge, highlighting the importance of combination ther-
apies as they reduce the chances of drug resistance developing
(Coffin, 1995; Ho et al., 1995; Wei et al., 1995; Perelson et al., 1996;
Perelson and Nelson, 1999).

The success of mathematical modeling, especially with respect
to HIV infection dynamics has led to the development of a field
called “viral dynamics” (Nowak and May, 2000; Perelson, 2002;
Simon and Ho, 2003; Rong and Perelson, 2009) and has provided
us with further quantitatively novel insights. In 1997, combina-
tions of three antiretroviral drugs successfully reduced plasma
HIV levels to below the limit of detection in clinical assays (50
copies of HIV RNA/ml; Perelson et al., 1997; Eisele and Sili-
ciano, 2012). This approach, known as highly active antiretroviral
therapy (HAART), is currently the primary choice of therapeu-
tic intervention for HIV-1 infected patients, and dramatically
decreases mortality associated with HIV-1 infection (Richman,
2001; Trono et al., 2010; Eisele and Siliciano, 2012). After the ini-
tiation of HAART, the viral load decays with an initially rapid
and exponential decline, followed by a slower exponential decline
(Perelson et al., 1997; Perelson, 2002; Murray et al., 2007; Keele
et al., 2008; Palmer et al., 2008; Rong and Perelson, 2010). Mod-
eling the effects of drug therapy allowed for the quantitation of
virus clearance rates (Ho et al., 1995; Wei et al., 1995; Perelson et al.,
1996), and the death rate of several cell types (e.g., the productively
infected CD4+ T cells; Perelson et al., 1996, 1997; Markowitz et al.,
2003), the productively long-lived infected cells (Perelson et al.,
1997; Palmer et al., 2008), latently infected cells (Perelson et al.,
1997; Zhang et al., 1999; Havlir et al., 2003; Palmer et al., 2008 and
so on). This modeling also estimates the period of infectiousness
for follicular dendritic cell-trapping viruses (Hlavacek et al., 2000),
and assists with designing an optimal therapy (Murray et al., 2007;
Rosenbloom et al., 2012). A simple assessment of HIV RNA data
yields certain information, but mathematical approaches allow for
the extraction of much more information from raw data. Some
excellent reviews regarding the quantitation of HIV dynamics and
its importance have been reported (Perelson and Nelson, 1999;
Nowak and May, 2000; Perelson, 2002; Simon and Ho, 2003; Rong
and Perelson, 2009).

Potent HAART effectively suppresses de novo replication of
HIV but fails to eradicate an HIV-1 infection. Recent studies have
revealed that HIV RNA persists over several years in most infected
patients on suppressive HAART (Havlir et al., 2003; Palmer et al.,
2008). Furthermore, virus loads rapidly rebound to pretreat-
ment levels after discontinuation of HAART (Chun et al., 1999;

Imamichi et al., 2001). These observations suggest the persistence
of viral reservoirs during combination antiviral therapy. To com-
pletely cure HIV-1 infection, it is essential to identify these viral
reservoirs and to eradicate them (Richman, 2001; Trono et al.,
2010; Eisele and Siliciano, 2012). In addition to existing studies
looking at peripheral blood (Chun et al., 1999; Imamichi et al.,
2001; Sharkey et al., 2011), systemic analysis is required to elu-
cidate the mechanisms underlying rebound of plasma viremia
upon discontinuation of HAART. Because it is unethical to collect
various tissues from patients, or to deplete certain cell popula-
tions in patients for analysis, the simian immunodeficiency virus
(SIV)/macaque model (which has been useful in understand-
ing HIV-1 infection) with HAART is suitable for investigating
poorly understood aspects of HIV-1 infection (Dinoso et al., 2009;
North et al., 2010; Horiike et al., 2012; Oue et al., 2013). Using the
SIV/macaque model, for example, it has been recently reported
that the cytotoxic effects of CD8+ T cells on virus-infected cells
during HAART is limited despite suppression of viral load in vivo
(Klatt et al., 2010; Wong et al., 2010). Similarly, analyzing the levels
of viral RNA in plasma and infected cells (e.g., macrophage and
resting memory CD4+ T cells) of certain tissues such as lung and
lymph nodes in SIV-infected macaques using mathematical mod-
els might reveal the precise dynamics of the viral reservoir, and
provide several valuable clues for HIV eradication in patients on
HAART.

HEPATITIS B VIRUS AND HEPATITIS C VIRUS
The theoretical framework for quantifying HIV infection has also
been applied to understand the dynamics of HBV (Nowak et al.,
1996; Lewin et al., 2001; Murray et al., 2006; Dahari et al., 2009b)
and HCV (Neumann et al., 1998; Dixit et al., 2004; Guedj and
Perelson, 2011; Guedj et al., 2012) infections during antiviral ther-
apy. These approaches have estimated the key parameters of the
viral life cycle such as the rate of virus production and clearance
and the death rate of infected cells, that explained the mechanism
of action of antiviral drugs such as interferon, ribavirin, and pro-
tease inhibitor against HCV (Neumann et al., 1998; Dixit et al.,
2004; Guedj and Perelson, 2011; Guedj et al., 2012) and reverse
transcriptase inhibitor against HBV (Nowak et al., 1996; Lewin
et al., 2001; Murray et al., 2006; Dahari et al., 2009b). These anal-
yses have mainly focused on extracellular viral dynamics based
on clinical studies, while several researchers have investigated
the intracellular replication of HCV (Dahari et al., 2007, 2009a;
McLean et al., 2010; Nakabayashi, 2012) and HBV (Nakabayashi
and Sasaki, 2011) based on experimentally established HBV/HCV
cell culture system. These studies have provided novel insights into
the detailed dynamics of intracellular HBV/HCV replication, and
revealed some important processes of the HCV life cycle such as
the subcellular localization of HCV RNA to the replication com-
plex for RNA replication and viral assembly. The above findings
are helpful in understanding HCV turnover and determining new
drug targets with fewer side effects. A number of reviews have been
published detailing the mathematical modeling of HCV infection
(Dahari et al., 2008; Guedj et al., 2010; Rong and Perelson, 2010;
Guedj and Perelson, 2011; Chatterjee et al., 2012).

Although mathematical models were successfully used to
understand the viral dynamics of HBV/HCV during antiviral
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therapy, these models considered only one level of extracellular or
intracellular viral replication. Recently, for HCV infection, several
researchers have developed a new mathematical model, known as
the multi-scale model, that combines extracellular virus infection
dynamics with the key features of intracellular viral replication
(Guedj and Neumann, 2010; Guedj et al., 2013; Rong et al., 2013).
This model incorporates two different time scales: one is for viral
replication within a cell, and the other is for free viral infection
among cells. Using this model in conjunction with clinical trials,
it is possible to verify the mechanism of action of direct-acting
antiviral agents (DAAs) that target specific viral proteins in a cell.
Estimating the effectiveness of DAAs using multi-scale model takes
into account intracellular viral dynamics (Guedj et al., 2013; Rong
et al., 2013). Additionally, the multi-scale model has the potential
to describe the emergence of viral drug resistance against DAAs
at an intracellular and extracellular level (Guedj and Neumann,
2010). In the era of developing DAAs, multi-scale models could
provide a new theoretical framework that combines findings from
several studies of intra- and extracellular viral dynamics; this can
be applied to HBV,HIV (Althaus and De Boer,2010), and influenza
virus (Murillo et al., 2013).

Using animal and cell culture systems with mathematical mod-
els paves the way to investigate new vaccines against HCV. It would
also assist with understanding the mechanisms of antiviral drug
therapy. HBV vaccines are available, but there is no effective
vaccine against HCV infection. The development of an effec-
tive HCV vaccine has been hampered by the high mutation rate
of viral proteins, the genetic diversity of HCV, and the lack of
usable small animal models for HCV infection (Houghton and
Abrignani, 2005; Klenerman and Gupta, 2012). Recently, a uPA-
TG/severe combined immunodeficiency (SCID) mouse model for
HCV infection has been developed (Mercer et al., 2001). Although
an authentic immune response against HCV does not occur in
these models (and therefore cannot be directly suitable for vaccine
studies), mathematical modeling could compensate for the lack
of information regarding key processes of HCV immune interac-
tions and promote further development of small animal models
of HCV. These and other animal models could be alternatives to
chimpanzees for investigating the effects of candidates drugs and
vaccines against HCV (Bukh, 2012; chimpanzees are endangered
species and now cannot be used for animal experiments). On
the other hand, mathematical modeling of the immune response
against HBV in patients has estimated the contribution of the host
response for viral clearance (Ciupe et al., 2007a,b), and the optimal
vaccination schedule (Gesemann and Scheiermann, 1995; Wilson
et al., 2007). Taken together, the combination of a small animal
model and mathematical modeling can overcome the ethical and
financial limitations of clinical trials and help develop new effective
therapies against HBV and HCV.

INFLUENZA VIRUS
In epidemiology, many mathematical models have been devel-
oped and been used to determine the dynamics of influenza virus
infections on the population level (Anderson, 1991; Ferguson et al.,
2006; Hatchett et al., 2007; Beauchemin and Handel, 2011; Murillo
et al., 2013). A small number of models have also been generated to
describe influenza virus infections at the host level (Baccam et al.,

2006; Miao et al., 2010; Dobrovolny et al., 2011; Pinilla et al., 2012;
and at the individual cell level; Hatada et al., 1989; Heldt et al.,
2012). The purpose of these models is to describe the time-course
of influenza virus infections as accurately as possible. This allows
for the calculation of the half-life of infected cells, the number of
virus particles released per infected cell (i.e., the burst size), and
the number of infected cells produced per infected cell (i.e., the
basic reproductive number; Baccam et al., 2006; Beauchemin et al.,
2008; Mitchell et al., 2011; Pinilla et al., 2012). This information
has been used to understand the severity and duration of infections
(Bocharov and Romanyukha, 1994; Hancioglu et al., 2007; Canini
and Carrat, 2011), and has provided us with an optimal antiviral
therapy (Baccam et al., 2006; Handel et al., 2007; Dobrovolny et al.,
2011; Perelson et al., 2012).

Although influenza viruses have been studied extensively in
vivo, it is difficult to determine the exact date of infection,
influenza virus loads prior to a peak, and pre-hemagglutination
inhibition antibody titers. All these factors are crucial in quanti-
fying virus infection dynamics (Murphy et al., 1980; Carrat et al.,
2008). Experimental infection of healthy volunteers with influenza
viruses provides a unique opportunity to elucidate the dynam-
ics of natural influenza infections. The first mathematical model
proposed to describe the dynamics of influenza infections, using
influenza A/Hong Kong/123/77 (H1N1), was conducted in 2006
(Baccam et al., 2006). This simple mathematical model revealed
several important and novel quantities corresponding to biolog-
ical processes of influenza virus infection (Mohler et al., 2005;
Baccam et al., 2006; Schulze-Horsel et al., 2009; Smith et al., 2010;
Beauchemin and Handel, 2011; Holder and Beauchemin, 2011;
Murillo et al., 2013). For example, if a basic reproductive number
(R0) was obtained, the critical inhibition rate (1 − 1/R0) could be
estimated for protection against virus infection (Anderson, 1991;
Iwami et al., 2012a,b). This implies that reducing viral growth with
antiviral interventions, such as vaccines or drugs, could prevent
viral spread in vivo. More biologically realistic mathematical mod-
els incorporating the eclipse phase of infected cells (Holder and
Beauchemin, 2011; Pinilla et al., 2012), innate or adaptive immune
responses (Bocharov and Romanyukha, 1994; Hancioglu et al.,
2007; Handel et al., 2007; Miao et al., 2010; Canini and Carrat,
2011), and several distributed delays for each biological process
(Holder and Beauchemin, 2011; e.g., a time from virus entry
to progeny virus producing) have been developed. Furthermore,
using a mathematical model, a relationship between virus and
symptom dynamics during influenza infections has been described
recently (Canini and Carrat, 2011). Reviews regarding quantita-
tion of influenza virus dynamics and its importance have been
published previously (Beauchemin and Handel, 2011; Murillo
et al., 2013).

These quantitative analyses of influenza viruses have yielded
useful insights (Bocharov and Romanyukha, 1994; Mohler et al.,
2005; Baccam et al., 2006; Hancioglu et al., 2007; Handel et al.,
2007; Schulze-Horsel et al., 2009; Miao et al., 2010; Smith et al.,
2010; Canini and Carrat, 2011; Dobrovolny et al., 2011; Holder
and Beauchemin, 2011; Perelson et al., 2012; Pinilla et al., 2012;
Murillo et al., 2013). The development of reliable within-host
models is critical in improving epidemiological models because
the dynamics of viral shedding and symptoms following influenza
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virus infection are key factors (Ferguson et al., 2006; Hatchett et al.,
2007; Murillo et al., 2013). However, a major difficulty, over-
parameterization (Beauchemin and Handel, 2011), arises when
only viral load data are available, especially in human volunteer
studies. One possible approach to overcome this limitation is to
conduct animal experiments using rhesus macaques (Watanabe
et al., 2011), ferrets (Kiso et al., 2010), and mice (Imai et al., 2008;
Martin and Wurfel, 2008; Morita et al., 2013), and to measure the
time-course data for these analyses (Miao et al., 2010; Pinilla et al.,
2012). It is possible that the number of uninfected and infected
cells from the lung or respiratory tract can be measured. Although
it is still currently not feasible to obtain sufficient time-course data
during the acute phase of infections, we have recently developed
a novel but simple mathematical model to robustly estimate virus
replication rates (Ikeda et al., unpublished). In this model, a rela-
tively few time-course data of both the number of uninfected cells
and viral load is required. A new model and diverse data will pro-
mote knowledge of influenza virus infection dynamics, which is
important for future research.

OTHER VIRUSES
Mathematical models have also been applied for understanding
the dynamics of other virus infections. For example, during acute
lymphocytic choriomeningitis virus (LCMV, which is a common
infection of rodents and is best known for its application in
immunological studies) infection, the dynamics of the specific
CD8+ T-cell response such as proliferation and apoptosis rate
was estimated in infected mice (De Boer et al., 2001). Quantita-
tive analyses suggested that the specific CD8+ T-cell response is
controlled via the number of CD8+ T-cells, rather than their indi-
vidual function during persistent LCMV infection compared with
those in acute LCMV infections (in fact, the immune response with
a high killing effect is necessary to clear the LCMV infection; Graw
et al., 2011). On the other hand, modeling and fitting data from
patients revealed that the doubling time of cytomegaloviruses
(CMV, which is assumed to cause asymptomatic infection in nor-
mal hosts) in human hosts is around 1 day, similar to that for HIV
(Emery et al., 1999; Perelson, 2002). More recently, it has been
revealed that viral productivity and transmissibility, but not cyto-
toxicity, differ among Enterovirus 71 (EV71, which is the causative
agent of hand-foot-and-mouth disease and can trigger neurolog-
ical disorders) strains in cell culture and could be associated with
their epidemiological backgrounds (Fukuhara et al., 2013). Animal
experiments using monkeys and mice are available to investigate
the pathogenesis and symptoms of these and numerous other
viruses (Farrell et al., 1997; De Boer et al., 2001; Arita et al., 2007,
2008; Graw et al., 2011; Sato et al., 2011). We have a chance to
establish a platform that will allow for quantitative understand-
ing of various virus infections based on animal experiments.
Accumulation of knowledge regarding viral dynamics should
be useful in understanding untreatable or (re-)emerging virus
infections.

CONCLUSION
Studies of virus infection dynamics have significantly con-
tributed to our understanding of many diseases. Merging ani-
mal experiment results with mathematical models is a desirable

direction for virology research (Figure 1). In particular, quan-
tifying viral dynamics in “humanized mice” (Shultz et al., 2007;
Sato and Koyanagi, 2011), which are the most practical and rel-
evant model available, will provide us with novel insights. Using
humanized mice as models of specific human viral infections (Sato
et al., 2010, 2011, 2012) or human diseases (Ishikawa et al., 2007),
we were able to investigate mechanisms of disease symptoms (e.g.,
a relation between function of regulatory T cells and depletion of
CD4+ T cells in HIV-1 infection), and the potency/mechanism
of action for drug/host factors (e.g., an effect of anticancer drug
in human T cell leukemia virus type-1 infection) based on virus
infection dynamics. Mathematical models can be used to explore
a complicated dynamical system of virus infection. Estimation of
key parameters during a virus infection provides us with many
details regarding the infection. If we can obtain these estimated
parameters and calculate burst size and basic reproductive num-
bers, we could easily compare the dynamics of various viral
infections. Qualitative data (in fact, most experiments are not
designed from a quantitative point of view) are difficult to under-
stand and compare with results from other studies. Based on the
theoretical analysis of experimental data, we are able to determine
optimum frequencies of sampling for the highest quality data
possible. Once we establish a mathematical model and reason-
ably fit that model to experimental data, we can predict outcomes
of animal experiments under different conditions and determine
factors that control several phenomena during virus infection
(e.g., peak of viral load and mode of virus spread) through
simulations. Further associations between animal experiments
and mathematical models are required to overcome untreatable
diseases.

FIGURE 1 | Concepts for combining animal models with mathematical

modeling. These quantitative approaches are referred to as “computational
virology.” This has the potential to provide novel insights into viral
pathogenesis, the development of antiviral drugs, and the establishment of
effective therapies against viral infections.
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