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Abstract

Electronic health data are routinely used for population drug studies. Due to the

ethical dilemma in carrying out experimental drug studies on pregnant women, the

effects of medication usage during pregnancy on fetal and maternal outcomes are

largely evaluated using this data collection medium. One major limitation in this type

of study is the delayed inclusion of pregnancies in the cohort. For example, in the

province of Quebec, Canada, a major pregnancy cohort only captured pregnancies

after 20 weeks gestation. The purpose of this study was to demonstrate three

methods that can be used to assess the extent of selection bias due to the delayed

inclusion of pregnancies. We use causal directed acyclic graphs to explain the source

of this selection bias. In an example involving a cohort of pregnant asthmatic

women reconstructed from the linkage of administrative health databases from the

province of Quebec, we use numerical derivations, a simulation study and a sensitiv-

ity analysis to investigate the potential for bias and loss of power due to the

delayed inclusion. We find that this selection bias can be partially mitigated by con-

trolling for variables related to (spontaneous or therapeutic) abortion and the out-

come of interest. The three proposed methods allow for the pre and post hoc

ascertainment of the bias. While delayed pregnancy inclusion selection bias (which

includes “live birth bias”) can produce substantial bias in pregnancy drug studies, all

three methods are effective at producing estimates of the size of the bias.
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1 | INTRODUCTION

Due to ethical constraints, the evaluation of drug safety during

pregnancy is generally restricted to observational studies, where

patients are followed through time without intervention.1-3 While

observational studies allow for long‐term follow‐up and the inclu-

sion of a large population in a “real‐world” context, an analysis

of such data may potentially be hampered by unmeasured con-

founding, selection bias, and improper effect definition and esti-

mation. Ultimately, as in all study designs, the analysis of

observational data requires strict assumptions and appropriate

statistical methods to produce unbiased estimates of the treat-

ment effect.4
Abbreviations: DAGs, directed acyclic graphs; RAMQ, Régie de l'assurance maladie du

Québec.
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Electronic health data, extracted from health system or medical

insurance administrative (claims) databases, are highly desirable due

to their availability and coverage of large portions of the target pop-

ulation within countries’ administrative divisions.5 Such data are

often used to investigate drug safety during pregnancy and there

has been much discussion of methodological considerations in this

setting.6-8 In particular, as these data were not collected for research

purposes, health conditions, and medications may be only partially

observed. In particular, pregnancy status may only be recorded after

crossing a gestational time threshold.9-12 For example, depending on

the data source, pregnancy cohorts may be composed exclusively of

live births13-15 or pregnancies that survive past a certain threshold.

We refer to such situations as the delayed inclusion of pregnancies

in the cohort.

We describe an example from the province of Quebec, Canada

that aims to evaluate the safety of similarly indicated asthma medica-

tions on pregnancy outcomes. The usage of electronic health data in

this example relies on an extraction of provincial medical insurance

data where the cohort is defined in terms of “deliveries,” that is, all

pregnancies that surpass a 20 week threshold.16 We use directed

acyclic graphs (DAGs)17 to demonstrate that the delayed inclusion of

pregnancies can lead to bias in the estimation of drug safety or effec-

tiveness. Such bias is often termed “selection” or “collider” bias and

can often not be removed using the restricted cohort and limited

measured information.18-20 However, one can evaluate the possible

extent of the bias by imputing plausible values for several inestimable

associations.20 We therefore describe three strategies to evaluate

the potential impact of the selection bias in this setting: (1) numerical

derivations, which plot the resulting level of bias conditional on a

plausible range of associations, (2) simulation studies, which require

fixing single values for the unobservable associations, and (3) post

hoc sensitivity analysis to determine whether selection bias, under

plausible assumptions, could have affected the statistical conclusions

of the study. Finally, the code to implement the numerical derivation

and simulation study are available in the Web Appendix.

2 | EXAMPLE: THE EFFECT OF ASTHMA
MEDICATION DURING PREGNANCY

While many of the principles evaluated in this article apply in a large

range of settings, we focus on the safety of asthma medication

taken by pregnant asthmatic women in a cohort of pregnancies. Cur-

rent guidelines suggest that pregnant women suffering from asthma

continue their standard treatment throughout pregnancy due to the

dangers of uncontrolled asthma provoked by stopping therapy.21

However, interest lies in the relative effects of different treatment

options and intensities on various outcomes related to the fetus and

maternal health.

The Québec Asthma and Pregnancy Database22 was obtained

through a linkage of the Régie de l'assurance maladie du Québec

(RAMQ) and the MED‐ECHO databases. RAMQ, the universal health

care system in the province of Québec, Canada, defines delivery as all

live or stillbirths occurring after the first completed 20 weeks of preg-

nancy. The data extraction took all deliveries between the years 1990

and 2010 for women ≤45 years with at least one asthma diagnosis in

the 2 years prior to delivery and a random sample of other pregnant

women. For inclusion, these women also had to be covered by the

Québec public drug insurance plan in the year prior to and during

pregnancy. Eltonsy et al22 contrasted treatment options for different

asthma severity levels on major congenital malformations recorded at

birth or during the first year of life. The outcome was identified using

codes from the International Classification of Diseases ninth and tenth

revisions with more details provided in the original manuscript. In

women with moderate asthma, they compared two alternative treat-

ments over the span of the first trimester: (1) a low dose of inhaled

corticosteroids plus the add‐on therapy of long‐acting β2‐agonists vs

(2) a higher dose of inhaled corticosteroids and no add‐on therapy.

The exposure was measured over the first trimester (ie, the first

12 weeks of gestation) due to their hypothesis that this corresponds

with a teratogenic window, as discussed in the original manuscript.

The investigations in this manuscript did not involve individual

patient data and the study is therefore exempt from institutional

ethics review.

3 | A DIRECTED ACYCLIC GRAPH

The identification and selection of subjects into an analysis can pro-

duce bias in the effect estimation due to selection on a collider vari-

able.19 In Figure 1 we present two examples of selection due to the

definition of “delivery” in the RAMQ administrative health database;

pregnancies are only classified as deliveries (and available in our

cohort) if they surpass the 20 week mark. It is estimated that 13%‐
15% of pregnancies end in spontaneous abortion23 and 21% in

induced abortion (in Canada and the United States)24 and it is

thought that these numbers may be underestimated,25 so this selec-

tion is not trivial.

The arrows (or directed edges) between variables indicate that

one variable (the parent) affects another (the child) in the direction of

(A)

(B)

F IGURE 1 Collider Bias in Delivery Cohorts. D represents
delivery, defined as birth after 20 weeks. A1 is the exposure to the
medication before 20 weeks and A2 is exposure after 20 weeks
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the arrow. The dotted lines indicate correlations between two vari-

ables due to latent and temporally prior variables. A path between

two variables is an unbroken route that proceeds along or against

the direction of the arrows. A path is considered open unless (1)

conditioning on a variable blocks the path (denoted by a square

around the variable) or (2) the path goes through an unadjusted col-

lider: a variable that is affected by two parent variables. Adjusting

for a collider opens the previously blocked path. If there is an open

path between the outcome and exposure other than the path of

interest, estimation of the causal effect will be biased.26

In the DAG in Figure 1, we consider a scenario where an investiga-

tor is interested in estimating the effect of exposure to a medication

during early pregnancy on a birth outcome. In our example, this corre-

sponds to early usage of asthma controller medications in the first tri-

mester (A1) and major congenital malformations (Y) which can occur at

any time during gestation. We consider the setting where the early

medication exposure (A1) may result in an increased risk of abortion

before 20 weeks.27 D represents the classification as a delivery by the

RAMQ. It is possible that there exist unmeasured variables U that

affect (spontaneous or therapeutic) abortion before 20 weeks and the

outcome (congenital malformations), such as smoking and socio‐eco-
nomic factors.10 For simplicity, confounders of exposure and outcome

are assumed measured and adjusted for and do not appear in the

DAG, and while U may be time‐varying or multidimensional, we group

it into a single variable. Stratification by D, which is a collider of the

variables A1 and U, creates a correlation between these two latter

variables, opening up a path between A1 and the outcome Y. This

causes confounding of the early exposure (A1) and outcome associa-

tion. The magnitude of the bias will depend on the strength of the

effect of the unmeasured variable U on abortion and outcome. This

bias should be considered in any pregnancy cohort where failed or ter-

minated pregnancies are not included. The effect of average exposure

over the entire duration of the pregnancy may also be confounded.

If U cannot be controlled for in the analysis, one option is to

change the question of interest to investigate the effect of exposure

to medication past 20 weeks (A2) on the birth outcome, while

adjusting for A1 in order to close all backdoor paths. However, this

is hardly satisfactory when early exposure is believed to be responsi-

ble for a specific birth outcome, such as for congenital malforma-

tions.22 In addition, the estimation of the effect of A2 would require

that many women changed their treatment categories over the two

time points (otherwise the effect of later exposure would be entirely

confounded with that of A1). Other options are to explore the extent

of the bias using numerical derivations, simulation studies, and sensi-

tivity analyses as we do in the next section.

A structurally equivalent type of bias has been shown to arise in

cohorts defined by an index event such as disease occurrence when

assessing the association between exposure to medication and an

outcome such as mortality.28,29 This index event bias has been known

to at times invert the association between the exposure of interest

and the outcome; for example, smoking has been shown to be pro-

tective of subsequent myocardial infarction in cohorts of patients

who had a first myocardial infarction, while a harmful effect of

smoking is biologically plausible.30 In another example, index event

bias was shown to explain the apparent protective effect of obesity

on mortality in patients with cardiovascular disease.31

4 | IMPACT OF POSTEXPOSURE
SELECTION ON BIAS AND STATISTICAL
POWER

While there are many sources of bias in epidemiologic studies, the

particularities of the data determine whether the bias has an impor-

tant impact on the scientific conclusions. Consider the example con-

cerning selection on births past 20 weeks. A simplified DAG is

presented in Figure 1B where A1 is an asthma medication in the first

trimester of pregnancy and the outcome Y is major congenital

malformations.

We also only consider a univariate U in the following develop-

ment, though additional complexities may be added with modifica-

tions to the code. An example of such a variable (U) is

antidepressant medication taken during pregnancy. This variable was

not assessed and therefore not adjusted for in the Eltonsy study,

making it a potential source of some selection bias. There is observa-

tional study evidence of impacts of antidepressant medications on

spontaneous abortion with odds ratios between 1.1 and 1.732,33 and

on major malformations with odds ratios between 1 and 334-36

though meta‐analysis concluded that associations only appear to be

present for cardiac malformations.35 Using these estimates to inform

our sensitivity analyses, we are assuming that these estimated

effects on spontaneous abortions correspond to the effects on all

abortion and that the effects in the general population correspond

to the effects in asthmatic women. In order to express the uncer-

tainty in these estimates, we investigate an extended range of possi-

ble effect sizes. We now describe three methods to evaluate the

potential selection bias for various values of these associations.

4.1 | Numerical example

By specifying the distributions and relationships between the covari-

ates in the DAG of Figure 1B, we can calculate the exact bias caused

by the selection on deliveries. To this end, we assume that the vari-

ables are generated on a logit‐linear scale with associations parameter-

ized by conditional odds ratios. In particular, bA represents the effect

size (conditional odds ratio) of exposure on outcome, while bU repre-

sents the effect of the unmeasured variable U on outcome. The param-

eters tA and tU represent the effects of A and U, respectively, on the

probability of the pregnancy surviving the 20th week. We suppose

that the baseline risks of abortion and gestational malformations are

about 18% and 8%,22 respectively, but that these risks can be exacer-

bated by a binary U. Letting the true effect size be bA ¼ 1 (no effect)

and 1.3, respectively, and setting bU ¼ 3 (strong effect of U on out-

come), the bias in the marginal effect that conditions on deliveries

compared to the true marginal effect is given in 3D graphics in Fig-

ure 2. Bias in the conditional odds ratio is defined as
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ðconditional=true� 1Þ � 100. Even for large associations tA and tU,

the bias in our example remains fairly small, dropping to −10% only

when being exposed and having U ¼ 1 both lead to a 4‐fold increase

in the odds of delivery over the baseline and when the true odds ratio

for the effect of interest is 1.3. These results suggest that the biased

analyses would be estimating odds ratios of 0.9 if there is no effect or

roughly 1.2 if the true effect corresponds to an odds ratio of 1.3.

While the bias is proportionally small, with sufficient data this could

result in different scientific conclusions. Attenuating the association

bU results in a reduction in bias (results given in Appendix A2).

A strength of this approach is that one can visually investigate

the trends in bias while modifying the values of two parameters at

a time. It is also possible to increase the complexity of the

assumed DAG, for instance, by considering the two distinct types

of pregnancy loss or having multiple U variables (although this will

also create new parameters to either assign values to or vary over

a range of possible values). One weakness of this approach is the

analyst must assign specifications for the distributions of Y and D

and that the results may vary depending on this specification. In

our example, we assumed that the probabilities of these binary

variables are generated on the logit‐linear scale, conditional on the

prior variables.

In the Web Appendix A1, we provide the Mathematica (Wolfram

Research, Inc, Champaign, Illinois, USA) code used to produce the

graphics in Figure 2.

4.2 | Simulation study

The 3D graphic allowed us to observe how the selection bias varies

continuously with the importance of the unmeasured variable U.

Using the same data generating assumptions as in the numerical

example and setting a range of values for the parameters tA, tU, bA,

and bU, we can alternatively perform a Monte Carlo simulation study

to estimate the expected bias and power to detect an effect of A on

Y. We generated 1000 datasets each one representing N ¼ 10000

pregnancies subject to selection on delivery with the same baseline

odds of abortion and gestational malformations (18% and 8%,

respectively). For each dataset, we calculated the odds ratio for the

effect of interest using (1) only deliveries and (2) a random subset of

pregnancies of the same number (which emulates a setting without

selection due to abortion with the same sample size). We look at

both bias and power to detect an effect over a wide range of associ-

ations in Table 1. We test three small effect sizes: odds ratios of 1.1,

1.2, and 1.3. Corresponding to Figure 2, the bias remains small

except in the most extreme cases where the bias reached −7.7%.

However, the power to detect an effect can be drastically reduced

by the selection on D ¼ 1 compared to random selection. We see

the largest effects on power when the study is just barely well‐pow-

ered or under‐powered. For example, when tA ¼ 2 and tU ¼ bU ¼ 3

and the true effect was 1.2, the selection on a collider reduced the

power from 68% to 42%. In the most extreme case

(tA ¼ tU ¼ bU ¼ 3) with the smallest effect size, power was four

times greater without collider bias.

While the bias in this example is relatively small, it is highly

dependent on the baseline risks of outcome and selection. When

increasing both baseline risks to 50%, the maximum bias increased

to 25%.

One strength of this approach is that, unlike for the numerical

example, one can vary multiple parameters in the same table; we

varied four parameters in Table 1. As in the numerical example, one

can also increase the complexity of the DAG. A particular advantage

of the simulation study is that one can investigate the estimation

bias, standard error, and power of the statistical estimator, while the

numerical example only compares the bias in the conditional odds

ratio (ie, the bias in what one would estimate with infinite data). The

requirement of making arbitrary distributional assumptions is also a

limitation of this approach.

In the Web Appendix A3, we provide the R software (https://

www.r-project.org/) code used in this simulation study.

4.3 | Sensitivity analysis

Sensitivity analysis can be used to evaluate the potential impact of

selection bias on the scientific conclusion of a given study. Banack

and Kaufman31 demonstrate how sensitivity analysis for mediation37

can be used to evaluate the impact of index‐event bias. Starting

from estimates obtained in a real study, we evaluate the potential

for bias due to selection on births past 20 weeks. In Eltonsy et al22

exposure to long‐acting β2‐agonists and inhaled corticosteroids was

F IGURE 2 % True Bias in the Odds Ratio Caused by Selection
on Deliveries in the Numerical Example. % bias = (conditional/
true − 1)*100 when the true exposure effect odds ratio is (A) 1 and
(B) 1.3. Note the absence of bias when tU = 1 or tA = 1, that is,
when D is not a collider
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assessed during the first trimester of pregnancy. In women with

moderate asthma, the contrast of interest was the relative effect of

low‐dose inhaled corticosteroids plus long‐acting β2‐agonists vs med-

ium‐dose inhaled corticosteroids therapy on the risk of major con-

genital malformation. This analysis did not adjust for variables that

may cause both pregnancy loss before 20 weeks and the outcome

as this type of selection bias was not noted at the time.

Corresponding with parameter bA in Figure 1B, the true causal

effect of medication on the outcome in deliveries is analogous to a

controlled direct effect with a mediator D confounded by the unob-

served U. If U is a single binary variable, such as antidepressant use,

and assuming that all confounders of the exposure‐outcome are

measured and are not caused by nor cause U, sensitivity analysis can

be performed using the bias formula presented in VanderWeele.37

Suppose the parameter of interest is defined as the conditional risk

ratio in mean outcomes amongst deliveries for exposed vs unex-

posed women. Letting C be all confounders of the association

between A and Y, the correction factor for the estimated risk ratio

can be given as follows:

CFRRC ¼ 1þ γ� 1ð ÞσðA ¼ 1Þ
1þ γ� 1ð ÞσðA ¼ 0Þ

where γ ¼ P Y ¼ 1jA;D ¼ 1;C ¼ c;U ¼ 1ð Þ=P Y ¼ 1jA;D ¼ 1;C ¼ c;Uð
¼ 0Þ and σ A ¼ að Þ ¼ P U ¼ 1jA ¼ a;D ¼ 1;Cð Þ. In the example, the

sensitivity parameter γ can be interpreted as the conditional risk

ratio for antidepressant users vs nonusers, and σ A ¼ að Þ can be

interpreted as the conditional probability of antidepressant use

under exposure a.

Investigators might demonstrate the sensitivity of the estimate

to the most extreme plausible values for these three sensitivity

parameters. For simple usage of this bias formula, it must be

assumed that γ is constant for all levels of C and A and that

σ A ¼ að Þ is constant over levels of C. Then, the risk ratio estimate

and confidence interval can be corrected by multiplying by the

correction factor. For rare outcomes, this procedure can also be used

to perform a sensitivity analysis for the estimated odds ratios. In

Eltonsy et al22 the adjusted odds ratio for the association between

therapy choice and the risk of congenital malformation was 1.1 with

95% confidence interval: 0.6‐1.9. Given that the rate of anti‐depres-
sant usage during pregnancy was estimated to be about 13%,38,39

we consider extreme possibilities of σ A ¼ 1ð Þ ¼ 0:25 and

σ A ¼ 0ð Þ ¼ 0:1. In order to raise the lower bound of the confidence

interval to 1.0 (and thus conclude a significant effect), the outcome

risk ratio γ for exposure to anti‐depressants would have to be at

least 9. In this case, CFRRC ¼ 5=3 and the maximum sensitivity bound

for the estimate would be 1.8 with 95% confidence interval: 1.0‐3.2.
Given that such a high value for γ would indicate an unrealistically

large increase in risk of induced and spontaneous abortions, it is

implausible that selection bias has masked a difference in safety

between the two asthma therapy options contrasted. However, due

to the low power (wide confidence intervals) of the original results,

this still does not provide substantial evidence that an effect does

not exist.

Alternative bias formulas exist for settings in which U may also

affect the exposure, though these are far less simple than the ones

above.37 An additional limitation of this approach is that only one

binary variable U may be considered at a time. This is a limitation

because while one variable (such as anti‐depressant use) may not

produce enough bias to create a misleading effect estimate, multiple

variables (such as anti‐depressant use, smoking, and socio‐economic

status) combined may have a greater impact.

5 | DISCUSSION

In this article, we demonstrated that selection bias in electronic med-

ical data may arise when defining the cohort on a postexposure vari-

able such as limiting inclusion to pregnancies that pass a certain time

TABLE 1 Percent bias and (in brackets) percent of significant (P < 0.05) associations in a simulation study with 1000 random generations of
N ¼ 10 000 pregnancies

tA: 1 (D is not a collider) 2 3

cOR (bA)
(true
effect) D = 1 Random D = 1 Random D = 1 Random

Weak risk factor tU= 1.5

bU= 1.5

1.1 0 (22) 0 (24) −0.9 (19) 0 (21) 0 (18) 0 (19)

1.2 0 (65) 0 (67) −0.8 (62) 0 (61) 0 (53) 0 (50)

1.3 0 (93) 0 (94) −0.8 (90) 0 (90) 0 (85) 0 (84)

Moderate

risk factor

tU= 2

bU= 2

1.1 0 (22) 0 (22) −1.8 (16) 0 (20) −2.7 (14) 0 (20)

1.2 −0.8 (67) −0.8 (67) −1.7 (55) 0 (64) −3.3 (48) 0 (59)

1.3 −0.8 (95) −0.8 (95) −2.3 (90) 0 (94) −3.1 (84) 0 (90)

Strong risk factor tU= 3

bU= 3

1.1 0 (26) 0 (26) −4.5 (10) 0 (23) −7.3 (6) 0 (23)

1.2 0 (72) 0 (77) −5.0 (42) 0 (68) −7.5 (27) 0 (64)

1.3 −0.8 (95) 0 (97) −5.4 (79) 0 (94) −7.7 (64) 0 (93)

We contrast signal detection with selection on pregnancies past 20 weeks (D = 1) vs random selection of the same number of subjects (Random). All

parameters used in the data generation (bA, tA, tU, and bU) are expressed as odds ratios.
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threshold. This includes the bias that arises from selecting only on

live births, since this outcome occurs after the exposure to medica-

tion during pregnancy. Recent work demonstrated the potential for

bias in the estimation of exposure effects when selecting on live

births in settings where exposure contributes to the abortion of

fetuses.14,15,40 Additional work demonstrated the potential for bias

and accuracy loss in a very similar setting where left‐truncation is

differential by exposure group.12 We extend this work by demon-

strating strategies that allow the investigator to ascertain the poten-

tial impact of selection on the scientific conclusions. Indeed, we

found that the magnitude of the bias depends on the particularities

of the data, including the baseline risks of the outcome and selec-

tion, emphasizing the need for study‐specific bias assessment.

In standard observational studies, investigators will typically only

consider adjusting for suspected confounders between the exposure

and outcome. Recognizing selection bias should motivate investiga-

tors to attempt to measure and adjust for a wider set of covariates,

potentially mitigating this additional source of bias. If the additional

variables are unavailable, we demonstrated how it is possible to

investigate the potential for bias in a given situation. We also

showed how one might alternatively assess the sensitivity of the

estimated effect to different strengths of selection bias.

In addition to the single source of postexposure selection that we

investigated in this study, fetal death beyond 20 weeks may pose an

additional source of selection bias if these pregnancies are not

included in the analysis. If the outcome of interest is undefined for

nondeliveries or fetal deaths, then standard methods to estimate pop-

ulation average causal effects no longer apply. Under additional

assumptions and external information, one may alternatively estimate

the survivor average causal effect,41 corresponding with the effect of

exposure in pregnancies that would always have lasted past 20 weeks

and had a defined outcome regardless of the exposure received.

However, this topic is beyond the scope of the current article.

Not all sources of bias in epidemiological studies threaten the

overall validity of the conclusions; it is important to investigate the

potential size of bias in relation to effect estimates. A greater under-

standing of the mechanics of statistical association can also guide

attempts to reduce estimation bias. These pursuits will lead to more

reliable studies and more nuanced conclusions of causal effects.
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