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Abstract
Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, medium, and

long terms. However, research has identified that ANNs could cause inaccurate predictions of load when used for long-

term forecasting. This inaccuracy is attributed to insufficient training data and increased accumulated errors, especially in

long-term estimations. This study develops an improved ANN model with an Adaptive Backpropagation Algorithm

(ABPA) for best practice in the forecasting long-term load demand of electricity. The ABPA includes proposing new

forecasting formulations that adjust/adapt forecast values, so it takes into consideration the deviation between trained and

future input datasets’ different behaviours. The architecture of the Multi-Layer Perceptron (MLP) model, along with its

traditional Backpropagation Algorithm (BPA), is used as a baseline for the proposed development. The forecasting formula

is further improved by introducing adjustment factors to smooth out behavioural differences between the trained and

new/future datasets. A computational study based on actual monthly electricity consumption inputs from 2011 to 2020,

provided by the Iraqi Ministry of Electricity, is conducted to verify the proposed adaptive algorithm’s performance.

Different types of energy consumption and the electricity cut period (unsatisfied demand) factor are also considered in this

study as vital factors. The developed ANN model, including its proposed ABPA, is then compared with traditional and

popular prediction techniques such as regression and other advanced machine learning approaches, including Recurrent

Neural Networks (RNNs), to justify its superiority amongst them. The results reveal that the most accurate long-term

forecasts with the minimum Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) values of

(1.195.650) and (0.045), respectively, are successfully achieved by applying the proposed ABPA. It can be concluded that

the proposed ABPA, including the adjustment factor, enables traditional ANN techniques to be efficiently used for long-

term forecasting of electricity load demand.

Keywords MLP neural networks � Load demand � Long-term forecasting � Adaptive backpropagation � Linear regression �
Radial basis function networks � Recurrent neural networks

1 Introduction

Different techniques have been developed for electricity

load demand forecasting over short, medium, and long-

term time scales during the past few years. These tech-

niques range from statistical models such as regression and

time-series approaches to Artificial Neural Networks

(ANNs), machine learning, and expert systems [1]. ANNs,

as a novel modelling technique, has been used in numerous

studies of short and long-term forecasting. This technique

has attributes, such as flexible computing frameworks and

universal approximators, enabeling it to solve forecasting

problems in different fields with a high degree of accuracy

[2].

Traditional ANN techniques represent complex nonlin-

ear relationships between dependent variables and other

influencing variables. For example, forecasting load

demand of electricity is influenced by the Gross Domestic

Product (GDP) time series. The latter is highly correlated
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with different types of electricity consumption and the

electricity unit’s price [3]. The literature reveals that this

ANN technique provides better short-term forecasting

performance rather than long-term. This finding has been

proven by authors in Ref. [4], who used a traditional ANN

technique to forecast short-term load demand, and con-

firmed that this technique has several limitations, one of

which is the accuracy of long-term forecasts. In Ref. [5],

the authors concluded that ANN is more efficient in short-

term electricity demand prediction than long-term fore-

casting. In Ref. [6], the authors confirmed that ANN

techniques offer a powerful forecasting tool in planning

energy usage and can be used to generate accurate forecasts

only for short periods. This poor accuracy/performance has

been attributed to insufficient training data and an in-

creased accumulation of errors in longer-term estimations

[7]. Also, ANNs do not generate better results than other

techniques for long-term predictions [8].

Therefore, this paper aims to propose an Adaptive

Backpropagation Algorithm (ABPA) for more accurate and

robust long-term predictions. This accuracy is achieved by

further improving the forecasting part of the traditional

Backpropagation Algorithm (BPA) algorithm to be able to

accommodate the impact of accumulated errors caused

over long periods of prediction.

The main contributions of this study can be summarised

as follows:

(1) To propose an Adaptive Backpropagation Algorithm,

represented by new forecasting formulations that

capture the deviation caused by different behaviours

of trained and future input datasets (long term). The

new formulation will accommodate the deviation

caused while generating high accuracy forecast

outputs.

(2) To measure the impact of the normalisation of data

on the quality of long-term forecasting outcomes.

This impact includes identifying factors in a specific

range that, if considered by the proposed ABPA, will

improve its performance for more reliable and

sustainable long-term forecasts.

(3) To enable traditional ANN techniques with the

proposed ABPA to be used for long-term electricity

load demand forecasting.

This improved ANN model’s benefits are that it will

assist energy operators, including companies of generation

and transmission, to predict the amount of energy needed

for best consumer demand satisfaction. This assistance

contributes to achieving the most efficient allocation of

energy resources, best practice of electricity scheduling,

and optimal replacement plans for current outdated energy

sources (if found). Also, this work contributes to the for-

mulation of several management policies on electricity

planning, scheduling, and distribution. These policies

include encouraging suppliers to invest more in increasing

their energy sources, use state-of-the-art computerised

energy scheduling systems, and adopt other energy sources

such as renewable energy in selected regions.

The rest of the paper is organised as follows: Sect. 2

reviews previous work on applications of traditional

ANNs, their hybrids, and other advanced machine learning

approaches in long-term furcating of load demand. In

Sect. 3, the proposed ABPA is discussed alongside the

traditional Backpropagation Algorithm’s (BPA) limita-

tions. In Sect. 4, a numerical case study is conducted,

followed by a comparison study to justify the proposed

algorithm’s superiority. The last section addresses this

study’s main findings and recommendations for future

work.

2 Literature review

A thorough review of machine learning approaches and

their application in long-term load forecasting, including

ANN and deep learning, is conducted in this section. This

review provides a clear understanding of methodologies

used in long-term forecasting.

2.1 Application of ANNs in long term-load
forecasting

This section presents the applications of traditional ANNs

and their hybrids in the long-term forecasting of electricity

load demand.

The practice of using different methods for long-term

load demand forecasting was demonstrated, and found that

most of the basic ANNs were successfully applied in short-

term forecasting. However, the most suitable ANN network

model for long-term forecasting requires careful consider-

ation of network architecture and its training method [9].

A Hierarchical Neural Network (HNN) model was pro-

posed in Ref. [10] to forecast both short and long-term

electricity demand. The developed HNN model generated

more realistic predictions than the non-hierarchical simple

ANN. In Ref. [11], a Hierarchical Hybrid Neural (HHN)

model was developed to tackle the problem of long-term

peak load forecasting. In Ref. [12], an Adaptive Multilayer

Perceptron (AMP) algorithm consisting of eight steps was

proposed for dynamic time series forecasting with minimal

complexity. Results showed that the proposed scheme for

the AMP algorithm could produce accurate and robust

forecasting of electricity load consumption. In Ref. [13], a

method that combines neural network models of load

forecasting with Virtual Instrument Technology based on

Radial Basis Function (RBF) neural networks was
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introduced to build a virtual forecaster for reliable short,

medium, and long-term load forecasting. Results indicated

that the forecasting model based on the RBF has high

accuracy and stability. In Ref. [14], a new method based on

Multi-Layer Perceptron Artificial Neural Network (MLP-

ANN) was proposed for long-term load forecasting. The

comparison test results illustrate the advantages of the

proposed method. In Ref. [15], the ANNs model was

integrated with an Adaptive Neuro-Fuzzy Inference System

(ANFIS) to analyse the effects of different weather vari-

ables and actual and previous energy for forecasting the

electricity load. The developed ANFIS model produced

more accurate and reliable long-term energy load forecasts

than the basic ANN model. In Ref. [16], different Machine

Learning (ML) approaches, including ANNs, Multiple

Linear Regression (MLR), ANFIS and Support Vector

Machine (SVM), were applied to forecast long-term elec-

tricity load. The results indicated that SVM provided more

reliable and accurate results than other ML techniques. In

Ref. [17], three models based on Multivariate Adaptive

Regression Splines (MARS), ANNs, and Linear Regression

(LR) methods were utilised for long-term load forecasting.

The study concluded that the MARS model gives more

accurate and stable results than the ANN and LR models.

In Ref. [18], two approaches of ANNs and SVMs were

compared to predict long-term electrical load and found

that the performance of forecasting using SVMs is con-

sistently better than ANN. In Ref. [19], Support Vector

Regression (SVR) and ANN approaches were used to

identify electricity’s best prediction model. The outputs

indicated that the seasonal SVR model outperformed the

ANN model in terms of the generated forecasts’ accuracy.

In Ref. [20], different load forecasting techniques were

reviewed and compared for power forecasting. These

methods include ANN, Support Vector Regression (SVR),

Decision Tree (DT), LR, and Fuzzy Sets (FS). In Ref. [21],

a hybrid method based on the combination of Particle

Swarm Optimisation (PSO), Auto-Regressive Integrated

Moving Average (ARIMA), ANN, and the proposed SVR

technique was used to forecast the long-term load and

energy demands. The results showed that the proposed

PSO-SVR and hybrid methods give more accurate results

than ARIMA and ANN methods. In Ref. [22], accurate and

precise medium and long-term district-level energy pre-

diction models were proposed employing machine learn-

ing-based models. The ANN with nonlinear autoregressive

exogenous multivariable inputs was one of these models.

This model was identified as the best forecasting model

with a minimum MAPE value. In Ref. [23], a Univariate

Multi-Model (UMM) based on neural networks was pro-

posed to forecast electrical load. The purpose was to

increase the performance of mid to long-term forecasting.

However, this technique was greedy, requiring large

amounts of data for training purposes. Ref. [24] suggested

three models based on Multivariate Adaptive Regression

Splines (MARS), ANN, and LR methods for long-term

forecasting of load demand. MARS was reported to be

more computationally efficient than ANN. The MARS

model gives more accurate and stable results than ANN

and LR models by comparing these models. In Ref. [25], a

Multiple Neural Network (MNN) model was proposed for

long-term time series prediction. In this MNN model, each

neural network component makes forecasts for a different

length of time. The results revealed that the developed

MNN model outperformed the single ANN model. In Ref.

[26], a hybrid approach based on Wavelet Support Vector

Machines (WSVM) and Chaos Theory were employed for

mid-term load forecasting. In Ref. [27], the Prophet and

Holt-Winters forecasting models were used for long-term

peak loads forecasting. The Prophet model has proven to be

more robust to noise than the Holt-Winters model. In Ref.

[28], the Fuzzy Logic (FL) concept was applied to ANN for

long-term electric load forecasting. A feedforward input-

delay back propagation network was used to design the

ANN model. It was concluded that, in long-term load

forecasting, both ANN and FL are powerful tools with a

minimal error rate. In Ref. [29], FS was applied to ANN for

modelling long-term uncertainties, and the enhanced fore-

casting results were compared with those of traditional

methods, including regression. Results indicated that

although ANN has its flexibility in handling nonlinear

systems, it cannot model all corresponding factors of long-

term load. In Ref. [30], the accuracy of the results of

statistic methods (Exponential Smoothing, ARIMA,

Regression), FL, and ANN algorithms were used and

compared to estimate electricity consumption. Double

exponential smoothing was the best method for producing

approximate data close to the target. In Ref. [31], a Vari-

able Structure Artificial Neural Network (VSANN) was

used to improve the forecast accuracy of electricity load for

the mid to long-term. However, applying a simple ANN

model did not lead to a minimum load forecast error. In

Ref. [32], an approach based on dynamic Feedforward

Backpropagation Artificial Neural Network (FBP-ANN)

was presented for long-term forecasting of total electricity

demand. The proposed approach proved its accuracy along

with effectiveness in long-term forecasting. In Ref. [33], a

modified technique based on an ANN combined with LR

was applied to conduct long-term electrical load demand

forecasting. Application results showed that the proposed

hybrid technique is feasible and effective.
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2.2 Application of deep learning techniques
in long-term load forecasting

Although deep learning approaches are used to solve short-

term load forecasting problems, their application for long-

term load forecasting is still limited. In this section, up-to-

date deep learning approaches for improved long-term load

forecasting are investigated to understand the different

architecture configurations used in such forecasting

approaches. These include but are not limited to the authors

of Ref. [34], who developed optimal design settings for

Deep Neural Networks (DNNs) to generate accurate pre-

dictions of long-term electricity demand. The effectiveness

of prediction using the developed DNNs’ architecture,

compared with traditional ANNs, was higher. In Ref. [35],

a Deep-Feedforward Neural Network (Deep-FNN) with a

sigmoid transfer function, resilient backpropagation train-

ing algorithm, and Deep-FNN with Rectified Linear Unit

(ReLU) activation function was proposed for short-term

and long-term load forecasting. The outcome demonstrated

that Deep-FNN with sigmoid function and resilient back-

propagation training algorithm performed better than other

models. In Ref. [36], Deep Recurrent Neural Network

(DRNN) models were proposed for a medium to long-term

electric load prediction. The proposed DRNN’s error is

relatively lower when compared with the conventional

multi-layered perceptron neural network. In Ref. [37], a

bespoke DRNN configuration was explored for medium to

long-term electricity and heat demand predictions. The

DRNN model outperformed both Gradient Boosting

Regression (GBR) and SVM approaches in terms of

accuracy. Ref. [38] proposed a method for forecasting high

energy demand using a Long Short-Term Memory (LSTM)

neural network, and Exponential Moving Average (EMA)

was proposed. The LSTM model proved its superiority

compared with other ANN, SVM, Random Forests,

Bayesian Regression, and Mean-Only Model approaches.

Ref. [39] proposed a method for long-term load forecasting

utilising RNN consisting of Long-Short-Term-Memory

(LSTM-RNN) cells was proposed. The proposed model’s

performance could be further improved by incorporating

more weather parameters. In Ref. [40], Feedforward Arti-

ficial Neural Network (FANN), SVM), RNN, Generalised

Regression Neural Network (GRNN), K-Nearest Neigh-

bours, and Gaussian Process Regression (GPR) were used

for long-term load forecasting. The FANN method showed

better results compared with others. In Ref. [41], LSTM

was developed for long-term energy consumption predic-

tion with distinct periodicity. This model introduced spe-

cial units called memory blocks to overcome the

vanishing/exploding gradient problems. In Ref. [42], dif-

ferent Machine Learning algorithms, including SVR,

Random Forest Regression, and Flexible Neural Tree, were

compared for the best forecasting of a short and long-term

load demand period. It was observed that the forecasting

accuracy decreased with the increase in timescale. In Ref.

[43], a new variant of RNNs based on the transform

learning model, named Recurrent Transform Learning

(RTL), was proposed for long-term load forecasting.

Results showed that the proposed technique outperforms all

other techniques.

The previous literature indicates that the forecasting

efficiency of traditional ANNs for long-term predictions of

load demand could only be increased if integrated with

other forecasting approaches/algorithms such as ANFIS,

SVR, and LR. The accuracy of deep learning approaches in

long-term load forecasting requires developing sophisti-

cated architecture configurations and careful selection of

the training method, including best tuning of all the

involved parameters.

However, improving the BPA algorithm of the tradi-

tional ANN and its forecasting capability has not been

investigated yet. The difference in behaviours between

trained and future datasets and how to encapsulate/quantify

these behaviour differences to adapt the current BPA

algorithm for better forecasts has not yet been studied. In

addition, the modification suggested in the mathematical

formulation of the forecasting formula and how to correct

the behaviour gained after training the network to be

familiar with the unexpected behaviour of other future

values of the datasets that might have different behaviour

has also not been investigated before. To further clarify the

proposed mathematical derivation, an adjustment factor is

proposed to capture and quantify any deviation between the

trained dataset’s behaviours and new/future datasets. This

factor will then be added to the forecasting formula to

smooth out any positive or negative deviations obtained in

the forecasting values due to both trained and future dataset

behaviour differences. Different adjustment factors and

new forecasting equations for popular dataset ranges,

including (0,1) and (-1,0), are proposed to obtain reliable

and accurate long-term load forecasts.

It is also worth mentioning that the popular reasons

behind the inability of such traditional ANNs to provide

accurate long-term forecasts are the lack of training data

and the increment of accumulated errors in long-term

estimation. However, other reasons for the limitations of

traditional ANNs as long-term forecasting require further

discussion. Although authors in Ref. [44] addressed some

possible reasons for the underperformance of many com-

plex novel ANN architectures, none of these reasons relates

to the problem’s settings considered in this study.

Therefore, in this study, the reasons/limitations behind

the poor performance of traditional ANNs in long-term

forecasting will be further investigated and discussed. The
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study will also propose an improved ABPA algorithm with

a new formulation for reliable long-term forecasting.

3 Multiple-layer perceptron artificial neural
networks

This section explains the BPA used in a multiple-layer

traditional artificial neuron network. The BPA’s limitation

in terms of the validity of its optimal weight values for

providing accurate long-term forecasts is also discussed. A

proposed improvement on the BPA currently used is also

introduced. Different forecasting formulations for different

dataset ranges are suggested to identify any deviation

caused by changed behaviours of trained and future data-

sets for better forecasting outcomes.

The proposed algorithm’s main contribution is that it

provides adaptive forecasting models/formulations to

encapsulate the behaviour difference between trained and

future datasets in terms of deviation. This deviation will be

added as an adaptive factor to the current ANN forecasting

model outcomes for more accurate long-term forecasts.

This adaptive factor’s value could be positive or negative,

depending on the deviation between current and future

datasets’ behaviours.

3.1 Backpropagation algorithm (BPA)

This section discusses a Multi-Layer Perceptron (MLP)

model. This model consists of j layers, and each layer

involves several neurons. The first layer is the input layer,

while the last layer is the output layer, and all layers in

between are hidden layers, as shown in Fig. 1.

In the forward pass computations, the input vari-

ables/dataset represent individual independent variables

Xi; i ¼ 1; :::;m (m is the number of independent variables),

each variable involves (n) observations. These variables are

fed into the network’s input layer after normalising them in

a specific range. In order to set the importance of each

input, a weight Wi;k;j is assigned to input index i, layer j-1,

to the corresponding neuron index k, and next layer j.

These weights at the first term are selected randomly.

For example, for the first hidden layer, the first output X1 is

calculated as below:

Y1;1 ¼ f net1;1
� �

ð1Þ

The value of net1;1 is:

net1;1 ¼
Xm

i¼1

Xi:Wi;1;1 ð2Þ

where i is the input/neuron index at layer j-1, net1;1 is the

output of X1 for all neurons of the first input layer.

The outputs netk;j�1 of neuron k, layer j-1 becomes the

inputs to the last layer j.

Each neuron output is normalised using the Activation

function (Sigmoid). The final network output (calculated)

is normalised using the below Sigmoid function:

Ŷd ¼
1

1þ e�
P

k
netk;j�hjð Þ ð3Þ

where k is the neuron index of the following corresponding

layer j, netk;j is the input to the last hidden layer j, neuron k,

Wi;kj is the weight on the connection from neuron i to k at

layer j, hj is the Threshold (bias) on layer j, Ŷd is the

desired/calculated output.

The validation stage is then applied to check the dif-

ference between the actual/calculated and desired/target

outputs of the network.

The difference between the desired output Ya(target) and

the actual network’s output Ŷd (calculated) is calculated.

An error function defined as Mean Square Error (MSE) is

usually used as a typical error function.

MSE ¼
X

d

Ya � Ŷd
� �2

n
; d ¼ 1; . . .; n; a ð4Þ

where d is the output value index, n is the number of input

values/observations. Ya desired/target output (observations

used in training).

The backpropagation computations involve three stages:

Training, Validation/Test, and Forecasting. The dataset is

divided into three parts according to these stages; the

longest dataset’s part is used for training, the second part to

validate the model accuracy, and the third for model test-

ing. The steps of backpropagation are summarised through

the Training stage as follows: for a specific learning rate

(gÞ, the weights are updated using a learning algorithm

(gradient descent). The weights are adjusted anywhere in

the network after the error becomes known. The derivative

of the error function for that weight must be found, and the

delta rule Dw is generalised.

As shown in Eq. 3, the nonlinearity sigmoid function is

the most used normalisation function in the multi-layered

perceptron models [45]. Inadequate or inappropriate data

normalisation to input variables may considerably worsen

forecasting results [13]. The derivative being dY
dX ¼ Y ¼

Ŷ 1� Ŷ
� �

and the delta rule used to change the weightWi in

neuron k, hidden layer j with a sigmoid function is as

follows:

DWi;j;k ¼ gXidk;j ð5Þ

where:

dk;j ¼ Ya 1� Yað Þ Ŷd � Ya
� �

ð6Þ
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The weights are then updated after each pattern is

implemented by:

Wi;k;j update ¼ Wi;k;j � DWi;j;k ð7Þ

The newly updated weights will then be fed into the

network for another training session. Each training session

involves attempting different numbers of neurons and

hidden layers to make model improvements and increase

output accuracy. The training session stops when the MSE

is minimal. The MLP is considered the best model and

ready to be tested by exposing it and comparing it to the

data’s test part.

After the training stage is completed, the model is ready

to forecast future values using the below equation:

ŶForecast ¼ Ŷd þ 1
� �

Max Yað Þ �Min Yað Þð Þ þMin Yað Þ
ð8Þ

where Ya: desired output (within the training data set), (we

enter this in the training session), Min Yað Þ is the minimum

desired/target output, Max Yað Þ is the maximum

desired/target output,

The forecasting model/formulation (8) is used to restore

the data to their actual values. The BPA uses the fore-

casting formulation after the training and testing stages

have been completed. This paper will improve this for-

mulation by including the deviation/accumulated error

caused by the behaviour difference between trained and

future datasets for more accurate long-term forecasting

outputs.

3.2 Memory of learning and long terms
forecasting

Neural networks generally perform three functions. They

supervise learning tasks, build knowledge, and memorise

the correct answer to provide it in advance from datasets.

As explained in Sect. 3, the networks then learn by tuning

themselves to find the correct answer, increasing their

prediction’s accuracy. Also, they understand the behaviour

of datasets and mimic their interchanging relationships,

taking into consideration factors that could affect their

behaviour and stability for further predictions.

However, the training stage is conducted on the avail-

able numerical information in input datasets. At the train-

ing stage, the behaviour of datasets is captured, including

inputs of independent variables Xi; i ¼ 1; :::;m (m is the

number of independent variables), each with (n) observa-

tions, assuming that some aspects of the past pattern will

continue in the future. Hence, a memory of training is

established. This memory enables backpropagation to

predict datasets’ future behaviour based on the current

learned behaviour obtained from the training stage and

supported by the validation/test stage. This training

includes estimating and hence capturing the behaviour of

each dataset of input Xi as it continues in the future.

Although the bias term allows for some deviation/random

variation and the effects of relevant variables that are not

included in the model, the behaviour of future inputs Xi

beyond the trained datasets could irritate and become

unexpected due to unforeseen factors. This irritation could

affect the validity of the optimal weights, make the

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

Input
Layer

Hidden
Layer-1

Hidden
Layer-2

Hidden
Layer-j

Output
Layer

Neurons Neurons Neurons

Neurons

Threshold

X1

X2

X3

Xm

.

.

.

Wi,k,j Wi,k,j Wi,k,j

Wi,k,j

Fig. 1 The architecture of the MLP model
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forecasting of the behaviour of future observations chal-

lenging, and subsequently elevate the bias factor further.

Many researchers attribute the popular reason for such poor

performance to a lack of training data and increased

accumulated errors over long-term estimation.

We discuss in this paper other reasons related to the poor

performance of the traditional BPA in long-term forecast-

ing. One of these reasons is that optimal weights obtained

after the training stage has been completed might become

less sustainable in the long-term than short-term fore-

casting. This suitability issue escalates notably when future

datasets’ behaviour deviates from the trained datasets’

current behaviour theme. Hence, these weights become less

valid/sustainable, affecting the network learning memory

and response to prediction decisions. If so, the memory of

learning obtained at the training stage starts distracting in

providing the correct forecast answer, resulting in incorrect

responses. This inaccuracy of responses starts accumulat-

ing over time, causing ‘‘non-realistic’’ or ‘‘false’’ prediction

decisions and ending with a significant deviation/bias

value. The ANN model memory tends to vanish for longer-

term forecasting resulting in a weak and unfit prediction

model.

3.3 Adaptive backpropagation algorithm (ABPA)

This section discusses suggestions for improving forecast

values’ accuracy caused by learning memory disruption/

deterioration. This deterioration of memory is attributed to

the difference between the two behaviour practices of both

training and future datasets. As explained in Sect. 3.2., this

leads to wrong decisions to provide overestimated/under-

estimated forecasting outputs.

The difference between the behaviour of actual datasets

(used to train the network) and any deviated behaviour

caused by the new/future datasets used for forecasting is

captured in an adjustment factor. This factor is calculated

by finding the difference between the two behaviours. This

difference is identified by adopting the last trained obser-

vation of the network datasets as a base of knowledge. This

base represents the source of the datasets’ behaviour that

the ANN has captured during the training stage. Any

deviation from the network will be captured by an adjust-

ment factorMax Yadj
a

� �
orMin Yadj

a

� �
and will be added to or

subtracted from the forecasting formulation/model, Eq. (8)

based on the deviation type (positive or negative). A pos-

itive deviation D MaxðYaÞ means that the generated values

are overestimated forecasts, while a negative deviation D
MinðYaÞ means that the provided forecasts are underesti-

mated. Both deviations are caused by the different beha-

viour themes of future datasets that the trained network

does not understand. The forecasting after adjustments/

adaptation should produce accurate forecast values con-

sidering any deviation/difference between the captured

behaviour (after training) and other behaviours inherited by

future dataset values.

This improvement includes adjustment of the network

desired/target output Ya. The adjustment could be made on

either the Maximum Value of Ya, Minimum Value of Ya or

both Maximum and Minimum Values of Ya.

For the range of the dataset (-1,0), the adapted fore-

casting equation is developed as follows:

• Calculate the adjusted values of MaxðYaÞ and MinðYaÞ
using equations:

Max Yadj
a

� �
¼ MaxðYaÞ þ DMaxðYaÞif ðDMaxðYaÞis

þ veÞ; or� DMaxðYaÞðif DMaxðYaÞis
� veÞ

Min Yadj
a

� �
¼ MinðYaÞ
¼ MinðYaÞ þ DMinðYaÞif ðDMinðYaÞis

þ veÞ; or� DMinðYaÞðif DMinðYaÞis
� veÞ

D ¼ Max8i
Xi;nþl � Xi;n

Xi;n

� �
; l ¼ 1; . . .; L

D ¼ Min8i
Xi;nþl � Xi;n

Xi;n

� �
; l ¼ 1; . . .; L

where: Yadj
a : is the adjusted value of Ya, D: is the vari-

ation between Xi;n and Xi;nþl, n: is the index of last

input/observation, l: is lag of forecasting, L: is the

number of forecasting lags, Xi;n: the last input n of each

dataset i, Xi;n, Xi;nþl: the forecasted input n ? 1 of each

input value Xi.

This adapted equation will adjust either Max Yað Þ
and/or Min Yað Þ values to keep the bridge of the beha-

vioural theme between the new datasets used for fore-

casting Xi;nþ1;Xi;nþ2; . . .;Xi;nþL for all i = 1,…,m and

the last observation of the trained datasets of the inde-

pendent variables Xi;n. This sort of behavioural bridging

will subsequently improve the forecasting value if the

learning memory starts distracting because of the con-

fusion caused by the behaviour of future values of the

input variables beyond the overall captured behaviour.

• In case adjustment of Max Yað Þ is applied, the adapted

forecasting equation is:

ŶForecast ¼ Ŷd þ 1
� �

Max Yadj
a

� �
�Min Yað Þ

� �

þMin Yað Þ ð8:1Þ

• In case Min Yað Þ is suggested for adjustment, the

adapted forecasting equation is:

Neural Computing and Applications (2022) 34:477–491 483

123



ŶForecast ¼ Ŷd þ 1
� �

Max Yað Þ �Min Yadj
a

� �� �

þMin Yadj
a

� �
ð8:2Þ

• In case both Min Yað Þ and Min Yað Þ are adjusted, the

adapted forecasting equation is:

ŶForecast ¼ Ŷd þ 1
� �

Max Yadj
a

� �
�Min Yadj

a

� �� �

þMin Yadj
a

� �
ð8:3Þ

Any of the above models/formulations could be

applied to accommodate forecast value deviations

caused by input datasets’ behaviour (future). The

quality of the forecasting output depends on the devi-

ation in behaviour. Hence, a comparative study is

required to decide which of the above forecasting

models/formulations best adjust forecasting outputs to

comply with the datasets’ behaviour and provide the

best forecasting outcomes.

This adjustment could also be applied to datasets

with a range (0,1). The adapted forecasting equations

are:

• In case adjustment of Max Yað Þ is applied, the adapted

forecasting equation is:

ŶForecast ¼ Ŷd
� �

Max Yadj
a

� �
�Min Yað Þ

� �� �
þMin Yað Þ

ð8:4Þ

• In case Min Yað Þ is suggested for adjustment, the

adapted forecasting equation is:

ŶForecast ¼ Ŷd
� �

Max Yað Þ �Min Yadj
a

� �� �� �

þMin Yadj
a

� �
ð8:5Þ

• In case both Min Yað Þ and Min Yað Þ are adjusted, the

adapted forecasting equation is:

ŶForecast ¼ Ŷd
� �

Max Yadj
a

� �
�Min Yadj

a

� �� �� �

þMin Yadj
a

� �
ð8:6Þ

4 Case study, results analysis,
and discussion

4.1 Case study and ANN inputs

A case study is conducted to test the proposed forecasting

formulations in Sect. 3.3. This case study considers the

electricity load demand (monthly peak load) in the

Republic of Iraq for 2011–2020 and electricity consump-

tion in multiple sectors, including domestic (households),

industrial, commercial, government, and agriculture. The

electricity load demand of both Nov and Dec 2020 was

supposed to be released in early 2021. However, this was

delayed due to the third wave of COVID-19 in the

Republic of Iraq.

We considered six input variables to forecast electric-

ity’s load demand, each representing annual energy con-

sumption by a sector/industry. The developed model also

considers electricity cut periods, represented by an unsat-

isfied demand factor. This unsatisfied demand, leading to

unplanned cuts, frequently occurs due to the many factors

that have caused the current national electricity system in

Iraq to become outdated. These factors include frequent

wars and political interventions, lack of maintenance,

unstable security conditions, and a market monopolised by

private suppliers (mainly using diesel generators), all of

which have led to an inability to satisfy the increasing

electricity demand. This shortage is referred to as a cut

period of electricity, most commonly unscheduled. Hence,

this factor is vital in forecasting electricity consumption in

Iraq and is considered in this study. The input and output

parameters and respective symbols are summarised in

Table 1.

The electricity load demand (monthly peak load) in the

Republic of Iraq for 2011–2020 is considered as an output

parameter, while electricity consumption in multiple sec-

tors, including domestic (households), industrial, com-

mercial, governmental, and agricultural, are considered as

parameter inputs of the ANN. See Fig. 2 for the monthly

electricity consumption rate in Iraq, including the load

demand.

As seen in Fig. 2, the domestic sector, represented by

households, consumes a significant portion of electricity.

The second largest consumer of electricity is the industry,

covering both private and public sectors. This consumption

includes refineries, gas stations, and communication com-

panies. Governmental consumption comes third. It can also

be noticed that the industrial sector’s energy consumption

decreases after 2017 due to many political reasons, such as

increased imports from neighbouring countries. Moreover,

the governmental sector indicates high electricity con-

sumption, increasing in 2011. This high consumption is

attributed to the increasing number of government pre-

mises, employees and offices.

Table 1 Description of the input datasets and output parameter

Parameter Description

Input

Output

D: Domestic (MWh)

C: Commercial (MWh)

I: Industrial (MWh)

G: Governmental (MWh)

A: Agricultural (MWh)

L: Load demand of electricity (MW)
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The load demand of electricity (MW) depends on the

above sectors’ energy consumption (MWh). This load

demand (MW) increases due to increasing domestic sector

requirements. This increment in the domestic sector

requirements is attributed to changes in population growth

and in economic and demographic patterns in Iraq.

The ANN is trained using input datasets (monthly) from

2011 to 2019. These datasets consist of load demand as the

dependent variable and five other independent variables,

including domestic, commercial, industrial, governmental,

and agricultural consumption of electricity. A sample of

the dataset used to train the ANN model is presented in

Table 2.

The complete dataset inputs and the load demand as

output are presented graphically in Fig. 2. Another set of

inputs of the year 2020 from the months (Jan-Oct) are used

to validate and evaluate the proposed ABPA performance.

A sample of this testing data is presented in Table 3.

4.2 Experimental results

4.2.1 ANN architecture and training parameters

After the ANN has been trained, the optimal weight values

are obtained and the optimal number of neurons and layers.

The testing and forecasting stages then follow by adopting

input datasets for the year 2020 from Jan to Oct for com-

parison and validation purposes. The architecture of five

inputs, one hidden layer with five neurons and one output

(5 9 5 9 1), is the most suitable for the proposed ABPA.

The proposed ANN architecture’s performance is assessed

using the MSE and MAPE criteria. See Table 4 for the

optimal parameters used for ANN architecture and training.

Fig. 2 Load demand and

consumption of electricity in

Iraq

Table 2 Sample training data

set used for learning the ANN
Year Month D C I G A L

2011 Jan 807,810 80,299 258,606 182,512 40,304 7142

Dec 859,547 92,394 378,707 366,890 148,163 7222

2012 Jan 1,029,478 127,508 367,460 382,630 152,714 8625

Dec 1,298,710 113,361 476,621 331,336 55,479 8708

2013 Jan 1,175,507 114,461 717,176 488,478 80,361 10,417

Dec 972,583 105,221 431,702 287,158 31,213 10,500

2014 Jan 969,578 98,106 430,423 370,384 25,874 12,208

Dec 1,046,479 127,509 589,467 671,879 51,525 12,292

2017 Jan 1,679,993 246,388 729,516 1,323,604 104,943 13,833

Dec 2,255,290 222,741 149,700 353,834 19,539 13,417

2018 Jan 2,255,290 244,726 346,517 660,315 21,875 19,098

Dec 1,917,974 130,057 633,546 298,107 29,103 18,696

2019 Jan 2,024,190 194,155 357,444 342,794 44,468 21,669

Dec 2,024,190 194,155 357,444 342,794 44,468 18,014
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4.2.2 Impact of input normalisation on the model’s output

Having trained the ANN, obtained optimal parameters, and

tested and validated the outputs as outlined above, nor-

malisation of the data is applied.

Applying normalisation to the input datasets is then

investigated to examine its effect on the weights’

calibration during the training stage. This assists in iden-

tifying the best range of input datasets for the best esti-

mation of weights across the ANN and, subsequently, for

high-quality forecasts. See Fig. 3 for a comparison of

datasets before and after normalisation is applied.

In Fig. 3, the actual load demand datasets of the year

2020 starting from Jan to Oct are used to test the accuracy

of long-term forecasts using Eq. 8, where adjustment is not

applied (see Sect. 3.3). The normalisation is applied to

electricity load and consumption datasets by converting

them between (0,1) ranges. The normalisation of this range

provides, as shown in Fig. 3, more accurate long-term

forecasts, justified by its minimum MSE, 47.497.616 and

MAPE, 0.24, than the dataset’s range (�1) with MSE

equal to 50.759.956 and MAPE equal to 0.26. This (0,1)

range normalisation also reflects a well-training and best

learning practice obtained after normalisation of range

(0,1) is applied to the datasets. However, the datasets’

range (-1,0) provides fluctuated forecasts and does not

converge the actual load demand data, thereby achieving

the highest MSE equal to 77.857.125 and MAPE equal to

0.287.

The traditional forecast model/formulation used in the

BPA (Eq. 8) is improved by adding/subtracting the devia-

tion represented by the adaptive factor to/from the forecast

values obtained using Eq. 8 (the adjustment is applied).

Table 3 Sample testing data set

used to evaluate the optimised

ANN

Year Month D C I G A L

2020 Jan 2,171,109 247,153 376,323 513,709 42,303 23,849

Feb 1,521,127 142,113 389,312 292,361 40,375 21,988

Mar 2,028,360 200,519 318,475 243,270 42,976 25,615

Oct 2,232,481 235,083 561,184 449,513 88,824 27,615

Table 4 The architecture of ANN and training parameters

Architecture of ANN

Number of layers 3

Number of neurons in the layer 5

Number of inputs 5

Number of hidden layers 1

Number of outputs 1

Initial weights and biases Randomisation

Activation function Sigmoid

Number of training data 108

Number of testing data 10

Training parameters

Learning rule Adaptive backpropagation (ABPA)

Learning rate 0.02

Momentum constant 1

Fig. 3 The evaluation of

impacts of different ranges of

input datasets
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This adaptive factor equals the deviation between long-

term forecasts and the behaviour theme the network

becomes familiar with after the training stage has been

completed.

For the range of the dataset between (-1,0), formula-

tions (8.1) to (8.3) are applied to improve the long-term

forecast values obtained by Eq. (8). The dataset range (0,1)

shows more accurate forecasts using Eq. (8) (see Fig. 3

above). However, the purpose of the range (-1,0) experi-

ment is to justify the proposed formulations (8.1) to (8.3)

by understanding the general theme of its behaviour, even

though they are not the best forecast outcomes. See Fig. 4

for the impact of the proposed forecasting formulations

(8.1) to (8.3), the dataset range (-1,0) on the quality of

forecasting outcomes.

Figure 4 shows that the best forecasts are obtained by

applying Eq. (8.2), achieving minimum values of MSE

13.884.386 and MAPE 0.16 compared with the No-Ad-

justment Eq. (8), that scored MSE and MAPE equal to

77.857.125 and 0.287. Equation (8) generates forecasts that

are below the forecasting theme, and hence Min Yað Þ is

suggested for adjustment of the ŶForecast values. Equa-

tion (8.1) generates the worst forecasts with the highest

MSE and MAPE values equal 105.350.141 and 0.48,

respectively. However, Eq. (8.3) provides the second-best

forecasts compared with the actual load data to achieve

MSE and MAPE equal to 37.118.399 and 0.30,

respectively.

The impact of the proposed forecasting adjustments for

input datasets range (0,1) is identified, and each adjustment

is represented by the suggested forecasting formulations

(8.4) to (8.6). See Fig. 5 for the impact of the proposed

adjustments on forecasts’ quality.

As presented in Fig. 5, the best forecasting of load

demand is achieved by using the proposed formulation

(8.4) for the best datasets of the (0,1) range (the adjustment

is applied). This best forecasting is attributed to having the

minimum MAPE 0.045 and MSE 1.195.650. This adjust-

ment is applied by adding the adjustment factor to the

obtained forecasting values to improve long-term load

forecasting further. The worst forecasts are generated using

formulation (8), where no adjustment is applied to produce

an MSE value equal to 47.497.616 and MAPE equal to

0.24. The second-best forecasts are generated using

Eq. (8.6), where adjustment is applied to produce MSE

equal to 1.850.110 and MAPE equal to 0.063, followed by

forecasts generated by Eq. (8.5) with MSE and MAPE

equal to 3.147.928 and 0.089, respectively.

In general, it can be concluded that the best forecasting

practice of the load dataset inputs of the year 2020 over the

long-term is achieved for input datasets range (0,1) and by

applying Eq. (8.4). These settings could change according

to the type and number of the data and other learning

requirements.

5 Comparison study

A comparison study is conducted to justify the proposed

forecasting method’s superiority in generating high-quality

long-term forecasts. Five forecasting approaches were used

to predict electricity’s load demand from Jan to Oct 2020.

These approaches include:

1. The traditional Backpropagation Algorithm (BPA)

2. The Adjusted Backpropagation Algorithm (ABPA)

3. Radial Basis Function Networks (RBFN)

Fig. 4 The evaluation of the

impact of the proposed forecast

adjustments – datasets range

(-1,0)
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4. Regression Analysis (REG)

5. Redcurrant Neural Networks – Long Short-Term

Memory (RNNs-LSTM)

REG is used to forecast the load demand. The Least-

Squares (LS) method is applied to estimate the regression

model’s parameters. After selecting the most influential

independent variables, the model becomes:

L ¼ 0:0099486Dþ 0:004962I þ 0:002712G
� 0:026445Cut

where L load demand, D: Domestic consumption, I:

Industrial consumption, G: Governmental consumption,

Cut: Unsatisfied demand, Cut (shortage of electricity).

After solving the above regression model, T test values

for all parameters are zero, P = 0, which means that these

parameters are statistically significant. The coefficient of

determination R2 is also calculated: R2 ¼ 98%. This sig-

nificant value refers to the strong relationships between the

regression model variables. The F-test value is calculated

as 574.3, which indicates that the regression model is a

close fit to the actual one. However, the REG model is not

accurate enough for long-term prediction due to the non-

linearity relationship between the load demand dependent

variable and other electricity consumption independent

variables.

The RNNs-LSTM architecture is selected and used in

this comparison study. This selection is attributed to its

high efficiency in long-term forecasting [46]. In addition,

such network architectures have a recurrent hidden state

whose activation at each time is dependent on that of the

previous time, which makes it specialised for processing

sequential data (time series).

After the RNN has been trained, the best architecture,

along with other relevant RNNs parameters, is found to be:

number of inputs (5), number of layers (4), number of

neurons (5), number of outputs (1), number of hidden

layers (2), input delays (5), layer delays (1), learning rate

(0.005), learn rate (Gradient), layer type (Dense, LSTM),

layer activation (ReLU, Linear), data division (Random),

training (Bayesian Regulation), sum square parameter

(21.5), Calculations (MEX), epochs (134). See Table 5 for

a comparison of load demand forecasting approaches.

The overall trend of the load demand curve for the

trained datasets and long-term forecasting values obtained

by each forecasting method is demonstrated in Fig. 6.

Figure 6 shows that the best long-term forecasts of load

demand are obtained using the proposed ABPA. Based on

forecasting value adjustments, the suggested forecasting

formulations contributed significantly to amending the

deviations obtained from the difference in behaviour

between the trained and new forecast datasets. The long-

term forecast values are further improved. This improve-

ment was assessed considering the minimum MSE and

MAPE equal to 1.195.650 and 0.045, respectively, com-

pared with the previous version of forecasts using No

Adjustment, i.e. Eq. 8, which achieved significantly higher

MSE and MAPE values equal to 50.759.957 and 0.26,

respectively.

The second-best forecast method based on the achieved

MSE and MAPE values of 12.845.733 and 0.116 is the

RNNs-LSTM. This method’s performance, as discussed

earlier, is attributed to its high capability for learning order

dependence in sequence prediction problems. The RBFN

method is considered the third-best forecasting method by

achieving MSE and MAPE values equal to 19.197.960 and

0.144. The REG approach provides forecasts below the

Fig. 5 The evaluation of the

impact of the proposed forecast

adjustments – datasets range

(0,1)
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actual load and shows performance almost close to BPA

with MSE and MAPE values equal to 44.495.892 and 0.25.

6 Conclusion and future work

This study proposed improving the classical forecasting

formulation used in BPA for higher-quality long-term load

demand forecasting. This improvement was achieved by

capturing the behaviour differences within/outside the

training input datasets and quantifying these differences as

adjustment factors. This adjustment was possible by

bridging the last observation’s behaviour (within the

trained datasets) and future datasets outside the training

stage. This deviation (adjustment factor) was then

quantified/encapsulated in a variation term, which was

added to/subtracted from the classical forecasting model

for best adjustments and higher accuracy outputs.

The new forecasting formulations, including the pro-

posed adjustment factors, improved long-term forecasts’

quality. This improvement was evident from the quality of

load forecast values obtained using the ABPA compared

with other forecasting methods. Compared with other

methods, the APBA obtained the lowest values of MSE

equal to 1.195.650 and MAPE equal to 0.045. The reduc-

tion in both MSE and MAPE values showed that the pro-

posed ABPA, represented by the new forecasting

formulations, successfully accommodated the deviation

caused while generating high accuracy forecast outputs.

The achieved high forecasting accuracy also verified the

Table 5 Load forecasting of

four methods with actual data
Year 2020 Actual load REG BPA ABPA RBFN RNNs-LSTM

Jan 23,849 18,324 19,484 19,784 25,344 20,924

Feb 21,988 14,100 12,510 12,138 23,212 16,126

Mar 25,615 17,117 17,276 19,080 17,812 19,858

Apr 21,923 18,707 19,529 20,394 15,960 23,365

May 26,592 19,653 20,494 22,047 21,271 25,437

June 28,015 22,830 22,319 24,235 25,539 28,868

July 28,354 21,903 20,558 20,847 27,043 23,375

Aug 29,792 23,829 22,243 23,326 27,329 27,746

Sept 29,060 21,355 20,445 20,436 26,513 24,679

Oct 27,615 19,997 19,753 20,376 21,052 27,327

MAPE – 0.25 0.26 0.045 0.144 0.116

MSE – 44.495.892 50.759.957 1.195.650 19.197.960 12.845.733

Fig. 6 The comparison of

accurate forecasting of multiple

approaches
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traditional ANN techniques and the proposed ABPA’s

ability to successfully capture the unexpected behaviour of

the year 2020, which was exceptionally different from

other previous years due to the COVID-19 outbreak. The

traditional BPA could not understand the significant

change in the load dataset behaviour, especially for 2020.

This distracted understanding (as explained in Sect. 3.2)

led the BPA to generate inaccurate forecasts below the

actual load inputs, resulting in significant MSE and MAPE

values equal to 50.759.957 and 0.26, respectively. The

RNNs-LSTM was the second-best approach in providing

long-term forecast with MSE and MAPE equal to

12.845.733 and 0.116, followed by the RBFN approach

with values of MSE and MAPE equal to 19.197.960 and

0.116, respectively.

The impact of data normalisation on the quality of long-

term forecasting outcomes using the traditional forecasting

equation was measured by applying three different ranges

of input datasets. Using Eq. (8), the range (0,1) led to the

best forecasts with minimum values of MSE equal to

47.497.616 and MAPE equal to 0.24. After the adjustment,

Eq. (8.4) provided the best forecasts for the dataset range

(0,1) with the lowest MSE equal to 1.195.650 and MAPE

equal to 0.045.

This approach’s limitation in terms of implementation is

that it needs significant differences in behaviour between

the training and forecasting/validation datasets (high non-

stationarity). This dataset’s behaviour differences enable

the proposed ABPA to perform better and improve the

expectations based on adjusting the dataset’s behaviour.

Future work is suggested to develop more advanced

forecasting models with more than one forecasting output

for classical ANNs. The relationship between these models

for different ANN outputs would be a promising opportu-

nity to further investigate robust and reliable prediction

purposes.
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