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Revision surgery (RS) is a necessary surgical intervention in clinical practice to treat spinal
instrumentation–related symptomatic complications. Three constructs with different
configurations have been applied in RS. One distinguishing characteristic of these
configurations is that the revision rods connecting previous segments and revision
segments are placed alongside, outside, or inside the previous rods at the level of
facetectomy. Whether the position of the revision rod could generate mechanical
disparities in revision constructs is unknown. The objective of this study was to assess
the influence of the revision rod position on the construct after RS. A validated spinal finite
element (FE) model was developed to simulate RS after previous instrumented fusion using
a modified dual-rod construct (DRCm), satellite-rod construct (SRC), and cortical bone
trajectory construct (CBTC). Thereafter, maximum von Mises stress (VMS) on the annulus
fibrosus and cages and the ligament force of the interspinous ligament, supraspinous
ligament, and ligamentum flavum under a pure moment load and a follower load in six
directions were applied to assess the influence of the revision rod position on the revision
construct. An approximately identical overall reducing tendency of VMS was observed
among the three constructs. The changing tendency of the maximum VMS on the cages
placed at L4-L5 was nearly equal among the three constructs. However, the changing
tendency of the maximum VMS on the cage placed at L2-L3 was notable, especially in the
CBTC under right bending and left axial rotation. The overall changing tendency of the
ligament force in the DRCm, SRC, and CBTC was also approximately equal, while the
ligament force of the CBTCwas found to be significantly greater than that of the DRCm and
SRC at L1-L2. The results indicated that the stiffness associated with the CBTC might be
lower than that associated with the DRCm and SRC in RS. The results of the present study
indicated that the DRCm, SRC, and CBTC could provide sufficient stabilization in RS. The
CBTC was a less rigid construct. Rather than the revision rod position, the method of
constructing spinal instrumentation played a role in influencing the biomechanics of
revision.
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INTRODUCTION

Posterior instrumented fusion has been commonly accepted as
treatment for spinal disorders due to degeneration, tumors,
fractures, and deformities (Kaiser et al., 2014). Although the
application of instrumented fusion has yielded positive clinical
outcomes in treating spinal disorders, complications such as
adjacent segment disease (ASD), proximal junctional kyphosis
(PJK), and implant failure continue to be main concerns in
clinical practice (Shinohara et al., 2016; Nicholls et al., 2017;
Yamato et al., 2018; Hashimoto et al., 2019). With the increasing
life expectancy of patients, an increasing number of revision
surgeries (RS) is needed to relieve complication-related
symptoms or to rescue primary implantations to maintain
spinal stability (Rodriguez et al., 2014; Nicholls et al., 2017;
Yamato et al., 2018). It has been reported that the rate of RS
increased with time from 7.4% at the 1-year follow-up to 22.6% at
the 4-year follow-up (Cecchinato et al., 2020).

Various constructs have been adopted in RS, including the
conventional dual-rod construct (DRC) and its modified
configuration (DRCm), satellite-rod construct (SRC), and
cortical bone trajectory construct (CBTC). The DRC is the
most common and standard conventional method to perform
RS by replacing the prior rods with new longer rods, which could
inevitably result in longer surgical duration, more blood loss, and
higher risk of postoperative complications (Tan et al., 2021b).
Retaining previous implants might reduce the risk of the
aforementioned problems in that the integrity of the primary
surgical site would be preserved. In addition, facetectomy was
reported to be correlated with spinal stability (Ahuja et al., 2020),
and whether the deferent position of placing the revision rod at
the level of facetectomy could affect fixated spinal stability is still

unknown. The DRCm is a modified dual-rod configuration that
extends spinal fusion and instrumentation by connecting the
revision rod to the previous rod alongside of it at the level of
facetectomy where the site of the primary surgery (PS) and RS are
connected. The SRC connects the revision rod to the previous rod
using side-to-side connectors and affixed rods on the outside of it.
The CBTC is a posterior instrumented technique that achieves
spinal fixation in a novel way of placing screws in a medial-to-
lateral orientation (cortical bone trajectory, CBT) with the screw’s
tail closer to the spinous process; therefore, the revision rod is
located inside of the primary rod (Figure 1). However, there is
limited knowledge about the influence of different revision rod
positions on the mechanical properties of spinal constructs after
RS. Therefore, the aim of our study was to perform an FE analysis
to compare the biomechanics of the DRCm, SRC, and CBTC in
RS and assess the influence of the revision rod position on spinal
stability after surgery, which could provide a basis for surgical
type choice.

METHODS AND MATERIALS

Generation and Validation of the Intact FE
Model
A previously validated intact T12-L5 FE model was used in the
present study (Tan et al., 2021a). Detailed modeling procedures
are described briefly as follows: the geometrically intact
thoracolumbar model was constructed in Mimics 10.0
(Materialise Technologies, Leuven, Belgium) from computed
tomography images of a healthy 30-year-old healthy male
subject without spinal abnormalities. Geometric model
reconstruction was performed using the reverse engineering

FIGURE 1 | Schematic posterior-anterior illustration of revisionmodels with revision rods placed alongside (DRCm, A), outside (SRC, B), and inside (CBTC, C) the
previous rods.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 7997272

Tan et al. Effects of Revision Rod Position

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


software Geomagic Studio 10.0 (Geomagic Inc., NC,
United States). The creation of tetrahedral and hexahedral
elements on the vertebrae and the assignment of material
properties were completed using preprocessing software
Hypermesh11.0 (Altair Engineering Corp., MI, United States).
Subsequently, the FE model was created in Abaqus 6.11 (Dassault
Systems Corp., PA, United States) for further analysis. The intact
FEmodel was composed of the cancellous bone, cortical bone, the
endplate, intervertebral disc, and posterior elements. The
cancellous bone of the vertebra was surrounded by one layer
of 0.35 mm cortical bone. The intervertebral disc was composed
of nucleus pulposus and annulus fibrosus with reported
proportions of 44 and 56%, respectively, which were identical
to the histological composition. The mean interspace between
facets was set at 0.1 mm. The detailed material properties used for
the components of the intact FE model were referenced in the
previous literature (Table 1) (Tan et al., 2021a). Seven ligaments
connecting the vertebrae were modeled as tension-only, three-
dimensional spring elements (Table 2) (Naserkhaki et al., 2018).
The validated procedure was the same as previously reported
methods (Tan et al., 2021a).

Generation of the Surgical Model
The primary surgical intervention was set as instrumented
transforaminal lumbar interbody fusion (TLIF) at the level of
L4-L5 with a traditional posterior dual-rod construct.
Semifacetectomy was performed to excise the right superior
and inferior facets of the L4-L5 level. Thereafter, a partial
intervertebral disc was removed, and the prepared interspace

between endplates was filled with a polyetheretherketone cage
surrounded by an autograph bone graft. Subsequently, L3-L5
segments were fixed using bilateral transpedicular screws
and rods.

The revision surgical intervention was set to address ASD
located at the level of L2-L3. The decompression and fusion
procedure was performed with TLIF. However, posterior
instrumentation was different among the groups. All primary
implants were retained in three constructs, and the differences are
listed as follows:

DRCm: The extended fusion segments (L1-L2) were
instrumented by bilateral connector rods attached to the ends
of the primary rods and locked by set screws.

SRC: The L1-L2 level was instrumented with two bilateral
conventional shorter rods that were connected to the primary
rods by side-by-side connectors and lateral satellite rods.

CBTC: The L1-L2 level was instrumented using the technique
of the CBT. Screws implanted into the vertebral body of L1-L3
were placed via CBT according to the reported literature (Mullin
et al., 2016). Briefly, the entry point of the CBT screws started at
the lateral part of the pars interarticularis and followed a
mediolateral, caudocephalad directed path. Thereafter, bilateral
rods connected to the screws were implanted into L1-L3. A total
of four screws were placed in L3 (Figure 2).

Implants applied in primary surgery and revision surgery,
including screws, rods, connecters (Ti6Al4 V) and cages, were
designed and constructed using SolidWorks (Dassault Systèmes,
MA, United States). C3D8R was applied to mesh screws, rods,
connectors, and cages. Thereafter, all components were imported

TABLE 1 | Element type and number of the components in the intact model.

Component Element type Young’s modulus (MPa) Element number

Vertebra body
Cortical bone C3D8R 12,000 3,437
Cancellous bone C3D4 100 214,269
Endplate C3D8R 24 6,336
Posterior element C3D4 3,500 366,252
Facet cartilage C3D8RH Neo-Hookean 6,495

Disc
Annulus ground C3D8RH Mooney–Rivlin 6,000
Nucleus pulposus C3D8RH Mooney–Rivlin 7,200
Annulus fibers Spring Calibrated stress–strain curves 14,400

TABLE 2 | Details of ligaments in the intact model (Naserkhaki et al., 2018).

Ligament Element type Element number Origin and insertion Lengtha

ALL 5 parallel springs 25 Connecting the anterior side of the endplate from T12 to L5 and with attachment to discs 15.58
PLL 6 parallel springs 20 Connecting the posterior side of the endplate from T12 to L5 and with attachment to discs 7.66
FCL 8 parallel springs (each side) 80 Encasing the facet joints (each side) 2.17
FL 9 parallel springs 45 Connecting the inferior and superior laminae of adjacent vertebra 15.89
ISL 6 parallel springs 30 Connecting the inferior and superior edges of adjacent spinous processes 8.85
SSL 1 parallel spring 5 Connecting the posterior tips of adjacent spinous processes 27.49
ITL 2 parallel springs (each side) 20 Connecting the inferior and superior edges of the adjacent transverse process (each side) 18.69

ALL, anterior longitudinal ligament; PLL, posterior longitudinal ligament; FCL, facet capsular ligament; LF, ligamentum flavum; ISL, interspinous ligament; SSL, supraspinous ligament; ITL,
intertransverse ligament.
aThe length of each ligament of a represented segment L4-L5.
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into Abaqus 6.11 (Dassault Systèmes, MA, United States) for
further analysis.

Contact Definition
The interface between facet joints was defined as a frictionless
surface-to-surface contact. The contact surface of the pedicle
screw and rod, pedicle screw and vertebral body, and cage and
endplate were all modeled as tie constraints according to the
reported literature (Zhang et al., 2018; Tan et al., 2021a).

Loading and Boundary Condition
During the loading process, the inferior surface of the
endplate of the L5 vertebra was fully constrained in six
directions. A pure moment of 7.5 Nm was applied to the
node coupled with the superior surface of the endplate of
the T12 vertebra. Then, a follower load of 500 N was applied to
the revision FE model. The follower load is a physiological
compressive load along the axis of the lumbar spine, in which
intermediate nodes of each endplate are coupled to the
endplate surface and connector elements built through
these nodes. The follower load was applied to each segment
through these connector elements.

Data Analysis
The changing characteristics of maximum von Mises stress
(VMS) on the annulus fibrosus and cages and ligament force
of the interspinous ligament (ISL), supraspinous ligament (SSL),
and ligamentum flavum (LF) were used to evaluate the spinal
kinematic data under the loading direction of flexion (FL),
extension (EX), left bending (LB), right bending (RB), left
axial rotation (LAR), and right axial rotation (RAR) after the
revision surgery was performed using the DRCm, SRC, and
CBTC, respectively.

RESULTS

Validation
The intact T12-L5 FE model was validated in our previous study
by comparing the predicted range of motion (ROM) and disc
compression with reported cadaveric studies. The predicted ROM
under a loading pure moment without a preload and predicted
disc compression under a 1200 N follower preload of the present
FE model were within the range of reported data from cadaveric
studies (Tan et al., 2021a).

Maximum VMS on Annulus Fibrosus
As shown in Figure 3, the overall changing tendency of the
maximum VMS on the annulus fibrosus was similar among
the DRCm, SRC, and CBTC after RS in the six loading
directions. In addition, the maximum VMS on the annulus
fibrosus at T12-L1, L1-L2, and L3-L4 after RS was compared
to the intact model. The maximum VMS of the three models
after revision surgery on the annulus fibrosus at the level of
T12-L1 was slightly changed, with an increase of 0.10–0.16%
and 0.42–0.47% at FL and LB, respectively, and reductions of
0.44%–1.01%, 1.18%–1.53%, 0.49%–1.00%, and 1.20–1.31% at
EX, RB, LAR, and RAR, respectively. A significant reduction
in the maximum VMS on the annulus fibrosus of the three
constructs occurred under the loading direction of extension,
which was 66.86–69.00% and 64.34–66.06% for L1-L2 and L3-
L4, respectively, compared to that of the intact model. At L1-
L2, the degree of reduction in extension was 49.30%–53.07%,
43.90%–46.90%, and 21.10–22.03% under the loading
directions of RB, LB, and FL, respectively. The degree of
reduction under LAR and RAR was within 4%. At the level
of L3-L4, the degree of reduction in extension was
52.74%–54.63%, 49.19%–51.36%, 30.25%–32.72%,

FIGURE 2 | Lateral views of the RS FE model constructed using the DRCm (A), SRC (B), and CBTC (C).
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FIGURE 3 |Maximum VMSwas distributed on the annulus fibrosus after RS was instrumented using the DRCm, SRC, and CBTC in the loading direction of FL, EX,
LB, LAR, and RAR.

FIGURE 4 | Distribution characteristics of the maximum VMS on the cage at the revision level after RS (A) and its tendency for change among the three
constructs (B).
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11.99%–16.22%, and 9.18–12.82% under RB, LB, FL, LAR, and
RAR, respectively.

Maximum VMS on Cage
The predicted VMS on the cages at the RS level (L2-L3) and PS
level (L4-L5) are shown in Figures 4, 5. The maximum VMS was
observed on the denture(s) of the cage, which were anchored to
the bony endplate during surgical intervention under six loading
directions in the three groups. The distribution profiles of VMS
on the cage at the L4-L5 level were nearly identical among the
DRCm, SRC, and CBTC (Figure 5A). In addition, the changing
characteristics of the maximum VMS detected on the cage of PS
at the L4-L5 segment after RS among the groups were almost the
same (Figure 5B). However, at the revision level of L2-L3, a
similar distribution profile of VMS was detected between the
DRCm and SRC, while a slight distinction between the CBTC and
the former two was observed, especially at the loading direction of
RB and LAR (Figure 4A). Furthermore, changes in the maximum
VMS between the DRCm and SRC were nearly equal, while that
of the CBTC was distinguished with both of them in the loading
direction of RB and LAR (Figure 4B).

Ligament Force
Ligament forces generated in the ISL, SSL, and LF under different
loading directions were also compared among the three different
constructs. The ligament forces of the ISL, SSL, and LF were
markedly reduced when the movable spinal segments were
fixated (unfixed T12-L1 vs. fixed segments; Figures 6–8). As
shown in Figure 6, the ligament force in the ISL in the three
different surgical constructs was reduced to an approximately

equal value except for that of the CBTC at the level of L1-L2.
Similar phenomena regarding the ligament force of the SSL and
FL in the CBTC were also detected at L1-L2, while changes in the
SSL and FL at other levels were approximately identical among
the three constructs (Figures 7, 8). In addition, the reductions in
the ISL (Figure 6), SSL (Figure 7), and LF (Figure 8) between the
DRC and CRCwere nearly the same. However, the ligament force
of the ISL and SSL produced at L3-L4 in the SRC and CBTC was
slightly larger than that in the DRCm.

DISCUSSION

Posterior spinal instrumentation is a commonly accepted
intervention to restore spinal stability in individuals with
spinal disorders (Kaiser et al., 2014). RS performed secondary
to primary spinal fixation is a common surgical intervention to 1)
address secondary diseases such as ASD and proximal or distal
junctional kyphosis after deformity correction (Maruenda et al.,
2016; Nicholls et al., 2017) and 2) rescue failed instrumentation
due to rod fracture or nonunion (Yamato et al., 2018; Sherif and
Arlet, 2020). Many constructs with different configurations such
as the DRCm (Tan et al., 2021b), SRC (Buell et al., 2018; Jung
et al., 2019), and CBTC (Rodriguez et al., 2014; Lee and Shin,
2018) have been applied in the aforementioned surgical
interventions. One distinguishing application of the DRCm,
SRC, and CBTC in RS is that the previous implants can be
retained at their original site, which is different from that of the
traditional surgical intervention in RS where the previous rods are
removed. In such case, the primary surgical site has to be

FIGURE 5 | Distribution characteristics of the maximum VMS on the cage at the previous surgical level (A) and its tendency for change among the three
constructs (B).
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reincised to expose the previous rods, where soft tissues have
already been disturbed. This traditional surgical intervention in
RS is more complicated than the PS and correlated with an
increase in surgical duration, blood loss, and possibility of
complications (Zheng et al., 2002; Tan et al., 2021b).

In the present study, a validated FE model was constructed to
detect the probable mechanical disparities among the DRCm,
SRC, and CBTC using parameters including the VMS on the
annulus fibrosus and cages and the ligament forces to further
demonstrate the effect of different revision rod locations. Due to

FIGURE 6 | Ligament force of the ISL in the loading direction of FL, LB, RB, LAR, and RAR after RS instrumentation using the DRCm, SRC, and CBTC.

FIGURE 7 | Ligament force of the SSL in the loading direction of FL, LB, RB, LAR, and RAR after RS instrumentation using the DRCm, SRC, and CBTC.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 7997277

Tan et al. Effects of Revision Rod Position

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


the complexity of the different clinical scenarios mentioned
above, one relatively simple but common condition in clinical
practice, ASD, was used to evaluate their biomechanics. ASD is
more likely to develop in the segment(s) proximal to the
previously fixed level (Lee et al., 2009). Therefore, RS for ASD
is more frequently performed at the proximal segment(s) of the
previous surgical segment. Thus, a previously validated intact
T12-L5 FE model was applied and upgraded in the present study,
in which the L3-L5 levels were instrumented to simulate the PS,
and the L1-L2 level was instrumented to simulate the RS.

VMS is a parameter that has been used in many FE analyses to
evaluate the effect of loading on the tissue. A higher risk of failure is
associated with an increase in VMS (Li et al., 2017; He et al., 2021).
In this study, VMSwas used to index stress distributions on annulus
fibrosus and cages as a reflection of the stabilization of the three
configurations. In the uninstrumented T12-L1 segment, changes in
VMS on the annulus fibrosus were nearly equal among the three
models despite minor increases and decreases being detected when
compared to those of the intact model. At the instrumented L1-L2
and L3-L4 segments, the VMS on the annulus fibrosus of theDRCm
and CBTC under the six loading directions was almost the same,
while that of the SRC was relatively less than that of the other two
models in each loading direction. These results indicated that the
biomechanics of these models were comparable to each other in RS.
This significant reduction observed after the spine was
instrumented was in accordance with that reported in another
study, which might be due to the loading being dispersed through
the instrumentation (Melnyk et al., 2012). The pronounced
reductions detected under FL and EX might be due to the
restriction of the backward and forward movements by spinal
fixation.

The cage could support immediate axial loading after spinal
decompression, and posterior instrumentation could reduce the
stress distributed throughout the cage (Galbusera et al., 2012).
Stiffer fixation could obviously reduce the stress transferred
through the cage, while flexible instrumentation could generate
more stress concentration on the cage (Galbusera et al., 2012; Fan
et al., 2019). In the present study, the VMS that was placed on the
cage at the facetectomy level (L2-L3) in the loading direction of
RB and LAR in the CBTC was larger than that in the DRCm and
SRC. Therefore, the CBTCmight be a less rigid construct than the
DRCm and SRC (Figure 4). This disparity in the VMS
distribution might be attributed to the involvement of the
resected facet by the loading directions of RB and LAR, while
the CBTC instrumentation could not completely counteract the
effect of the facetectomy. However, either the VMS distribution
on the cage at the L4-L5 level (Figure 5A) or the detected value
(Figure 5B) after RS was nearly the same in the three FE models.
This might be because of instrumentation of the segments by
conventional dual-rod constructs in the PS.

Ligaments play an important role in maintaining spinal
stability (Widmer et al., 2020). Therefore, in many studies, the
ligament force has been applied to assess spinal stability (Arshad
et al., 2017; Naserkhaki et al., 2018; Buell et al., 2019). The SSL,
ISL, and FL are parts of the posterior ligamentous complex that
function as posterior tension bands to protect the spine from
excessive movements in the flexion-distraction, rotation, and
translation directions (Chen et al., 2017). In the present study,
ligament forces of the SSL, ISL, and FL were adopted to predict
spinal stability after instrumentation of the three constructs. As
shown in Figures 6, 7, the overall changing tendency of the
ligament force between the SSL and ISL was approximately

FIGURE 8 | Ligament force of FL in the loading direction of FL, LB, RB, LAR, and RAR after RS instrumentation using the DRCm, SRC, and CBTC.
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identical at each segment. This might be due to their adjacent
anatomical locations as the former is distributed superior to the
spinous processes and the latter is distributed between the
spinous processes. However, the ligament forces detected at
segments L1-L2, L2-L3, and L3-L4, where the vertebrae were
instrumented by the CBTC, were larger than those detected at the
same level but instrumented by the DRCm and SRC. A similar
changing tendency was detected in the FL, with a relatively higher
ligament force detected at the L1-L2 and L3-L4 segments
(Figure 8). The predicted results of the ligament force further
indicated less rigidity fixation of the CBTC, which might retain a
relatively greater motion of segments in RS.

Facetectomy is an intended facet joint removal and an
indispensable procedure in TLIF to complete surgical intervention
(Snyder et al., 2019). However, the facet joint plays an important role
in protecting the spine from excessive movements of flexion, axial
rotation, and forward displacement (O’Leary et al., 2018; Widmer
et al., 2020). Therefore, facetectomy could inevitably alter spinal
kinematics and biomechanics, and the impaired condition would be
correlated with the grade of resection (O’Leary et al., 2018; Ahuja
et al., 2020). It has been reported that destruction of the lumbar facet
joints could transfer axial loads to the adjacent disc, which could
conceivably accelerate the degeneration of the overburdened lumbar
disc (O’Leary et al., 2018). Therefore, to restore spine stability after
facetectomy, fusion under the assistance of instrumentation is needed
(O’Leary et al., 2018). In the present study, the SRC, DRCm, and
CBTCwere investigated in RS. One difference of these constructs was
that their revision rod was placed outside, alongside, and inside the
previous rod at the facetectomy level, with a distance gradually
approximating the sagittal plane of the facet joint. However,
whether facetectomy affects the stability of constructs is unknown.

According to the predicted results of the VMS and ligament force,
the DRCm, SRC, and CBTC can provide sufficient biomechanics to
maintain spine stability after RS with previous implants retained. The
mechanical property of the DRCm was nearly equal to that of the
SRC, which indicated that the rod position located either alongside or
outside the previous rod at the level of facetectomy might not affect
the stability of the final spinal construct after RS. TheCBTCwas a less
rigid instrument than theDRCmand SRC, whichmight be attributed
to the differentmethods of connecting previously fixed segments (L3-
L5) and RS (L1-L2) segments. In the DRCm and SRC, the two parts
were connected with rigid metal components (rods and/or
connecters) to form an integral fixation from L1 to L5. In the
CBTC, the two parts were connected by additional CBT screws
implanted into the L3 vertebra. However, the final spinal construct in
the CBTC could also be recognized as two separate instrumentations
from L1-L3 and L3-L5, although the L3 vertebra played a role similar
to the titanium rod in the DRCm and SRC. Therefore, themovement
axis of the CBTCmight differ from that of the DRCm and SRCwhen
applying pure movement plus a follower load on the T12 endplate
under six loading directions while constraining L5. This might be
attributed to the less rigid fixation of the CBTC compared to that of
theDRCmand SRC.However, further study is needed to evaluate the
biomechanics of the construct that binds L1-L3 and L3-L5 together.

The DRCm is a modified conventional dual-rod fixation that
has been proven to be mechanically adequate for RS and has been
applied in clinical practice (Tan et al., 2021a; Tan et al., 2021b).

Clinical results indicated that the DRCm could shorten surgical
duration, decrease blood loss, reduce RS-related complications,
and generate favorable surgical outcomes compared to those of
conventional dual-rod RS (Tan et al., 2021b). The SRC has been
applied in clinical practice to deal with spinal deformity involving
osteotomy and long segment instrumentation and the rescue of
previous rod fracture (Buell et al., 2018; Zhu et al., 2018; Jung
et al., 2019; El Dafrawy et al., 2020). The reported advantages of
the SRC include dispersing the rod stress concentrated at the
osteotomy site, enhancing the stability of constructs and reducing
the occurrence of PJK (Hyun et al., 2014; Zhu et al., 2018; Gelb
et al., 2021). However, extensive surgical site exposure and related
complications, rod fracture at the rod-connecter site, and
additional medical expenses are still concerns when using
SRCs (Hyun et al., 2014; Jung et al., 2019). The CBT is a
relatively new spinal fixation technique involving a unique
caudocephalad and medial-to-lateral screw trajectory (Santoni
et al., 2009). The biomechanical properties of CBT screws are
superior to those of traditional pedicle screws (Santoni et al.,
2009; Sansur et al., 2016; Zhang et al., 2019). Therefore, CBT is a
better choice in treating osteoporotic patients (Ueno et al., 2013).
In addition, due to the method of placing screws, CBT could be
performed in a smaller operative corridor to avoid extensive
surgical dissection but generate equal surgical outcomes to
traditional pedicles with less invasiveness, shorter surgical
time, and lower incidence (Sakaura et al., 2018; Sakaura et al.,
2019). However, skilled screw placement techniques, clear
vertebral landmarks, and image navigation might be necessary
to achieve safe and satisfactory CBT screw placement (Rodriguez
et al., 2014; Matsukawa et al., 2015; Tan et al., 2019). The findings
of the present study revealed that all of these constructs could
provide good stability in RS. However, the choice of the construct
to be applied depends on the condition of the patients, surgeons,
and facilities; the advantages and disadvantages of each construct
are discussed above. For instance, the DCRm might be a choice
for an older patient who cannot endure extensive surgical
exposure (a shortcoming of the SRC), or the CBTC technique
may not be available.

The limitations of the present study are as follows: first,
although FE analysis is a good method to assess the
biomechanics of spinal constructs, simplification is a common
shortcoming of spinal FE analysis. The simplified FEmodel in the
present study might not simulate the effect of the actual
psychological situation on spinal constructs. In addition, the
FE model was constructed based on the CT data of a 30-year-
old healthy male subject, which might not fully simulate the
condition of an ASD patient. Therefore, further investigation is
needed. Second, clinical scenarios of applying different constructs
were simplified to ASD due to their varieties and complexities,
and further studies investigating applications of the mentioned
constructs in more complicated situations are needed to further
assess their biomechanics. Third, the effect of revision rods placed
inside, alongside, and outside the previous rod was compared
among configurations that have been applied in clinical practice
rather than in one configuration with different rod positions,
which has recently been unavailable in clinical practice; thus,
further study needs to be performed. Fourth, the ligament force
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was used as an evaluating parameter when a precondition of the
related ligament was integrated into the present study; however,
the ISL and SSL might be destroyed and even resected at the
decompressed lumbar level if the spinous process was intended to
be removed. Therefore, actual surgical scenarios may not have
been precisely represented in this study.

CONCLUSION

The revision rod position could not affect the mechanical
properties of the DRCm, SRC, and CBTC. All of these
constructs were sufficient to provide safe and satisfactory
fixation in RS without disturbing the prior implants. Although
the CBTC was less rigid than the DRCm and SRC in providing
spinal stabilization, it was not correlated with the position of the
revision rods but was associated with the type of construction of
this configuration. The surgical procedure using the DRCm in RS
is more convenient than using the SRC and CBTC. The clinical
application of these configurations depended on full
consideration of their technique requirements and actual
clinical and surgical conditions.
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