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22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associ-
ated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead
to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which
may contribute to symptom development. Here we examined: (1) differences between
22q11DS participants and typically developing controls in diffusion tensor imaging (DTI)
measures within white matter tracts; (2) whether there is an altered age-related trajectory
of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social
cognition task performance, and positive symptoms of psychosis in 22q11DS and typically
developing controls. Sixty-four direction diffusion weighted imaging data were acquired on
65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS
vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial
diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition
domains assessed were: Theory of Mind and emotion recognition. Positive symptoms
were assessed using the Structured Interview for Prodromal Syndromes. Compared to
typically developing controls, 22q11DS participants showed significantly lower AD and
RD in multiple white matter tracts, with effects of greatest magnitude for AD in the
superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical
age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD
in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated
with better social cognition in 22q11DS and controls. In contrast, greater severity of positive
symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White
matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and
may contribute to psychosis risk.

Keywords: DTI, theory of mind, psychosis, schizophrenia, velocardiofacial syndrome, axial diffusivity, radial

diffusivity, prodromal

INTRODUCTION
22q11.2 Microdeletion Syndrome (22q11DS; also known as Velo-
cardiofacial syndrome or DiGeorge Syndrome) is a neurogenetic
disorder that carries significantly increased risk for developing
psychosis (Pulver et al., 1994; Murphy et al., 1999; Gothelf et al.,
2007; Green et al., 2009; Schneider et al., 2014). One prevailing
model of psychosis pathogenesis is that of a ‘developmental dis-
connection’ syndrome, whereby genetic and neurodevelopmental
influences lead to structural abnormalities in brain regions crit-
ical for cerebral communication (Karlsgodt et al., 2008). This
dysconnectivity may be particularly salient during adolescence
given that the brain is still developing, which may be related

to the emergence of psychotic symptoms in vulnerable individ-
uals (Paus et al., 2008). Thus, studying adolescents and young
adults with 22q11DS, a highly penetrant disorder with well-
defined genetic etiology, can help us understand how structural
dysconnectivity affects a complex psychiatric phenotype (i.e.,
psychosis).

Diffusion weighted imaging (DWI), which measures the diffu-
sion patterns of water molecules in brain tissue, offers a method to
examine structural connectivity between brain regions (Mori and
Zhang, 2006). Specifically, fractional anisotropy (FA), a measure
derived from diffusion tensor imaging (DTI), indicates the direc-
tionality and density of the fiber tracts in a voxel, and has been
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traditionally viewed as a measure of white matter or myelin
integrity (Thomason and Thompson, 2011). FA values are cal-
culated based on the ratio of the longest to shortest axes of
diffusion, and values fall between zero and one: zero indicates
that the diffusion is isotropic, or unrestricted in all directions,
indicating an absence of organized fiber tracts to constrain direc-
tionality. A value closer to one means that diffusion occurs more
strongly along one axis, suggesting increased fiber organization
and white matter integrity. FA is a standard measure of “white
matter integrity,” but other DTI indices, such as axial diffusivity
(AD) and radial diffusivity (RD), may be more informative regard-
ing the specific nature of the white matter dysfunction (Alexander
et al., 2007). For example, AD is a measure of diffusivity along
the principal axis, and decreases in AD have been linked with
greater axonal damage in rodents (Song et al., 2003; Budde et al.,
2008, 2009). RD is an average of the measures of the diffusivities
in the two minor axes, and is thought to index the amount of
space between axons; accordingly, increased RD has been asso-
ciated with demyelination in animal models (Song et al., 2002,
2003, 2005). These explanations for FA, AD, and RD are generally
accepted, but there may be alternative interpretations regarding the
underlying white matter microstructure, particularly where fibers
cross (Leow et al., 2009; Zhan et al., 2009). Studying these three
indices within a 22q11DS sample and examining their relation-
ships with psychotic symptoms may reveal important information
about mechanistic brain changes relevant to the development of
psychosis.

Since DTI was introduced in 1994, there have been over 200
articles published on DTI and idiopathic schizophrenia. These
studies have revealed disrupted white matter integrity (i.e., FA
reductions) in multiple white matter tracts across the phases
of illness, including individuals at clinical high-risk (CHR) for
psychosis (Karlsgodt et al., 2009; Bloemen et al., 2010; Carletti
et al., 2012), first-episode (Peters et al., 2008; Price et al., 2008;
Luck et al., 2010; Lee et al., 2013), chronically ill (Friedman et al.,
2008; Kong et al., 2011), and medication-naïve schizophrenia
patients (Guo et al., 2012; Henze et al., 2012; Liu et al., 2013). The
most consistently reported abnormalities are in fronto-temporal
and fronto-limbic tracts (Ellison-Wright and Bullmore, 2009;
Kuswanto et al., 2012; Samartzis et al., 2014), including the supe-
rior longitudinal fasciculus (SLF; Szeszko et al., 2008; Clemm
von Hohenberg et al., 2014), one of the largest long-range fiber
tracts in the brain which connects the parietal to frontal lobes,
and the uncinate fasciculus (Burns et al., 2003; Szeszko et al.,
2005; Kawashima et al., 2009; Kitis et al., 2012), a tract which
connects regions of the limbic system with orbitofrontal cortex.
Increased RD may drive global FA reductions in schizophrenia
(Seal et al., 2008; Lee et al., 2013; Scheel et al., 2013; Fitzsimmons
et al., 2014) findings which are supported by the post-mortem
histopathology literature, which indicates disturbances in the
function and structure of oligodendrocytes (Davis et al., 2003;
Walterfang et al., 2006), brain cells responsible for the myelination
of axons.

A recent review of the existing literature on anomalous white
matter development associated with schizophrenia proposes a
model that combines the influence of both neurodevelopmental
and neuroprogressive influences on white matter in schizophrenia

(Peters and Karlsgodt, 2014). In this model, both early disruption
of white matter development, particularly during adolescence,
paired with later white matter microstructural changes due to
disease chronicity, medication effects, or later onset progres-
sive changes result in the white matter abnormalities seen in
schizophrenia (Peters and Karlsgodt, 2014). Regarding disruption
of white matter during adolescence, Karlsgodt et al. (2009), found
that youth at clinical high risk for developing psychosis failed to
show the typical age-associated increased of FA in the medial tem-
poral lobe in comparison to typically developing controls. There
is preliminary evidence that 22q11DS participants also show a
disrupted trajectory of white matter development; one research
group found that an overall measure of total mean FA increased in
controls, but that this relationship was not observed in 22q11DS
participants (Ottet et al., 2013a). However, age-associated disrup-
tions in 22q11DS have not been examined in specific white matter
tracts.

While many studies have shown that decreased FA is asso-
ciated with cognitive functioning in patients with idiopathic
schizophrenia (Yan et al., 2012; Liu et al., 2013; Nestor et al., 2013;
Roalf et al., 2013), to our knowledge only one DTI study of
CHR youth has examined the relationship between DTI mea-
sures and social processes. In this longitudinal study, lower FA
in the medial temporal lobe and inferior longitudinal fasciculus
(ILF) predicted a drop in social functioning in CHR partici-
pants 15 months later (Karlsgodt et al., 2009). Given that many
brain regions affected in schizophrenia are also implicated in
social cognition (Pinkham et al., 2003) and a prior study by
our laboratory found that a measure of social cognition (The-
ory of Mind) was the most significant predictor of psychotic
symptoms in 22q11DS (Jalbrzikowski et al., 2012), we aimed to
examine whether white matter microstructural integrity is linked
to social-cognitive dysfunction in 22q11DS.

As in idiopathic schizophrenia and those at clinical high
risk, white matter integrity may also be disrupted in multi-
ple brain regions in 22q11DS, but findings are mixed. Three
cross-sectional studies of children with 22q11DS found lower
FA in the SLF (Barnea-Goraly et al., 2003; Sundram et al., 2010;
Villalon-Reina et al., 2013), complementing existing schizophre-
nia findings (Federspiel et al., 2006; Szeszko et al., 2008; Karlsgodt
et al., 2009; Clemm von Hohenberg et al., 2014). The largest exist-
ing DTI study of 22q11DS to date (33 22q11DS and 16 unaffected
siblings, mean age: 18.0 years), found bilateral FA reductions
in the uncinate fasciculus (Radoeva et al., 2012), which is also
consistent with the idiopathic schizophrenia literature (Burns
et al., 2003; Szeszko et al., 2005; Kawashima et al., 2009; Kitis
et al., 2012). Lower FA in the ILF and splenium of the corpus
callosum has also been observed in both 22q11DS (Villalon-
Reina et al., 2013) and idiopathic schizophrenia (Gasparotti et al.,
2009; Liu et al., 2013). In adults with 22q11DS, disruption in
other white matter tracts has been observed in multiple brain
regions, including the parietal (da Silva Alves et al., 2011; Kiki-
nis et al., 2012) and parahippocampal regions (da Silva Alves
et al., 2011). Preliminary evidence suggests that white matter
microstructural abnormalities in 22q11DS may be driven by
reduced axonal coherence (Kikinis et al., 2012, 2013; Radoeva et al.,
2012).
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However, other studies have found that, compared to healthy
controls, 22q11DS participants have increased FA in the sple-
nium and genu of the corpus callosum (Barnea-Goraly et al.,
2003; Sundram et al., 2010), the inferior fronto-occipital fascicu-
lus (IFO) and SLF (Simon et al., 2005) and portions of the corona
radiata (Sundram et al., 2010). These studies did not investigate
the component measures that comprise FA (AD and RD), so it is
not clear what was contributing to these increases. Additionally,
given that most current publications have <20 patients in their
sample, larger sample sizes are warranted, in order to clarify the
nature of white matter pathology in 22q11DS.

Notably, there is some evidence for a relationship between
white matter integrity and social behavior in 22q11DS. Specifi-
cally, in a combined analysis of 22q11DS participants and controls,
increased AD in the posterior corona radiata, SLF, and IFO was
related to better social skills (Radoeva et al., 2012). Additionally,
reduced FA in frontal, cingulate, and temporal regions was asso-
ciated with increased psychotic symptom severity in adults with
22q11DS (da Silva Alves et al., 2011). However, no study has simul-
taneously examined laboratory-based measures of social cognition
(e.g., Theory of Mind, emotion recognition) and psychotic symp-
toms and their relationship to DTI measures in individuals with
22q11DS.

Our study had three main goals: (1) to examine group dif-
ferences between 22q11DS participants and controls on multiple
DTI measures (e.g., FA, AD, and RD) via a whole-brain and ROI-
based approach; (2) to explore where there are age-associated
disruptions in these DTI metrics in 22q11DS patients versus
typically developing controls, and (3) to relate positive symp-
toms and social cognition performance to measures of white
matter microstructure in 22q11DS and controls. First, based
on prior work (Sundram et al., 2010; Radoeva et al., 2012), we
expected to find lower FA in long-range fiber tracts in 22q11DS
relative to controls, including the SLF and uncinate fascicu-
lus, which would be driven by abnormal AD (Kikinis et al.,
2012; Radoeva et al., 2012). Based on previous literature in CHR
youth and 22q11DS (Karlsgodt et al., 2009; Ottet et al., 2013a),
we hypothesized that 22q11DS youth would fail to show the
typical age-associated increases in FA observed in typically devel-
oping controls (Simmonds et al., 2014). We also hypothesized
that integrity of the uncinate fasciculus, a fronto-limbic white
matter tract relevant to social cognition and previously shown
to be disrupted in both patients with 22q11DS and idiopathic
schizophrenia (Barnea-Goraly et al., 2003; Szeszko et al., 2005),
would be associated with positive symptom severity and social
cognition in 22q11DS.

MATERIALS AND METHODS
PARTICIPANTS
The initial sample consisted of 76 participants (10–26 years old,
40 22q11DS, and 36 controls). DTI data from 11 participants (4
22q11DS, 7 controls) were excluded due to poor image quality or
severe motion/scanning artifacts. Thus, the final sample consisted
of 65 participants (36 22q11DS, 29 controls, Table 1).

22q11DS participants all had a molecularly confirmed diag-
nosis of 22q11.2 deletion syndrome and were recruited from an
ongoing longitudinal study at the University of California, Los

Angeles (UCLA). Typically developing healthy controls were also
recruited from this study. Exclusion criteria for all study par-
ticipants were: neurological or medical condition disorder that
might affect performance, insufficient fluency in English, and/or
if they endorsed substance or alcohol abuse and/or dependence
within the past six months. Controls also must not meet criteria
for any major mental disorder, with the exception of atten-
tion deficit-hyperactivity disorder (ADHD) or past episode of
depression, based on information gathered during the Struc-
tured Clinical Interview for DSM-IV Axis I Disorders (First et al.,
2002). Three controls in our sample had a past single episode of
depression, and none of our controls had a diagnosis of ADHD.
We did not exclude 22q11DS patients with comorbid medical
conditions, given that these conditions are characteristic of the
disorder.

All participants gave verbal and written informed consent. Par-
ticipants under the age of 18 years provided written assent, while
their parent or guardian completed written consent. The UCLA
Institutional Review Board (IRB) approved all study procedures
and informed consent documents.

MEASURES
Structured interview for prodromal syndromes
A master’s level trained clinician assessed all participants on the
positive, negative, disorganized, and general symptom scales
from the Structured Interview for Prodromal Syndromes (SIPS,
McGlashan et al., 2001). Symptoms on these scales are rated from
0 to 6, with zero representing an absence of symptoms and six
referring to an extremely severe level of symptoms. This measure
has shown excellent inter-rater reliability (Miller et al., 2003; Meyer
et al., 2005). All raters demonstrated good to excellent inter-rater
reliability for symptom ratings, with kappa values ranging from
0.85 to 1.00. For the purposes of this study, we used the sum of
the positive SIPS symptom scores as a dimensional measure of
psychotic symptom severity. This measure encompasses a range
of symptom severity, including sub-threshold (prodromal), and
fully psychotic symptoms.

Social cognition tasks
Study participants received the Penn Emotion Recognition Test
(ER40), a computerized emotion identification task in which 40
color photographs of adult faces, varying in race and gender, are
randomly presented (Kohler et al., 2000). Participants were asked
to identify the emotion of each face (happy, sad, anger, fear, or
no emotion) and were given as long as needed to respond (total
maximum score = 40, each emotion presented eight times). This
measure has shown adequate construct validity and test–retest
reliability (Carter et al., 2009), and has been previously used with
adolescents (Schenkel et al., 2007; Roddy et al., 2012) and 22q11DS
participants (Goldenberg et al., 2012; Gur et al., 2014).

All participants were administered Part 3 of The Awareness
of Social Inference Test (TASIT; McDonald et al., 2003). The
TASIT is a computerized task believed to assess one’s ability
to comprehend the intentions of others, particularly how one
comprehends white lies or sarcasm. The task consists of 16
vignettes (each lasting between 15 and 60 s), eight of which
show an individual telling a lie, while the other eight display
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Table 1 | Demographic and clinical characteristics of study participants.

22q11.2 Microdeletion

Syndrome (22q11DS)

Participants (n = 36)

Healthy Comparison

Participants (n = 29)

Age (years, ±SD) 16.3 (4.3) 15.5 (3.8) p = 0.46

Participant Education (years, ±SD) 9.2 (3.3) 9.4 (3.9) p = 0.78

Parental Education (years, ±SD) 16.3 (2.3) 15.5 (3.1) p = 0.25

Gender (N, % female) 25 (69%) 14 (48%) p = 0.14

Race (Asian/African American/Caucasian/Multiple) 0/1/32/3 1/3/20/5 p = 0.21

Psychotic Disorder Diagnosis (N, %) 4 (11%) NA

SIPs Positive Symptoms (mean, ±SD) 6.6 (7.1) 0.7 (1.3) p < 0.001

SIPs Negative Symptoms 8.1 (6.3) 1.0 (1.8) p < 0.001

SIPs Disorganized Symptoms 4.6 (4.8) 0.5 (0.9) p < 0.001

SIPs General Symptoms 4.9 (5.0) 0.9 (1.4) p < 0.001

Psychotropic Medication (N,

None/Antipsychotics/Antidepressants)

26/4/6 NA

WASI IQ Score 78.1 (14.8) 107.4 (17.6)a p < 0.001

aIQ score available for 27 controls.

an interaction in which someone uses sarcasm. After viewing
each vignette, an assessor asked the participant four questions
related to the scene: (1) what someone is doing to another per-
son in the scene, (2) what someone is trying to say to the
other person, (3) what one of the individuals in the scene is
thinking, and (4) what one of the characters in the vignette is
feeling. After task completion, an overall score was calculated
(maximum = 64). The TASIT has shown adequate reliabil-
ity and validity with brain-injured patients (McDonald et al.,
2006), and has been used with adolescents at CHR for psychosis,
along with first-episode and chronic patients with schizophrenia
(Green et al., 2012).

IMAGE ACQUISITION
All scanning was carried out on an identical Siemens 3 Tesla
Tim Trio MRI scanner at either the UCLA Brain Mapping
Center (BMC; 22q11DS = 15, controls = 16) or at the Cen-
ter for Cognitive Neuroscience (CCN; 22q11DS = 21, con-
trols = 13). The age distribution for both 22q11DS patient
and control subjects did not differ across scanner locations.
There were, however, significantly more female 22q11DS partic-
ipants compared to controls scanned at the CCN (p = 0.009);
however, the gender distribution was similar for all other com-
parisons (Supplementary Table S1). DTI and structural MRI
protocols were identical at both scanner locations. Specifically,
measures of brain structure were obtained using T1-weighted
anatomical images acquired with an MPRAGE sequence with
the following acquisition parameters: TR/TE/TI = 2300/2.91/900;
flip angle = 9◦; slice thickness = 1.20 mm, with a
240 × 256 acquisition matrix. A diffusion-weighted, spin-echo
echo-planar imaging scan was collected using these parame-
ters: 64 diffusion gradient directions, TR/TE = 7100/93 ms;

FOV = 190 mm × 190 mm; 96 × 96 matrix; slice thick-
ness = 2.0 mm; b-value = 1000 s/mm2 and one non-diffusion
sensitized volume was also acquired (b-value = 0/s/mm2), which
we will call the b0 image.

IMAGE ANALYSIS
The T1-weighted images were skull-stripped using Brainsuite’s
surface extraction tool (BSE), and then manually edited to
remove any remaining non-brain tissue. The skull-stripped T1
images were then linearly aligned using FSL’s “FLIRT” (with
6 degrees of freedom) to a common space (MNI-ICBM 152
non-linear sixth generation) with 1mm isotropic voxels and a
182 × 182 × 182 voxel matrix. For the DWI scans, we removed
non-brain regions from the T2-weighted weighted b0 image
with FSL’s brain extraction tool (BET) and the resulting mask
was then applied to the remaining 64 volumes. We then cor-
rected the images for eddy current distortion by using FSL’s
eddy correct tool. The original gradient vectors were rotated
using the linear rotation and translation matrix. Then, each
individual’s eddy corrected DWI volumes were linearly aligned
(9 degrees of freedom) to the corresponding skullstripped T1
image in the MNI-ICBM 152 standard space. The gradient vectors
were once more adjusted by using the resulting linear rotation
and translation matrix of this transformation. To compensate
for EPI-induced susceptibility artifacts, the b0 image was non-
linearly registered in three directions to the T1 structural scan
in the MNI-ICBM 152 space (Leow et al., 2005), by using an
elastic regularizer (with a weight of 0.0001) and a cost func-
tion based on mutual information. We then applied the derived
non-linear vector fields to each of the 64 diffusion-weighted
volumes. We then fit diffusion tensors at each voxel in the
EPI-corrected DWI volumes by subject using DTIFit (FMRIB’s
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Diffusion Toolbox). Tensor derived indices such as FA, AD,
and RD, were then calculated for the whole brain. We applied
the least weighted squares regression for the tensor calculation,
which does not rely upon the assumption of homoscedasticity,
and has been suggested as a preferred method over an ordi-
nary least squares approach, which is typically used (Jones et al.,
2013).

Group maps were then created using FSL’s Tract-Based Spatial
Statistics (TBSS). TBSS is a rigorous registration approach, which
is imperative for comparisons in which tract shape or volume is
likely to differ between groups. Because our sample included chil-
dren, we aligned each FA map to each other and identified the
most representative scan from our sample, which was then used
as the target image. All images were then aligned to the target FA
image through non-linear registration. All images are merged into
a single 4D image and non-linear registration is used to create
an FA “skeleton” based on the center of all of the tracts com-
mon to the entire group. Data are then projected from the center
of each subject’s tracts onto the skeleton for group comparison.
This method ensures that statistics are only applied in regions
where data exist for all subjects, and maximizes the likelihood
that the pooled data originate from the center of a tract in every
subject.

To characterize group differences between 22q11DS and con-
trols at the voxel-wise level, we first used a whole-brain based
approach. In this approach, we were not restricted to spe-
cific areas of interest and could identify nuanced abnormali-
ties that may be obscured by the examining only regions of
interest (ROI). Given the variability in 22q11DS findings, we
decided to first take an unbiased approach. We also imple-
mented a ROI analysis to confirm our whole-brain analysis,
identify age-associated changes in known white matter tracts
between 22q11DS and controls, and determine whether DTI
indices in specific tracts are related to psychotic symptoms
and measures of social cognition in 22q11DS participants and
controls.

For the ROI-based approach, 20 regions per hemisphere were
identified and determined based on the John Hopkins Univer-
sity probabilistic tractography atlas (Figure 1; Wakana et al., 2004;
Mori et al., 2005) and then customized based on the TBSS skeleton
for the current study. Each subject’s FA, AD, and RD skeleton was
masked using each of the ROIs. Then average FA, AD, and RD were
calculated and extracted for that segment of the skeleton for each
individual.

STATISTICAL ANALYSES
Statistical analyses were performed using SPSS software v. 21
(Chicago, IL, USA). Correction for multiple comparisons was con-
ducted using publicly available R software (R Core Team, 2014;
command p.adjust{stats}). We compared demographic charac-
teristics between groups using independent samples t-tests for
continuous variables and chi square test for categorical vari-
ables. To test for cross-scanner differences, for all DTI mea-
surements we first conducted a univariate analysis of covariance
(ANCOVA) for each identified region in each hemisphere, with
scanner location as the between-group factor and group as a
covariate.

Whole-brain analyses
To compare FA, AD, and RD across the entire skeleton in 22q11DS
participants vs. controls, we conducted a non-parametric permu-
tation analysis using the ‘randomize’ tool in FSL. We performed
10,000 permutations using the Threshold Free Cluster Environ-
ment (TFCE), which is a rigorous method that identifies “clusters”
in the data without having to predefine the clusters (Smith and
Nichols, 2009). Demeaned age and sex and scanner location were
included in the model as covariates and group was identified as
the between-groups subjects factor. We corrected for multiple
comparisons using family-wise error rate (FWE).

Region of interest analyses
All neuroanatomic measures were first examined for normality
using the Kolmogorov–Smirnov and Shapiro–Wilk tests; none
were found to violate the assumptions of normality. To com-
pare putative indices of white matter integrity (FA), and its
sub-components, AD and RD, respectively, in 22q11DS vs. con-
trols, we conducted an ANCOVA for each identified region in each
hemisphere, with diagnosis (22q11DS vs. control) as the between
subjects factor and sex, age, and scanner location as covariates. For
these analyses, due to the large number of comparisons (60), false
discovery rate (FDR) q-values were estimated using R software.

Age × diagnosis interactions
To address whether the relationship between age and DTI mea-
sures differed between groups, we first visually examined the
scatterplots of age vs. all DTI measures. Being mindful of mul-
tiple comparisons, we only wished to conduct statistical tests
where the data suggested a possible interaction effect. For any
DTI measure for which visual inspection suggested an age∗group
interaction we then added the age∗group interaction term to the
original ANCOVA models (in addition to group, age, sex, and scan-
ner location). This resulted in a total of six additional analyses:
FA in bilateral regions of the ILF, and SLF, and RD in bilat-
eral regions of the ILF. For any significant age∗group interaction,
we followed up by examining Pearson correlations between age
and the DTI measure within groups. Following a visual inspec-
tion of the age∗group interactions, we confirmed that the other
regions did not show any significant interactions (all p > 0.14).
Additionally, we ran a Pearson correlation to examine the rela-
tionship between age and psychotic symptoms in the 22q11DS
sample.

Association of DTI measures with social cognition and clinical
symptoms
To explore the relationships of DTI measures with positive symp-
toms and social cognition tasks, we conducted correlational
analyses for regions that showed significant group differences
between 22q11DS participants and controls. Residuals were cal-
culated from each DTI variable examined, after regressing out
the effects of age, sex, and scanner. We also calculated residuals
for the clinical and social cognition variables, regressing out the
effects of age, sex, and scanner location. Next, we conducted Pear-
son correlations (corresponding to partial correlations) between
each neuroanatomic brain region and residualized total positive
symptoms. Due to the restricted range of positive symptoms in
controls, we conducted this analysis only in 22q11DS patients.
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FIGURE 1 | Regions of interest (ROIs) examined in this study. These
ROIs were obtained from the Johns Hopkins University Probabilistic
Tractography atlas (Wakana et al., 2004; Mori and Zhang, 2006). UNC,

uncinate fasciculus; ILF, inferior longitudinal fasciculus; IFO, inferior
fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; ATR,
anterior thalamic radiations.

These analyses were then repeated within each group (22q11DS
participants and controls), to investigate the relationship between
DTI indices and social cognition performance. FDR q-values were
estimated using R software. In regions that showed significant rela-
tionships between DTI indices and social cognition variables, we
conducted a secondary analysis in which we also regressed out the
effects of global cognitive abilities (WASI IQ score) and re-ran the
Pearson correlations.

In regions that showed a significant relationship with overall
ER40 performance, we conducted secondary analyses, focus-
ing on Pearson correlations between the DTI measure and
performance on each individual emotion (happy, sad, fear,
anger, no emotion), particularly since a previous publication
from our laboratory showed differential impairment in emo-
tion recognition performance in 22q11DS (Jalbrzikowski et al.,
2012).

Association between axial and radial diffusivities
It is known that RD and AD make up the measure of FA; however,
it is not clear if these two measures are related to each other in
white matter tracts of interest. To evaluate the relationship between
measures of AD and RD in each group, we correlated the residuals
(regressing out effects of age, scanner location, and sex) for each
DTI AD variable with the residuals for the corresponding DT RD
variable in 22q11DS patients and controls separately. To directly
compare the strength of correlations between the two groups, a
Fisher r-to-z transformation was conducted. FDR q-values were
estimated using R software.

RESULTS
As shown in Table 1, 22q11DS patient and control groups did
not significantly differ in any of the demographic factors (all
p-values ≥0.14).

EFFECTS OF SCANNER LOCATION
We found that scanner location had a significant effect on multi-
ple DTI measures, with significant q-values ranging from 0.04 to
0.000001 (see Supplementary Table S2 for more detailed infor-
mation). These effects were consistent across regions: FA was

consistently higher and AD and RD consistently lower in ROI’s
showing group differences. As such, all ANCOVAs included
scanner site as a covariate.

GROUP DIFFERENCES: WHOLE BRAIN RESULTS
Compared to typically developing controls, 22q11DS showed sig-
nificantly higher FA in multiple regions (Figure 2). Most of
these significant differences were in the right hemisphere, and
included the posterior limb of the internal capsule and the supe-
rior and posterior corona radiata. FA was higher in 22q11DS
subjects in the body of the corpus callosum and in a small
region of the left SLF. In these analyses, compared to typically
developing controls, 22q11DS did not show decreased FA in
any regions. There were also widespread reductions in AD and

FIGURE 2 | Multiple slices of brain regions in FSL showing results of

whole-brain FA analysis, indicating FA increases in 22q11.2

Microdeletion Syndrome (22q11DS) vs. controls. Results are shown in
the axial view and overlaid on the standard FMRI58 FA template.
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RD in 22q11DS in comparison to typically developing controls
(Figure 3). The body and splenium of the corpus callosum, bilat-
eral regions of ATR, and bilateral portions of the SLF and ILF
showed reductions in both AD and RD in 22q11DS. Reductions
that were specific to AD (but not observed for measures of RD)
in 22q11DS were found in the bilateral IFO, while reductions
that were specific to RD in 22q11DS were in the left supe-
rior corona radiata and upper regions of the corticospinal tract.
When we plotted the overall raw mean FA values for regions
that showed significant differences between 22q11DS and con-
trols in the whole-brain analysis (i.e., right posterior limb of
the internal capsule, right superior and posterior corona radi-
ata, body of corpus callosum, and a small portion of the left
SLF), we saw that FA was consistently higher in 22q11DS par-
ticipants than controls, regardless of age (Supplementary Figure
S1). Thus, the increased FA observed at the whole brain level
in 22q11DS does not appear to be the result of an age × group
interaction.

GROUP DIFFERENCES: REGION OF INTEREST ANALYSES
Results for analyses of group differences between 22q11DS vs.
controls in measures of FA, AD, and RD within specific white
matter tracts are presented in Supplementary Table S3. FA in
the region of the left cingulum bundle proximal to the hip-
pocampus was lower in 22q11DS in comparison to typically
developing controls. AD was lower in bilateral regions of the
anterior portion of the cingulum bundle, IFO, ILF, and SLF.
Also, compared to controls, 22q11DS participants had lower
AD in the left uncinate fasciculus and the splenium and genu
of the corpus callosum. The greatest effect sizes were observed
for AD in the SLF (partial η2 for right and left = 0.40; see
Supplementary Table S3). RD in the splenium of the corpus

FIGURE 3 | Figure showing overlap between regions that have reduced

axial diffusivity (AD) and radial diffusivity (RD) in 22q11DS. Regions that
share abnormalities in AD and RD are in yellow, regions that have reduced
AD only are shown in pink, and regions that have reduced RD only are in
blue. Results are shown overlaid on the standard FMRI58 FA template.

callosum and bilateral regions of the ILF and SLF was signif-
icantly reduced in 22q11DS in comparison to typically devel-
oping controls. AD and RD results are shown in Figures 4A,B,
respectively.

All regions that showed significant FA or AD differences
remained statistically significant (p < 0.05) or approached
significance (p ≤ 0.10) when the total sample was broken
into subgroups according to scanner location (BMC, CCN).
For measures of RD, differences in the primary tract of the
right SLF remained statistically significant (p ≤ 0.05) and
approached significance in the temporal portion of the SLF
(p ≤ 0.07) when the sample was divided into sub-groups
according to scanner. However, for all other measures of RD
that were statistically significant when the whole group was
examined (i.e., splenium of corpus callosum, left and right
ILF, left SLF) these results only remained statistically signif-
icant when comparing 22q11DS vs. controls in the BMC
scanner subgroup. Results are presented in Supplementary
Table S4.

AGE × DIAGNOSIS INTERACTIONS
There were significant age∗group interactions for left ILF FA
[F(5,59) = 4.2, p = 0.04] and RD [F(5,59) = 5.8, p = 0.02;
Figure 5]. In controls, ILF FA values increased with increas-
ing age (r = 0.52, q = 0.03). However, this relationship was
not present in 22q11DS participants (r = 0.06, q = 0.90). In
the left ILF, controls showed decreasing RD with increasing age
(r = −0.62, q = 0.02), but again, this pattern was not seen in
22q11DS (r = −0.08, q = 0.85). Of note, we did not find a signif-
icant relationship with age and psychotic symptoms in 22q11DS
(r = 0.19, p = 0.30).

RELATIONSHIPS BETWEEN DTI INDICES AND POSITIVE SYMPTOMS IN
22q11DS
Significant relationships were observed between AD in the IFO
bilaterally and positive symptoms in 22q11DS (left: r = −0.53,
q = 0.008, right: r = −0.49, q = 0.02, Figure 6). In both regions,
decreased AD was associated with greater severity of positive
symptoms. There were no relationships between FA and RD and
positive symptoms in 22q11DS. When effects of IQ were regressed
out, and the significant correlations were re-run, all correlations
remained significant (Supplementary Table S5A).

RELATIONSHIPS OF DTI INDICES WITH SOCIAL COGNITION
As seen in Figure 7, increased AD in the left IFO (22q11DS:
r = 0.53, q = 0.008; controls: r = 0.46, q = 0.04) and left unci-
nate fasciculus (22q11DS: r = 0.57, q = 0.004, controls: r = 0.47,
q = 0.04) was associated with better performance on the TASIT
in both 22q11DS participants and controls. A similar pattern of
results was observed for the relationship between ER40 perfor-
mance and the left IFO (r = 0.47, q = 0.02) and left uncinate
fasciculus (r = 0.45, q = 0.03) in 22q11DS, but not in controls
(left IFO: r = 0.11, q = 0.8, left uncinate fasciculus: r = −0.07,
q = 0.8). Controls also showed a significant associations between
increased AD in the SLF bilaterally (left SLF: r = 0.59, q = 0.008;
right SLF: r = 0.61, q = 0.008) and ILF bilaterally (left ILF: r = 0.55,
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FIGURE 4 | Group differences between individuals with 22q11DS

versus typically developing controls on measures of (A) axial

diffusivity (AD) and (B) radial diffusivity (RD). AD and RD values are
marginal means adjusted for covariates of scanner site, age, and gender.
*q < 0.05.

q = 0.02; right ILF: r = 0.47, q = 0.04) with better social cogni-
tion performance on the TASIT. However, relationships between
SLF and ILF AD and TASIT performance were not observed in
22q11DS participants (all q > 0.7). When effects of IQ were
regressed out, and the significant correlations were re-run, all cor-
relations remained significant for both 22q11DS participants and
controls, aside from relationships between social cognition per-
formance and the ILF regions for controls (Supplementary Tables
S5B,C).

We conducted secondary analyses of AD measures in the left
IFO and left uncinate fasciculus (the only regions that showed
a significant relationship with overall ER40 performance) and
task performance for specific emotions in 22q11DS. These results
indicate that the only emotion that significantly correlated with
these two measures was fear, with better recognition of fear
associated with increased AD in both regions in 22q11DS (left
IFO: r = 0.46, p = 0.005; left uncinate fasciculus: r = 0.38,
p = 0.02).

FIGURE 5 | Patterns of age-associated changes in (A) fractional

anisotropy (FA) and (B) radial diffusivity (RD) in 22q11DS participants

versus typically developing controls in the left inferior longitudinal

fasciculus (ILF). Controls show the expected pattern of increased FA and
decreased RD with increasing age, which is not observed in 22q11DS
patients [F (5,59) = 4.2, p = 0.04 and F (5,59) = 5.8, p = 0.02, respectively].

STRENGTH OF LINEAR RELATIONSHIPS BETWEEN MEASURES OF
AXIAL AND RADIAL DIFFUSIVITY
Results of these analyses in 22q11DS patients and controls are
presented in Table 2. Compared to controls, 22q11DS partici-
pants showed a significantly stronger linear relationship between
AD and RD in the right cingulum bundle (Z = 2.84, q = 0.03),
the genu (Z = 3.2, q = 0.01), and the right uncinate fasciculus
(Z = 2.76, q = 0.03). 22q11DS showed significant positive rela-
tionships between RD and AD in the right ATR, bilateral regions
of the IFO, the right SLF, left uncinate fasciculus, but controls
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FIGURE 6 | Relationship between total positive symptoms and axial diffusivity (AD) in the (A) left inferior longitudinal fasiculus (IFO) and (B) right IFO

in 22q11DS participants. As AD in the left and right IFO decreases, positive symptom severity increases.

did not show significant relationships in these regions. However,
compared to controls, 22q11DS patients did not show a statistically
stronger linear relationship in these regions. We found that both
controls and patients showed significant positive linear relation-
ships between RD and AD in the left ATR and left cingulum bundle
in the hippocampal region. In all cases where there was a linear
relationship between AD and RD, increased AD was associated
with increased RD.

DISCUSSION
This study used a whole brain and region of interest (ROI)
approach to examine multiple DTI indices in 22q11DS, a

neurogenetic disorder that confers significantly increased risk
for the development of psychosis. Several findings emerged –
some novel, while others extend upon the small body of existing
22q11DS DTI literature: (1) in comparison to controls, 22q11DS
participants had reduced AD, putatively indexing axonal damage
(Song et al., 2002, 2003), in multiple white matter tracts, with
the strongest effect sizes observed in the SLF, a fronto-parietal
tract; (2) 22q11DS participants also exhibited decreased RD, a
putative marker of neuroinflammation (Colpak et al., 2014; Sasaki
et al., 2014) in the splenium, SLF, and ILF; (3) there was a dis-
rupted pattern of age-associated changes in FA and RD of the left
ILF in 22q11DS, (4) increased AD in the left IFO and uncinate
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Table 2 | Correlations between axial and radial diffusivity (RD) for ROIs within white matter tracts and Fisher r -to-Z transformation results

comparing the correlations of participants with 22q11.2 deletion syndrome versus typically developing controls.

Region Correlations Fisher r -to-Z transformation

22q11DS

(N = 36)

Controls

(N = 36)

Z q-value

Left anterior thalamic radiations r = 0.75

q = 9.1e-6

r = 0.57

q = 0.01

1.24 0.41

Right anterior thalamic radiations r = 0.70

q = 0.00007

r = 0.46

q = 0.06

1.41 0.35

Left corticospinal tracts r = −0.10 r = 0.62 −2.38 0.07

q = 0.81 q = .007

Right corticospinal tracts r = 0.19 r = 0.49 −1.31 0.39

q = 0.48 q = 0.03

Left anterior cingulum r = −0.14

q = 0.65

r = −0.19

q = 0.54

0.2 0.94

Right anterior cingulum r = 0.06

q = 0.88

r = 0.11

q =0 .81

−0.19 0.94

Left cingulum bundle

(hippocampal region)

r = 0.84

q = 1.8e-8

r = 0.61

q = 0.008

1.95 0.15

Right cingulum bundle

(hippocampal region)

r = 0.86

q = 5.4e-9

r = 0.50

q = 0.07

2.84 0.02

Splenium r = 0.27

q = 0.27

r = 0.02

q = 0.97

0.98 0.55

Genu r = 0.74

q = 0.00001

r = 0.11

q = 0.81

3.2 0.01

Left inferior longitudinal fasciculus r = 0.11

q = 0.81

r = 0.06

q = 0.92

0.19 0.94

Right inferior longitudinal fasciculus r = −0.004

q = 0.99

r = −0.02

q = 0.97

−0.06 0.99

Left inferior fronto-occipital fasciculus r = 0.63

q = 0.0009

r = 0.31

q = 0.25

1.6 0.26

Right inferior fronto-occipital fasciculus r = 0.48

q = 0.02

r = 0.32

q = 0.44

0.73 0.74

Left superior longitudinal fasciculus r = 0.37

q = 0.09

r = 0.37

q = 0.12

0.0 1.0

Right superior longitudinal fasciculus r = 0.50

q = 0.02

r = 0.50

q = 0.15

0.0 1.0

Left uncinate fasciculus r = 0.45

q = 0.03

r = 0.35

q = 0.17

0.37 0.88

Right uncinate fasciculus r = 0.51

q = 0.01

r = −0.16

q = 0.66

2.76 0.03

Left superior longitudinal

fasciculus (temporal region)

r = 0.28

q = 0.24

r = 0.27

q = 0.35

0.04 0.99

Right superior longitudinal fasciculus

(temporal region)

r = 0.03

q = 0.94

r = −0.11

q = 0.81

0.54 0.81

Values in bold show a statistically significant difference in the strength of the relationship between 22q11DS and controls.
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FIGURE 7 | Relationship between social cognition performance and AD in the (A) left IFO and (B) left uncinate fasciculus (UNC). In both 22q11DS
participants and controls, as AD in the left IFO and UNC increases, social cognition task performance improves.

was associated with improved social cognition performance in
both 22q11DS participants and controls, and (5) reduced AD in
both the left and right IFO was associated with increased positive
symptom severity in 22q11DS.

GROUP DIFFERENCES: 22q11DS VS. TYPICALLY DEVELOPING CONTROLS
In line with prior, smaller studies we found decreased AD, a puta-
tive index of axonal disruption (Song et al., 2003), in multiple
tracts in 22q11DS. Radoeva et al. (2012) also found widespread
decreases in AD, including the IFO and SLF. Another group found
decreased AD in the left hemisphere in 22q11DS patients rela-
tive to controls in a region that included the intersection of IFO,

ILF, SLF, cingulum, and anterior thalamic radiations (ATR; Kiki-
nis et al., 2012). Using DTI tractography, this group also identified
reduced AD in the IFO and ILF in 22q11DS participants (Kiki-
nis et al., 2013). Murine models resulting in axonal degeneration
or axonal damage and/or loss have observed decreased AD (Song
et al., 2003; Budde et al., 2008). Other studies in animal models
have found that reduced diameter of axonal bundles is also associ-
ated with reduced AD (Schwartz et al., 2005; Harsan et al., 2006).
Thus, the reduced AD observed in 22q11DS may reflect reduced
diameter of axonal bundles, axonal degeneration, damage, and/or
loss. To our knowledge, however, white matter microstructure has
not been directly investigated in mouse models of 22q11DS.
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It is important to note that axonal damage does not occur
in isolation. Song et al. (2003) found that degradation to the
myelin sheath occurred after axonal degeneration, and Harsan
et al. (2006) used a transgenic mouse that expressed a virus in
oligodendrocytes, also resulting in oligodendrocyte apoptosis and
demyelination (in addition to decreased axonal diameter). Sup-
porting these findings, we found that measures of AD and RD
were significantly related to each other in multiple regions, in
both 22q11DS patients and controls.

Surprisingly, in both our ROI and whole-brain analyses, we also
found decreased RD in 22q11DS, which was not observed in two
prior 22q11DS studies that examined specific sub-components
of FA (Kikinis et al., 2012; Radoeva et al., 2012). However, more
recently, Perlstein et al. (2014) used white matter tractography to
examine three tracts of interest (i.e., ALIC, fornix, and uncinate)
and found that decreased RD drove the observed increases in
FA in bilateral regions of the ALIC in 22q11DS. Recent studies
in human populations have found decreased RD to be asso-
ciated with neuroinflammation, as decreased RD in multiple
brain regions has been found in individuals with autoimmune
disease (Colpak et al., 2014) and history of concussion (Sasaki
et al., 2014). Decreased RD has also been observed in a rodent
model of thrombotic stroke (induced by hypoxia-ischemia); in
this study, decreased RD correlated with swelling of myelin
sheaths (Shereen et al., 2011). Upon further investigation, the
authors found that cerebral hypoxia-ischemia rapidly induced
oxidative stress in oligodendrocytes, resulting in swelling of
myelin and compression of axoplasma (Shereen et al., 2011).
Others have found that smaller axonal diameter was associated
with decreased RD in the corpus callosum of the rat brain
(Barazany et al., 2009). On the other hand, increased RD has
been observed in shiverer mice, who have thin, loosely packed,
or absent myelin sheaths, but intact axonal integrity (Song et al.,
2002). Similarly, a cuprizone mouse model, which results in
oligodendrocyte loss followed by demyelination, also showed
increased RD (Song et al., 2005). Thus, the significant decreases
in RD that we observed in human subjects with 22q11DS could
potentially reflect swelling of myelin sheaths and/or compres-
sion of axoplasma, reduced axonal diameter, and/or increased
myelination.

In our whole-brain analyses, those with 22q11DS had higher
FA in several regions, including the posterior limb of the internal
capsule, the corona radiata, the body of the corpus callosum, and
a small region of the left SLF. These findings are unexpected, given
that the majority of DTI studies to date have found decreased FA
in 22q11DS patients (e.g., Barnea-Goraly et al., 2003; Sundram
et al., 2010; Radoeva et al., 2012; Villalon-Reina et al., 2013). How-
ever, our findings do replicate increases in FA previously observed
in 22q11DS in the corona radiata (Sundram et al., 2010) and SLF
(Simon et al., 2005). Additionally, somewhat consistent with our
findings of increased FA in the body of the corpus callosum,
Barnea-Goraly et al. (2003) found increased FA in the genu and
the splenium of the corpus callosum in 22q11DS. Furthermore,
the findings of increased FA in 22q11DS are consistent with evi-
dence from other neurogenetic syndromes involving anomalous
neurodevelopment, i.e., William’s syndrome, (Hoeft et al., 2007;
Arlinghaus et al., 2011; Haas et al., 2013).

Although the cellular mechanisms underlying increased FA
in 22q11DS in these regions are unknown, our findings were
likely driven by a combination of decreased AD and RD. Regional
increases in FA in children with other neurodevelopmental dis-
orders has been observed, and the authors of these studies
have offered a number of speculations as to causal mecha-
nisms at the cellular level, such as: decreases in axonal branch-
ing (Hoeft et al., 2007), fewer obliquely oriented fibers (Cheng
et al., 2011), flattened fibers, enabling the increased density of
white matter (Bode et al., 2011), or decreases in fiber cross-
ing (Arlinghaus et al., 2011). Genes located within the 22q11
locus, such as the Reticulon 4 receptor gene (RTN4R), which
is associated with axonal growth inhibition (Fournier et al.,
2001), may contribute to white matter microstructural abnor-
malities in 22q11DS. However, given that, to our knowledge,
no mouse models of 22q11DS have examined white matter
pathology, the precise contributing cellular mechanisms remain
unknown.

In contrast, our ROI analyses did not indicate higher FA in
22q11DS participants relative to controls within the tracts inves-
tigated. The ROI approach, which averages all the voxels within
a specific region, may have masked the increased FA identified in
specific tracts (i.e., posterior limb of the internal capsule, supe-
rior and posterior corona radiate, body of the corpus callosum,
small portion of the left SLF) in the whole-brain approach. For
example, the SLF is a large ROI and the small portion of increased
FA that we identified in the whole-brain analysis could have been
obscured when the average FA was calculated for that ROI. Addi-
tionally, the ROIs used in this study did not cover the entire
mean skeleton obtained (e.g., the body of the corpus callosum was
not an identified ROI), and thus such regions were not included
in the ROI analyses. However, despite the lack of significantly
increased FA in the ROI analyses, we did find decreased AD and
RD in regions that produced comparable results to the whole brain
findings. These findings also highlight the importance of using
separate measures of diffusivity to examine white matter abnor-
malities in patient groups, as in other brain disorders (Nir et al.,
2013).

Although the number of published DWI studies in 22q11DS is
small (11 publications as of June 2014), the findings have varied,
due in part to the methodological differences and sample charac-
teristics. For example, many of the studies did not align the b0
image to a T1-weighted structural scan to correct for EPI induced
artifacts, which result in spatial distortions that could substantially
change the results. Another reason for these discrepant findings
may be due to difficulties encountered when registering DWI data
(Smith et al., 2006), particularly when the shape of tracts differs
between groups. Though the optimal type of registration is not
agreed upon (Smith et al., 2006; Schwarz et al., 2014), differences in
registration methods used can also result in substantially different
results. Furthermore, customization of ROIs may help in obtain-
ing accurate results in clinical populations, particularly those with
neurogenetic conditions. For example, editing the ROIs obtained
from the Johns Hopkins University atlas to fit our mean skeleton
was necessary for proper placement of the ROIs entirely within
white matter. Thus, we suggest that future studies investigate how
the selected ROIs map onto one’s data prior to running analyses,
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and adjust the ROIs if necessary. To our knowledge, this is not stan-
dard practice in DTI studies, but has been performed in published
manuscripts by our collaborators (Karlsgodt et al., 2009).

AGE ASSOCIATED DISRUPTIONS IN WHITE MATTER MICROSTRUCTURE
IN 22q11DS
We also found age-related disruptions in white matter microstruc-
ture of the left ILF in those with 22q11DS, as 22q11DS participants
failed to show the age-associated increases in FA observed in
typically developing controls. Notably, a similar finding has
been observed in youth at CHR for psychosis, who failed to
show typical age-related FA increases in the medial temporal
lobe (Karlsgodt et al., 2009). Our finding appears to be driven
by an age-associated disruption of RD in the ILF of 22q11DS
participants. Typically developing adolescents show decreases in
RD as they age, which is believed to reflect increased myeli-
nation (Asato et al., 2010; Simmonds et al., 2014); however,
our results suggest that 22q11DS participants do not show this
pattern of decreasing RD with age. Although the age∗group
interaction only reached significance within this tract, several
other regions, including the SLF, appeared to follow a simi-
lar pattern, and these results approached significance. There
may be an atypical neurodevelopmental trajectory of white mat-
ter microstructure in 22q11DS; one hypothesis is that those
with 22q11DS undergo “precocious maturation,” with myeli-
nation occurring before the period of adolescence, closing the
window for heightened brain plasticity during adolescence and
young adulthood. This pattern of increased early myelination
has been observed in mice who underwent early life stress
(i.e., being weaned from their mothers at an early age (Ono
et al., 2008; Kikusui and Mori, 2009). Notably, like patients
with 2q211DS, these mice displayed increased anxious behav-
iors (Ono et al., 2008). Thus, 22q11DS participants may have
“early” myelination, resulting in increased FA at an earlier age
and failure to show the typical increase in adolescence and
young adulthood. Equally plausible is the possibility of delayed
myelination; for example, structural neuroanatomic studies of
22q11DS have found a pattern of delayed cortical maturation
has been observed in children with attention deficit hyperac-
tivity disorder (Shaw et al., 2007). This possibility is consistent
with a previous structural neuroimaging (Schaer et al., 2009)
study and a proton spectroscopy study (Shashi et al., 2012b)
of 22q11DS participants. For example, FA may increase at a
later age in those with 22q11DS relative to typically develop-
ing youth. However, these hypotheses need to be tested with
prospective longitudinal investigations, which are currently in
progress.

Additionally, the wide variability of findings in the 22q11DS
literature may be at least partly due to developmental changes tak-
ing place on white matter microstructure. Development of white
matter, particularly fronto-temporal and limbic connections, con-
tinues to take place during adolescence and young adulthood (Bava
et al., 2010; Giorgio et al., 2010; Lebel et al., 2012; Simmonds et al.,
2014). Notably, white matter changes in adolescence parallel the
development of cognitive and social-affective processes during
this sensitive period (Blakemore and Choudhury, 2006; Choud-
hury et al., 2006), which may be relevant to the development of

psychosis (Paus et al., 2008). The majority of previous DTI studies
of 22q11DS did not covary for age when examining group differ-
ences (Barnea-Goraly et al., 2003; Simon et al., 2005; Radoeva et al.,
2012; Kikinis et al., 2013, 2012) and none of these studies exam-
ined how age-associated white matter changes may be disrupted
in 22q11DS.

ASSOCIATION OF WHITE MATTER MICROSTRUCTURE WITH SOCIAL
COGNITION PERFORMANCE IN 22q11DS AND CONTROLS
Greater axonal coherence (i.e., higher AD) in the IFO and uncinate
was associated with improved social cognition in both 22q11DS
patients and healthy controls. Similar results have been reported
in a combined analysis of 22q11DS participants and controls:
increased AD in the right hemisphere of the SLF, the posterior
corona radiata, and IFO was related to better social skills (as mea-
sured by the socialization subdomain of the Vineland Adaptive
Behavior Scales, Radoeva et al., 2012). The IFO is the longest asso-
ciation tract in the brain and has multiple connections between
the occipital, temporal, and frontal lobes (Martino et al., 2010;
Sarubbo et al., 2013). It has been hypothesized that the IFO is cru-
cial for integrating information between physically distant brain
regions (Sarubbo et al., 2013), which is essential for integrat-
ing social information from one’s environment and responding
appropriately. Furthermore, damage to the IFO results in impair-
ment in emotion recognition (Philippi et al., 2009), highlighting
the important role that this tract plays in facilitating connections
between visual processing and emotion-related cortical regions
(i.e., visual cortex to orbitofrontal cortex).

To our knowledge, this study is the first to relate higher AD
in fronto-limbic tracts (i.e., uncinate fasciculus) to better social
cognition in both controls and 22q11DS participants. The unci-
nate connects the amygdala to the anterior temporal lobe and
orbitofrontal cortex (Ghashghaei and Barbas, 2002; Ghashghaei
et al., 2007) and is believed to play a role in the interaction between
emotion and cognition (Barbas, 2000). This white matter tract
has been associated with the following socially related functions:
evaluation of stimuli, social reward processing, and higher-level
emotional meaning of concepts (for a review, Von Der Heide et al.,
2013). Thus, it is not surprising that we see that greater axonal
coherence in this tract is associated with improved social cognition
performance in both 22q11DS participants and controls.

ASSOCIATION OF WHITE MATTER MICROSTRUCTURE WITH POSITIVE
SYMPTOMS IN 22q11DS
To our knowledge, this is the first study to relate positive symp-
toms and lower AD in 22q11DS. Importantly, decreased AD in
bilateral IFO was related to increased positive symptom severity
in 22q11DS, is consistent with the previously noted association
between AD in the left IFO with improved social cognition per-
formance in 22q11DS participants. In a prior behavioral study,
the same social cognition task (i.e., TASIT) was the most signif-
icantly related to psychotic symptomatology in 22q11DS, when
compared to other measures of social and non-social cognition
(Jalbrzikowski et al., 2012). Disrupted axonal coherence in the
IFO may underlie the social cognition impairment and psychotic
symptoms in 22q11DS, suggesting a common mechanism of brain
disturbance.
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RELATIONSHIP OF FINDINGS TO IDIOPATHIC SCHIZOPHRENIA
Multiple studies in patients with idiopathic schizophrenia have
consistently demonstrated that disruption in white matter
microstructure in multiple regions is driven by increased radial,
not axial, diffusivity, which authors interpret as indicating that
white matter dysfunction in idiopathic schizophrenia is primar-
ily driven by demyelination, rather than axonal damage (Seal
et al., 2008; Levitt et al., 2012; Lee et al., 2013). This hypothesis
is supported by the post-mortem histopathology literature, which
shows disturbances in the function and structure of oligodendro-
cytes, brain cells responsible for the myelination of axons (Davis
et al., 2003; Walterfang et al., 2006). Thus, as postulated by Kikinis
et al. (2012), it is possible that white matter pathology associated
with psychosis in 22qDS is driven by different neuropathological
mechanisms relative to idiopathic psychosis. Nevertheless, such
perturbations of structural connectivity between brain regions
critical for social processing may lead to downstream common-
alities in their phenotypic effects. Finally, these findings are not
consistent with the majority of the idiopathic schizophrenia lit-
erature, other studies have found increased FA in white matter
microstructure in other neurogenetic disorders, such as Williams’
syndrome (Hoeft et al., 2007; Arlinghaus et al., 2011; Haas et al.,
2013), which may be attributable to a decrease in normal amount
of branching in these cortical tracts, leading to less fiber crossing
and thus resulting in increased FA (Hoeft et al., 2007).

RELATIONSHIP OF FINDINGS TO EXISTING 22q11DS NEUROIMAGING
LITERATURE
This work complements the existing structural and functional
neuroimaging work in 22q11DS. For example, structural abnor-
malities of the corpus callosum in 22q11DS have been detected
in multiple studies(Shashi et al., 2004, 2012a; Baker et al., 2011),
and we see white matter abnormalities in the corpus callosum
(increased FA in the body of the corpus callosum, decreased RD
and AD in the splenium, and decreased AD in the genu). How-
ever, to our knowledge, the relationship between white matter
volumetric and DTI measures in 22q11DS has not yet been exam-
ined. Additionally, a combined structural and diffusion MRI study
of 22q11DS found an overall global loss of connectivity (6%) in
22q11DS participants compared to controls (Ottet et al., 2013b),
and another study of resting state functional connectivity showed
deficits in long range connectivity in 22q11DS youth (Schreiner
et al., 2014); these findings are consistent with the AD deficits
seen in long range association tracts (i.e., ILF, IFO, SLF) that we
observed in 22q11DS. Reduced frontal–temporal functional con-
nectivity has also been observed in 22q11DS (Ottet et al., 2013a)
and we observed reduced AD in the uncinate fasciculus, a frontal–
medial temporal tract. In the future, it will be important to conduct
studies that incorporate multiple neuroimaging modalities (e.g.,
DTI, fMRI) in 22q11DS to better understand how these findings
inform each other.

The observed relationship between reduced AD and increased
psychotic symptom severity in 22q11DS also extends upon the
existing literature on relationships between neuroimaging mea-
sures and the psychosis phenotype in 22q11DS. Two recent studies
have found white matter microstructure abnormalities in the cin-
gulum bundle (increased FA and decreased RD), anterior limb of

the internal capsule (increased right FA, decreased left RD), and
uncinate fasciculus (decreased bilateral RD) have been associated
with increased psychotic symptoms in 22q11DS (Kates et al., 2014;
Perlstein et al., 2014). To our knowledge, ours is the first study to
identify a significant relationship between decreased AD in bilat-
eral regions of the IFO and increased psychotic symptom severity
in 22q11DS. Taken together, these findings provide support for the
notion that structural dysconnectivity is particularly relevant to
the psychosis phenotype in 22q11DS. Furthermore, the relation-
ships previously observed between decreased RD and psychotic
symptoms in 22q11DS (Kates et al., 2014; Perlstein et al., 2014),
paired with our findings of decreased RD in 22q11DS overall,
suggest that decreased RD may also be pathological.

LIMITATIONS
Several limitations of this study should be noted. First, given our
cross-sectional design we were unable to investigate changes in
DTI measures over time as predictors of subsequent development
of psychotic symptoms in 22q11DS. In the future, it will be critical
to incorporate a longitudinal approach, as studies of structural
neuroanatomic predictors of psychosis have found change over
time to be a strong predictor of symptom development, in both
22q11DS (Kates et al., 2011) and idiopathic psychosis (Sun et al.,
2009; Takahashi et al., 2009). Secondly, established DTI measures
may not be equipped to measure the complexity of increased
fiber crossing that is hypothesized to occur as one ages (Riffert
et al., 2014). One specific drawback to this methodology is that,
within one voxel, only one primary direction of diffusion can
be calculated, despite the fact that there are many axons within
a voxel (Basser et al., 2000; Pierpaoli et al., 2001). For example,
in a region that has many different fibers crossing in different
directions, the mean of the primary direction is calculated, which
may result in a pattern of globally reduced FA in this region,
even if FA is high in these different crossing fibers. Thus, it is
possible that with increasing age controls are developing a more
complex pattern of fiber crossing than those with 22q11DS. How-
ever, the limitations in scan resolution make it difficult to test this
hypothesis. Other types of methodologies, such as q-ball imag-
ing, measure diffusion without making assumptions about the
underlying white matter microstructure (Tuch, 2004). However,
this imaging technique prolongs scan time, which is not always
feasible for clinical populations. Therefore, advanced DTI tech-
niques to quantify the complexity of fiber crossing are currently in
development (Riffert et al., 2014). Finally, scans were conducted
on two different scanners; although these scanners were identical
(Siemens 3 Tesla Tim Trio) and the proportion of patients and
controls was similar across scanners, we nevertheless observed
significant differences as a function of scanner location (Supple-
mentary Table S2). Nevertheless, these differences were systematic
and consistent across regions, as FA was consistently higher on
one scanner, whereas AD and RD were consistently lower on this
scanner. Thus, we covaried for scanner site in all analyses.

FUTURE DIRECTIONS
The current study sets a foundation to develop future multi-modal
neuroimaging biomarker studies in 22q11DS. The white matter
pathways that we found to be associated with social cognition
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and psychosis (i.e., IFO) connect to a gray matter region, the
medial orbitofrontal cortex, variation in which we have also found
to be associated with psychosis in 22q11DS (Jalbrzikowski et al.,
2013). Thus, to better understand how neuropathophysiological
mechanisms are related to both social impairment and psychotic
symptoms in 22q11DS, it will be important to examine relation-
ships between measures of structural white matter connectivity
and gray matter thickness, and in turn, how these measures relate
to behavior, in both healthy individuals and those with 22q11DS.
Furthermore, future investigations in larger samples of white mat-
ter microstructure in 22q11DS in relation to genetic pathways
will be particularly informative given that multiple genes within
the deleted region are associated with neuronal development
(Maynard et al., 2003). Specifically, well-validated bioinformat-
ics approaches (Zhang and Horvath, 2005) have been developed,
allowing us to identify pathways or modules of gene expression
related to psychosis in 22q11DS patients, and relate these molec-
ular features to neuroimaging and clinical data, thus connecting
genes to brain to behavior, and setting up future studies to more
thoroughly assess causality and mechanism both in humans and
in animal models.
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