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A B S T R A C T

Background: The convergence of smartphone technology and artificial intelligence (AI) has revolutionized the
landscape of ophthalmic care, offering unprecedented opportunities for diagnosis, monitoring, and management
of ocular conditions. Nevertheless, there is a lack of systematic studies on discussing the integration of smart-
phone and AI in this field.
Main text: This review includes 52 studies, and explores the integration of smartphones and AI in ophthalmology,
delineating its collective impact on screening methodologies, disease detection, telemedicine initiatives, and
patient management. The collective findings from the curated studies indicate promising performance of the
smartphone-based AI screening for various ocular diseases which encompass major retinal diseases, glaucoma,
cataract, visual impairment in children and ocular surface diseases. Moreover, the utilization of smartphone-based
imaging modalities, coupled with AI algorithms, is able to provide timely, efficient and cost-effective screening for
ocular pathologies. This modality can also facilitate patient self-monitoring, remote patient monitoring and
enhancing accessibility to eye care services, particularly in underserved regions. Challenges involving data pri-
vacy, algorithm validation, regulatory frameworks and issues of trust are still need to be addressed. Furthermore,
evaluation on real-world implementation is imperative as well, and real-world prospective studies are currently
lacking.
Conclusions: Smartphone ocular imaging merged with AI enables earlier, precise diagnoses, personalized treat-
ments, and enhanced service accessibility in eye care. Collaboration is crucial to navigate ethical and data security
challenges while responsibly leveraging these innovations, promising a potential revolution in care access and
global eye health equity.
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1. Introduction

The convergence of smartphone technology and artificial intelligence
(AI) has ushered in new opportunities to disrupt current delivery of
ophthalmic care.1 The ubiquitous presence of smartphones, coupled with
their ever-evolving capabilities, has surpassed their conventional utility
as communication devices, transforming them into powerful tools for
medical diagnostics and patient care.2 Simultaneously, the rapid ad-
vancements in AI algorithms have revolutionized the interpretation of
ocular images and clinical data, transforming the landscape of
ophthalmology.3

The amalgamation of smartphones and AI holds immense promise for
addressing the burgeoning global burden of ocular diseases. According to
the World Health Organization (WHO), visual impairments affect over
2.2 billion people worldwide, with conditions such as diabetic retinop-
athy (DR), glaucoma, and age-related macular degeneration (AMD)
posing significant threats to vision health.4 However, the conventional
barriers to access specialized ophthalmic care, especially in remote or
underserved regions, have hindered early detection and timely inter-
vention, exacerbating the impact of these ocular conditions.5 In remote
or underserved regions, undiagnosed ocular conditions prevail, impeding
timely interventions and escalating their burden, as highlighted by recent
studies, emphasizing the critical need for enhanced accessibility to eye
screenings.6

This review explores the synergy between smartphone technology
and AI in ophthalmology, elucidating their collective potential to
Fig. 1. PRISMA 2020 flow diagra
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revolutionize screening methodologies, disease diagnosis, telemedicine
initiatives, and personalized patient management. It explores the utili-
zation of smartphone-based imaging modalities, ranging from fundus
photography to anterior segment imaging, enhanced by AI-driven algo-
rithms for efficient and accurate detection of ocular pathologies.7,8

Moreover, the integration of AI with smartphone platforms has not only
facilitated remote consultations but also empowered patients to actively
engage in their eye health management.

While the prospects of leveraging these technologies for enhancing
ophthalmic care are promising, various challenges such as data security,
algorithm validation, ethical considerations, regulatory frameworks, and
real-world implementation necessitate thorough consideration and dis-
cussion. This systematic review aims to comprehensively summarize the
current landscape, discuss existing challenges, and outline future pros-
pects for integrating smartphone technology and AI to advance
ophthalmic care.

2. Methods

2.1. Study selection and search strategy

This is a systematic review following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyzes (PRISMA) guidelines (Fig. 1).
Extensive searches were conducted across electronic databases including
PubMed, Web of Science (WOS), Scopus and Google Scholar databases.
Keywords were selected from three aspects: ophthalmology-related terms
m for this systematic review.
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(ophthalmology, eye diseases, ophthalmic disorders, ophthalmic di-
agnostics), AI-related terms (artificial intelligence, deep learning, ma-
chine learning) and smartphone-related terms (smartphone, smart
phone, mobile phone). Finally, the following combined terms:
("Ophthalmology" OR "Eye Diseases" OR "Ophthalmic Disorders" OR
"Ophthalmic Diagnostics") AND ("Artificial Intelligence" OR "Deep
Learning" OR "Machine Learning") AND ("Smartphone" OR "Smart Phone"
OR "Mobile Phone") were used to retrieve pertinent articles published
from January 2018 to November 2023.

2.2. Article selection criteria

The specific inclusion criteria was established for selecting the article.
Firstly, we chose the publication date spanning from January 2018 to
November 2023 to ensure the inclusion of up-to-date findings. Initially,
1251 articles were acquired from databases. Inclusion criteria encom-
passed peer-reviewed articles, reviews, original research studies, and
meta-analyses focusing on the integration of smartphone technology and
AI in ophthalmic care. Studies discussing smartphone-based imaging
modalities, AI algorithms in ophthalmology, tele-ophthalmology, and
ocular disease management were considered.

Meanwhile, studies meeting the following criteria will be excluded:
(1) not written in English; (2) duplicate records previously included in
the review; (3) irrelevant topics, where the article is unrelated to
ophthalmology or the application of AI and smartphone technology; (4)
conference abstracts, and (5) non-original research, such as editorials,
case reports or commentaries.

2.3. Data extraction

Relevant data including study objectives, methodology, smartphone-
based imaging techniques utilized, AI algorithms employed, diagnostic
accuracy, patient outcomes, and limitations were extracted from selected
articles. Information pertaining to the efficacy, feasibility, and challenges
of integrating smartphone technology and AI in ophthalmic care was
collated.

2.4. Quality assessment

Quality assessment was performed to evaluate the rigor and reli-
ability of included studies. Criteria included study design, sample size,
methodology, validation of AI algorithms, and the reliability of
smartphone-based imaging techniques. We focused on articles which
utilized the integration of smartphone technology and AI to improve the
diagnosis, treatment, accessibility, and personalized care in
ophthalmology.

In accordance with the PRISMA guidelines, this review includes a
comprehensive literature search, specific inclusion criteria, and thorough
data extraction. A total of 52 articles were independently screened for
eligibility by two reviewers (Kai Jin and Yingyu Li), including assess-
ments of titles and abstracts, followed by full-text review. Any dis-
agreements were solved through discussion with a third author (Juan
Ye). Ultimately, 52 studies were included in the review.

2.5. Data synthesis and analysis

A narrative synthesis approach was employed to summarize findings
from the included studies. Key themes regarding the integration of
smartphone technology and AI in ophthalmology were identified, syn-
thesized, and presented in a coherent manner to elucidate the current
state of the field.

2.6. Risk of bias assessment

Any potential biases within the included studies were assessed and
discussed. This encompassed biases related to study design,
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methodology, funding sources, and conflicts of interest.

2.7. Reporting standards

The reporting of this review adheres to the PRISMA guidelines to
ensure transparency, accuracy, and completeness in reporting the find-
ings related to the integration of smartphone technology and AI in
ophthalmic care.

3. Results

We eventually included 52 studies. The results (Table 1) cover a wide
range of studies in the field of ophthalmology, highlighting the enormous
potential of integrating smartphone technology and AI for ophthalmic
care. Subfields encompass retinal diseases (26 studies), glaucoma (9
studies), cataract (4 studies), visual impairment in children (4 studies),
ocular surface diseases (6 studies) and other diseases (3 studies) (Fig. 2).

3.1. Retinal diseases

The retina is the site of various sight-threatening eye diseases
including DR, diabetic macular edema (DME), AMD and retinopathy of
prematurity (ROP), which makes it important in preventing serious eye
disorders. In recent studies, AI-based smartphone technology has been
employed for the detection of retinal diseases, showcasing significant
potential for the future.

With the increasing prevalence of diabetes mellitus globally, DR has
become a leading cause of blindness in adults worldwide.9 To prevent
permanent visual impairment, screening is pertinent to detect referable
cases that need timely treatment.10 The current screening strategy in-
cludes direct or indirect ophthalmoscopy and mydriatic or non-mydriatic
color retinal photography, but there is still a requirement for a more
low-cost, effective and convenient method to detect DR, especially in the
lower and middle-income areas.11 Therefore, the integration of AI and
smartphone technology has garnered much attention due to its great
performance in several studies. Rajalakshmi et al. evaluated the effect of
an automated AI-based interpretation of smartphone-based fundus
photography system for detecting DR and grading images to identify
sight-threatening DR (STDR).12 They used the EyeArtTM software to
automatically analyze retinal images and provide DR severity and
screening recommendation, showing that the screening system had
95.8% sensitivity and 80.2% specificity for detecting any DR and 99.1%
sensitivity and 80.4% specificity in detecting STDR. In another study,
Al-Karawi et al. proposed a framework utilizing edge computing on a
mobile device and deep learning (DL) with three benchmark convolu-
tional neural networks (CNNs) architectures (EfficientNetB7, ResNet50,
and VGG19) to detect the severity level of DR, which achieved a high
classification accuracy (96.0%) and reduction of the transmitted data
amount and the response time.13 At the same time, the application of the
offline smartphone-based AI platforms makes the DR screening faster and
more convenient without a network connection. Natarajan et al. con-
ducted the first study assessing an offline AI algorithm named Medios AI
(Remidio) on a smartphone-based, nonmydriatic retinal camera.8 The
performance of this offline system reached a sensitivity of 100.0% and
specificity of 88.4% in diagnosing referable DR and a sensitivity of 85.2%
and specificity of 92.0% in diagnosing any DR, compared with ophthal-
mologist grading using the same images. The similar results also be
proved in the research by Sosale et al. to show the potential of the offline
smartphone-based AI system in enhancing DR diagnosis, especially in
remote areas or outlying islands.14

DME, the leading cause of vision loss and referrals associated with
DR, can be accurately detected using a portable smartphone-based
camera integrated with the AI algorithm as well. Conventionally, diag-
nosis requires both fundus examination and OCT imaging. Hwang et al.
established a mobile application on Android system based on an offline
smartphone-based AI (MobileNet) screening platform, which can analyze



Table 1
Summary of representative studies using the integration of smartphone technology and AI in ophthalmology.

Reference Year Application Performance measure Data source AI models Mobile software

Rajalakshmi
et al.12

2018 DR detection DR (sensitivity ¼
95.8%, specificity ¼
80.2%)
STDR (sensitivity ¼
99.1%, specificity ¼
80.4%)

Fundus photographs taken by the
Remidio Fundus on Phone (Remidio
Innovative Solutions Pvt. Ltd,
Bangalore, India)

EyeArt EyeArtTM software (version
v2.1.0) (EyeNuk Inc., Los
Angeles, CA)

Al-Karawi
et al.13

2023 DR progression
prediction

Accuracy ¼ 96.0% The fundus image dataset by Asia
Pacific Tele-Ophthalmology Society

CNNs (EfficientNetB7,
ResNet50, and VGG19)

An Android application

Natarajan
et al.8

2019 DR detection Referable DR
(sensitivity ¼ 100.0%,
specificity ¼ 88.4%)
DR (sensitivity ¼
85.2%, specificity ¼
92.0%)

Fundus photographs taken by the
Remidio NonMydriatic Fundus on
Phone (Remidio Innovative Solutions
Pvt Ltd)

MobileNet, InceptionV3 Medios AI (Remidio)

Malerbi
et al.16

2021 DME detection in
type 2 diabetes
patients

/ Fundus photographs taken by a
smartphone-based hand-held device
(Eyer, Phelcom Technologies, S~ao
Carlos, Brazil)

PhelcomNet /

Hwang
et al.15

2020 DME evaluation
and measurement

Accuracy ¼ 90.02% The OCT images collected from
patients

MobileNet An Android application
(https://aicl.ddns.ne
t/DME.apk)

Young et al.19 2023 ROP detection and
grading

Referral-warranted ROP
(sensitivity ¼ 80.0%,
specificity ¼ 59.3%)
Treatment-requiring
ROP (sensitivity ¼
100.0%, specificity ¼
58.6%)

Fundus photographs taken by SBFI
systems (the Make-In-India Retcam/
Keeler Monocular Indirect
Ophthalmoscope devices)

ResNet18 /

Qidwai
et al.18

2022 AMD prognosis
prediction

Accuracy >92.0% Measurements of baseline, changes in
visual acuity and macular thickness
after four months of treatment

Adaptive neuro-fuzzy
inference system

OphnosisAMD

Nakahara
et al.21

2022 Glaucoma detection Glaucoma (AUC ¼
0.842)
Advanced glaucoma
(AUC ¼ 0.900)

Fundus photographs taken by an
iPhone 8 with the D-Eye lens (D-EYE
S.r.l., Padova, Italy)

ResNet /

Wu et al.23 2020 IOP measurements The mean difference for
GAT ¼ þ0.24 mm Hg
The 95% limits of
agreement for GAT ¼
�4.35–4.83 mm Hg

IOP measured by a smartphone
tonometer prototype

A machine learning method
based on kmeans, colour
filtering and geometry

/

Hu et al.24 2020 Cataract grading F1-score ¼ 0.923
AUC ¼ 0.9198
Accuracy ¼ 93.5%

Ocular images taken by the
smartphone-based slit-lamp

YOLO v3, ShuffleNet, and
SVM

/

Vasan et al.25 2023 Cataract detection
and grading

Cataract detection
(sensitivity ¼ 96.0%,
specificity ¼ 25.0%)
Immature cataracts
(accuracy ¼ 94.2%)
Mature cataracts
(accuracy ¼ 22.0%)
Posterior chamber intra-
ocular lenses (accuracy
¼ 29.3%)
Clear lenses (accuracy
¼ 2.0%)

Ocular images taken by a smartphone
using e-Paarvai

E-Paarvai's network based
on CNNs

E-Paarvai

Chen et al.28 2023 Visual impairment
in children
detection

Internal validation set
(AUC ¼ 0.940)
External validation set
(AUC ¼ 0.843)
Real-world test (AUC ¼
0.859)

3.5-min videos capturing phenotypic
features and ocular movements
recorded by the inbuilt front camera of
the smartphone

DL models in the AIS
system

The AIS app

Murali et al.30 2020 Amblyopia
detection

Sensitivity ¼ 88.2%
Specificity ¼ 75.6%
F-score ¼ 0.732
Accuracy ¼ 79.6%

Ocular images taken by a smartphone Kanna algorithm An Android application

Liu et al.31 2023 Pterygium
detection and
grading

Sensitivity ¼ 93.60%
Specificity ¼ 96.13%
F1-score ¼ 0.9313
AUC ¼ 0.9426
Accuracy ¼ 92.38%

The smartphone-based dataset
collected from the Xiamen Eye Center
of Xiamen University and Xiang'an
Hospital of Xiamen University

RFRC, SRU-Net /

Wang et al.32 2021 Infectious keratitis
classification

Global images (AUC ¼
0.9588, QWK ¼ 0.9130)
Regional images (AUC
¼ 0.9425, QWK ¼

5673 slit-lamp photographs and 400
smartphone photographs

A DL network based on the
InceptionV3

/

(continued on next page)
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Table 1 (continued )

Reference Year Application Performance measure Data source AI models Mobile software

0.8872)
Smartphone images
(AUC ¼ 0.5379, QWK
¼ 0.8529)

Chen et al.34 2021 Eyelid
measurements
prediction

Pearson correlation
coefficient (MRD1 ¼
0.91, MRD2 ¼ 0.88, LF
¼ 0.73)

Bilateral orbital photographs taken by
a smartphone (iPhone 11 Pro Max,
with flash and a 1:1 ratio)

CNNs MAIA software (Muen
Biomedical and
Optoelectronic Technologist
Inc; Version1.2.0)

Tabuchi
et al.35

2022 Ptosis detection Sensitivity ¼ 83.0%
Specificity ¼ 82.5%
AUC ¼ 0.900
Accuracy ¼ 82.8%

Facial photographs taken by an iPad
Mini 5

MobileNetV2 /

NA: AI, artificial intelligence; DL, deep learning; DR, diabetic retinopathy; STDR, sight-threatening DR; CNNs, convolutional neural networks; DME, diabetic macular
edema; ROP, retinopathy of prematurity; AMD, age-related macular degeneration; OCT, optical coherence tomography; SBFI, smartphone-based fundus imaging; AUC,
area under the curve; IOP, intraocular pressure; GAT, Goldmann applanation tonometry; SVM, support vector machine; AIS, Apollo Infant Sight; QWK, quadratic
weighted kappa; MRD1, Margin reflex distance 1; MRD2, Margin reflex distance 2; LF, levator muscle function.

Fig. 2. Workflow of the integration of smartphone
technology and AI for advanced ophthalmic care. The
medical history including previous examination re-
ports or ocular images taken by the smartphone-based
camera are input into a smartphone with a special
screening system. Then, the system analyzes these
data with AI algorithms to detect the ocular diseases
and send a report back, which has the potential to
provide patients with real-time remote monitoring,
early disease detection and personalized treatment
plans.
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optical coherence tomography (OCT) images from patients with a diag-
nostic accuracy of 90.02% for DME.15 In another study, Malerbi et al.
adopted an AI algorithm to improve screening in color fundus photo-
graphs obtained with a low-cost smartphone-based handheld retinal
camera.16 Considering its portability and affordability,
smartphone-based handheld fundus camera played a crucial role in
monitoring various diabetic retinal diseases.17 Meanwhile, the integra-
tion with AI has the potential to further improve the low quality of this
handheld fundus camera compared to the traditional tabletop fundus
camera and achieve automatic grade ability with handheld images which
may provide DME patients with a more effective and convenient
screening strategy.

Furthermore, the integration of AI and smartphone technology has
significant impact on other retinal diseases. To better predict the out-
comes of the treatment for AMD early, Qidwai et al. explored a smart AI-
based App based on adaptive neuro-fuzzy inference system to aid the
clinician to visualize the progression of the patient and make better de-
cisions related to the treatment.18 The model had ultimately shown to
have a high accuracy (92%) and works in near-real-time scenarios.
Another study aimed to acquire a cost-effective alternative in the ROP
telemedicine screening program by smartphone-based fundus imaging
(SBFI) systems with AI and finally revealed that the two SBFI systems
used in the ROP screening program were highly sensitive for treatment
requiring-ROP.19
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3.2. Glaucoma

Glaucoma, characterized by progressive, irreversible optic neuropa-
thy and visual-field damage, stands as the primary cause of irreversible
blindness worldwide. Early detection is crucial for treating and slowing
the progression of glaucoma.20 Meanwhile, considering the growing
glaucoma population, the fundus cameras available at medical facilities
are not sufficient to complete early detection of all the patients. There-
fore, Nakahara et al. developed a DL-assisted program for screening
glaucoma and applied it to a smartphone-based fundus camera compared
with a normal fundus camera.21 Although its area under the curve (AUC)
value (0.842) was lower than that with the normal fundus camera
(0.989), the smartphone-based fundus camera showed favourable diag-
nostic ability and reached a higher AUC value (0.900) in eyes with
advanced glaucoma. Besides, apart from fundus photography, measure-
ments of visual field (VF) and intraocular pressure (IOP) can become
strategies to develop the detecting device. Li et al. developed a smart-
phone application-based DL system called iGlaucoma in detecting glau-
comatous VF changes.22 The iGlaucoma performed an accuracy of 99.0%,
AUC of 0.966, the sensitivity of 95.4% and specificity of 87.3% in
recognizing different patterns in pattern deviation probability plots re-
gion. In Wu et al. study, a prototype smartphone tonometer was
compared with other tonometers to measure IOP in clinical practice and
eventually the result was grossly equivalent.23



K. Jin et al. Advances in Ophthalmology Practice and Research 4 (2024) 120–127
3.3. Cataract

Cataract patients usually experience clouding of the lens which can
significantly reduce visual acuity and quality of life. Even though a
relatively simple surgery can restore vision by installing an artificial lens,
effective early detection is critical to ensure that the patient receive the
best treatment before vision is severely impaired. Some researchers have
applied smartphones to capture the ocular images and analyzed them
with AI for early detection andmanagement of cataract. In 2020, Hu et al.
employed an AI algorithm to automatically classify cataract of varying
severity according to the photometric appearance of the nuclear region of
the crystalline lens of the eyes.24 The results came to a high accuracy of
93.5% and speed in evaluating a cataract severity (29 ms) and the entire
classification process (less than 1s). Another research conducted by
Vasan et al. assessed the accuracy of an AI-based smartphone application
(e-Paarvai) when detecting and grading cataracts compared with
slit-lamp based diagnoses based on slit-lamp by ophthalmologists and
found there is still room for improvement with a relatively poor speci-
ficity in detecting cataracts and unsatisfying accuracy in grading several
types of cataracts.25

3.4. Visual impairment in children

Children are vulnerable to various visual disorders including ambly-
opia, strabismus, refractive error, etc., which can impact their learning
abilities and lead to irreversible lifelong visual loss. Early detection of
visual impairment in children is crucial, but parents frequently miss it
due to children's disability to complain of visual difficulties in time and
unwillingness to cooperate with standard vision tests.26,27 This condition
arouses a growing clinical need that could benefit from the rapid
development of AI and smartphone technology in early identifying and
monitoring the progress of visual impairment in children. A
smartphone-based system, the Apollo Infant Sight (AIS), has been pre-
sented by Chen et al. to identify visually impaired children in real-world
settings.28 In AIS, the cartoon-like stimuli were released firstly to main-
tain a steady gaze in children and then the inbuilt front camera of the
smartphone captured their gazing behaviors and facial features in
3.5-min videos which were used to detecting visual impairment by DL
models. Through the validation, this system achieved an AUC of 0.940
and 0.843 in the internal and external testing dataset respectively and
performed well in a further test for at-home implementation by untrained
users with an AUC of 0.859, proved to be a promising tool that can be
applied in real-world settings. Besides, Ma et al. evaluated a new photo
screening solution with a smartphone-based automated Hirschberg test
and photorefraction powered by DL and image-processing algorithms
and it showed that the sensitivity and specificity were both high in
strabismus, myopia and anisometropia detection.29 Combining principles
of mobile screening and DL, Murali et al. built a simple
photography-based system (Kanna) to help detect amblyopia based on
the amblyogenic risk factors (ARF).30 Five ARF (Anisometropia, Iso-
ametropia, Strabismus, Ptosis, Media Opacities) were included in the risk
prediction system and their prescribed thresholds were built according to
the 2003 the American Association for Pediatric Ophthalmology and
Strabismus referral criteria. To predict the presence of ARF, photographs
acquired from a smartphone were analyzed with DL models which
reached an F-score of 0.732 with an accuracy of 79.5%, a sensitivity of
88.2% and a specificity of 75.6%.

3.5. Ocular surface diseases

The integration of AI and smartphone technology in ophthalmology
initially focus on diagnosing and managing fundus diseases. In most
cases, the specialized portable retinal camera connected to the mobile
device is used to take fundus images of patients which are uploaded to AI
platforms for automatic diagnosis of diseases. However, recent research
shows that this screening system has the potential for automatically
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detecting lesions of ocular surface and other areas such as the eyelid. Liu
et al. compared their fusion training model (trained by smartphone and
slit-lamp images) in smartphone-based images(F1-score of 0.9313,
sensitivity of 93.60%, specificity of 96.13%, AUC of 0.9426 and accuracy
of 92.38%) for pterygium screening with the model (trained by slit-lamp
images) in slit-lamp images (F1-score of 0.9448, sensitivity of 91.65%,
specificity of 96.89%, AUC of 0.9569 and accuracy of 94.29%), showing
comparable performance.31 Similarly, Wang et al. utilized a DL network
trained by slit-lamp and smartphone photographs and investigated the
potential in classifying infectious keratitis based on smartphone im-
ages.32 Another study conducted by Zhang et al. to validate a corneal
epithelium (CE) evaluation pipeline using a custom smartphone attach-
ment and CNNs.33 The results showed that the smartphone-based CE
evaluation tool in calculating areas of CE disruption had qualitative
concordance with those revealed by fluorescein staining slit-lamp photos
graded by two clinicians. Apart from AI models, it should be noted that
specialized equipment like slit-lamp is still necessary for
smartphone-based anterior segment imaging and the smartphone camera
is in need of a short focus distance to scan the ocular surface and high
resolutions to capture the images.

Using mobile system with AI algorithms to evaluate ptosis has been
proven feasible recently. Chen et al. were the first to propose a
smartphone-based AI-assisted image processing algorithm for ptosis
evaluation and management.34 This algorithm was based on the relevant
eyelid measurements including margin reflex distance 1, margin reflex
distance 2 and levator muscle function which is defined as the distance
between the upper eyelid margin and the center of the pupillary light
reflex, the lower eyelid margin and the center of the pupillary light reflex
and the upper eyelid margin moving from down-gaze to up-gaze without
any eyebrow movement, respectively. Moreover, Tabuchi et al. devel-
oped an iOS application using machine learning for the automated
diagnosis of blepharoptosis, which had a sensitivity of 83.0%, specificity
of 82.5%, accuracy of 82.8% and AUC of 0.900 for classifying blephar-
optosis and normal eyelids images taken by an iPad.35

4. Discussion

The integration of smartphone technology and AI in ophthalmic care
presents a transformative path for the future, along with some challenges
still need to be concerned (Fig. 3).

Progress in AI algorithms shows potential for more refined, accurate
and automatic diagnosis in ocular diseases.36 Meanwhile, the ongoing
evolution of smartphone capabilities, including improved imaging mo-
dalities and connectivity, is positioned to facilitate remote patient
monitoring and enhance accessibility to eye care services, particularly in
resource-limited regions and underserved communities.37 Looking for-
ward, the integration of AI with smartphone-based diagnostics is antic-
ipated to streamline disease detection with timely, efficient and
cost-effective screening for ocular pathologies.38 It also demonstrates
the potential to promote self-monitoring, thus enabling better triaging to
tertiary eye institutes and alleviating the burden on the health care sys-
tem.39 Moreover, tailored interventions based on individual patient data,
gleaned from smartphone-enabled assessments and AI-driven analytics,
could provide personalized treatment plans, optimizing outcomes and
mitigating vision loss.

However, significant data gaps persist in critical areas within these
advancements. The absence of comprehensive cost-effectiveness studies
hampers understanding. Equally, the medicolegal implications arising
from potential missed pathologies pose unresolved concerns, demanding
robust ethical and legal frameworks. Furthermore, while current tech-
nologies primarily focus on singular diseases like DR, the absence of
methodologies capable of simultaneously screening multiple ocular pa-
thologies raises concern, particularly considering the likelihood of age-
related multiple pathology coexistence within the same eye.40

Additionally, the collaborative efforts of clinicians, technologists, and
regulatory bodies are pivotal in establishing robust frameworks for the



Fig. 3. Future significance and challenges of the integration of AI and smartphone technology.
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ethical implementation and validation of AI algorithms within smart-
phone applications, while attention should be paid on the actual
deployment and interdisciplinary cooperation to tackle ethical con-
cerns.41 Striking a balance between innovation and ethical consider-
ations is imperative to ensure patient privacy, data security, and
algorithmic reliability.42 Besides, issues of trust between patients and this
technology are need to be addressed, which requires a better accuracy,
interpretability and privacy.43 In order to make this technology
employed in real ophthalmic care, more specific and systematic evalua-
tion on real-world implementation is imperative as well, which is still
lacked in the present study.

5. Conclusions

This review provides an overview of the integration between smart-
phone technology and AI on a few ocular diseases, highlighting the
transformative possibilities in diagnosis, treatment, accessibility, and
personalized care. While challenges such as ethical considerations, data
security and issues of trust are still need to be addressed. The future
landscape of ophthalmic care envisions seamless integration among
smartphones, AI, and telemedicine, fostering a global network of inter-
connected platforms that enables real-time consultations and remote
monitoring, ushering in an era of personalized, data-driven interventions
tailored to individual patient needs.
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WHO World Health Organization
DR diabetic retinopathy
AMD age-related macular degeneration
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