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ABSTRACT Understanding how microbiomes affect host resistance, parasite viru-
lence, and parasite-associated diseases requires a collaborative effort between para-
sitologists, microbial ecologists, virologists, and immunologists. We hereby propose
the Parasite Microbiome Project to bring together researchers with complementary
expertise and to study the role of microbes in host-parasite interactions. Data from
the Parasite Microbiome Project will help identify the mechanisms driving micro-
biome variation in parasites and infected hosts and how that variation is associated
with the ecology and evolution of parasites and their disease outcomes. This is a call
to arms to prevent fragmented research endeavors, encourage best practices in ex-
perimental approaches, and allow reliable comparative analyses across model sys-
tems. It is also an invitation to foundations and national funding agencies to propel
the field of parasitology into the microbiome/metagenomic era.
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Characterizations of parasite diversity and interactions with hosts as well as the
development of effective control methods are among the chief goals of parasitol-

ogy. In an era in which microbes (archaea, bacteria, fungi, protozoans, and viruses) are
known to play varied roles in host health, Koch’s postulates are notably under recon-
sideration in light of the effects of the microbiome and polymicrobial infections on
disease (1, 2). Although researchers have historically focused on pathogenic aspects of
microbes, it is now recognized that microbial communities within an organism can be
beneficial and essential to an individual’s health and may even determine susceptibility
or resistance to an infectious agent (3, 4). Therefore, new challenges face parasitology
that can be addressed through microbial ecology approaches. This realization has
propelled numerous large-scale microbiome projects, including the Human Micro-
biome Project and the Earth Microbiome Project, to better understand the microbiome
in both healthy and disease states (NIH Human Microbiome Project Roadmap Project
[http://www.ncbi.nlm.nih.gov/bioproject/43021] and The Earth Microbiome Project data
site [http://www.earthmicrobiome.org/protocols-and-standards/]). These studies have
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led to important advances in many other disciplines, including medical and environ-
mental science, technology, philosophy, education, and engineering.

More poorly understood, however, is the diversity, composition, and role of micro-
biomes within or on parasites (with the latter defined as an organism that lives, or
replicates, in or on a host organism at the host’s expense). The interactions between
parasites and their microbial associates may themselves impact disease outcomes and
are also not well resolved. Parasitic microbes that are integrated members of the
host-associated microbiome can either harbor their own associated microbiome or
cause changes in the resident host-associated microbiome in a complex set of poten-
tially nested interactions. Given the importance of understanding parasite biology and
host-associated microbiomes for human health, agriculture, aquaculture, and environ-
mental management, we propose the Parasite Microbiome Project (PMP). With an initial
focus on eukaryotic parasites, the PMP aims to fill important gaps in our understanding
of parasite-microbe associations and the outcomes of parasitic infection by character-
izing, across space and time, (i) the microbiome (including virome) composition of
parasites, and (ii) the microbiome of parasite-infected host tissues. Comparative data
analyses will include the following: microbiomes within and among parasite species,
the effects of different parasites on their hosts, host- and parasite-associated micro-
biomes, microbiomes of parasites coinfecting the same host, and intermediate host-
and definitive host-associated microbiomes for parasites with complex life cycles.

Along with others, we have begun to investigate host-parasite-microbe interactions
and independently confirm that parasite-microbe interactions participate in parasite
ecology and disease manifestations. Parasites spanning all major groups, including
bacteria, fungi, viruses, arthropods, and worms, have been documented to disrupt their
host microbiome (5). However, it often remains unknown whether the disruption of the
host microbiome is beneficial for the parasite, participates in the host defense mech-
anism against the parasite, or is merely a by-product of infection. Parasite-microbe
interactions may not always be adaptive for the parasite but could nevertheless be
relevant for the disease that they cause. Moreover, some parasites carry their own
microbes, a parasite-associated microbiome, that in turn may influence a given infec-
tion or parasite-host interaction. Thus far, the known roles of parasite-associated
microbes in host disease are diverse, ranging from enhanced nutritional environment
(6), behavioral manipulation (7–9), increased inflammatory responses (10, 11), reduced
host defenses (12), and carcinogenesis (13–15). Parasites can also be vectors of other
pathogenic agents (16), and symbionts of parasites can interfere with the transmission
of pathogens (17). Yet, parasite microbiomes remain mostly uncharacterized. As a
result, the potential effects of parasites on pathogenesis and disease due to disturbance
of the host’s microbiome have yet to be fully explored, and the role of parasite-
associated microbes in disease development and parasite evolution has arguably been
underestimated.

Therefore, the central goal of the PMP is to further propel parasitology forward by
characterizing the microbiomes of parasites from undersampled representative phyla
across the tree of life and elucidating their interactions with host-associated microbes
and functions throughout the parasite life cycle. Through the PMP collaborative effort,
researchers will identify which parasite-associated microbes have a direct or indirect
role in causing disease and whether there has been a parallel change in parasite-
associated microbes or microbiomes with the evolution of parasites and hosts. The
project will also shed light on the role of parasites as vectors of microbes among
intermediate and definitive hosts, on the dynamics of horizontal transmission of
microbes between hosts and parasites, and on the corresponding impacts on parasite
transmission and disease.

As an initial approach, we will launch a large-scale sequencing campaign (including
targeted surveys and metagenomes) that will use standardized methodologies (e.g.,
sample handling and metadata collection, DNA and RNA extraction, and sequencing
approaches) in line with the Unified Microbiome Initiative (18), solicit donations of
samples from researchers around the world, and collaborate with existing open-source
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analytical platforms with cost-free open and unrestricted access to ensure that the data
are available immediately upon completion of the analysis. We will also solicit collab-
oration with the Genomic Standard Consortium (19) and other initiatives to conduct
large-scale comparative genomic studies. In addition, we will develop a partnership
with natural history collections and live culture collections. For instance, nucleic acid
samples and corresponding molecular voucher specimens will be preserved and cu-
rated in a permanent, scientific collection, ensuring the availability of the samples to
the scientific community for reanalysis in the future. When feasible, culture isolates of
parasites and their microbes, together and independently, will be maintained to allow
complementary functional investigation of the mechanisms and consequences of the
association on diseases or the host. Finally, we will take advantage of the growing
number of available parasite genomes and transcriptomes to computationally extract
information on the presence of viruses associated with parasitic eukaryotes, viruses that
may be substantial, diverse, and with a long evolutionary history (20). As of today, more
than 200 genomes and 150 transcriptomes of at least 200 eukaryotic parasites have
been sequenced and stored in data repositories like the Sequence Read Archive (SRA)
(https://www.ncbi.nlm.nih.gov/sra/).

This large-scale collaborative project will enable translation of this new para-
digm to the fields of parasitology, immunology, epidemiology, resource manage-
ment, and applied medicine. This effort will be achieved through the coordinated
collaboration of parasitologists, microbial ecologists, virologists, immunologists,
and computational biologists. The PMP will trigger and support functional ap-
proaches in parasite systems of interest, thereby leading to opportunities for using
parasite-associated microbes as an indicator of system health and novel therapeu-
tics. At a time when we are increasingly exploring the potential of probiotic
supplementation, the PMP will provide a baseline for host and parasite micro-
biomes that will allow us to explore the beneficial and detrimental effects of these
probiotic microbes on parasites and hosts. Given that there are more parasitic
species on Earth than free-living organisms (21), the PMP will contribute significant
data toward characterizing the biodiversity of our planet.
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