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Chronic myeloid leukemia (CML) arises 
from a translocation event within a  
normal hematopoietic stem cell (HSC)  
that results in a protein fusion between  
the tyrosine kinase (TK) ABL and the 
breakpoint cluster region (BCR) en-
coded on chromosome 22. The result-
ing fusion gene encodes for BCR-ABL, 
a constitutively active kinase that drives 
disease pathogenesis by increasing the 
production of mature and immature 
myeloid cells (Rowley, 1973). Over  
the last 10 yr, highly effective ABL TKIs 
have been developed (Druker et al., 
1996). However, CML stem cells are  
inherently insensitive to these inhibitors, 
suggesting that CML is unlikely to be 
cured using TKIs alone and that com-
bination therapy with agents able to in-
duce apoptosis in CML stem cells in a 
selective manner will be required for 
disease eradication (Graham et al., 2002; 
Bhatia et al., 2003; Mahon et al., 2010). 
With growing evidence that BCR-
ABL+ CML stem cells are dependent 
on several key survival pathways, this 
scenario may now be achievable, thus 
offering the possibility of developing 
novel therapeutic approaches.

BCL6: A key player in CML stem  
cell survival
Recent studies have added BCL6, a re-
pressive zinc finger TF, to a small team 
of players in the resistance of BCR-
ABL+ stem cells to TKI treatment. 
Duy et al. (2011) generated a model 
for Philadelphia+ (Ph+) pre–B cell 
acute lymphoblastic leukemia (ALL) and 
found that BCL6 is critical for the sur-
vival of stem cells. In Ph+ ALL cells, 
BCL6 was up-regulated in response  
to TKI, allowing the cells to survive 
treatment. Furthermore, BCR-ABL–
transformed B lymphoblasts lacking 
BCL6 were not able to induce leuke-
mia in immunodeficient mice. Treat-
ment with the TKI imatinib was more 
effective in BCL6/ BCR-ABL+ ALL 
than in their BCL6+/+ counterparts, 
suggesting a protective role for BCL6 
in ALL stem cells treated with TKIs 
(Duy et al., 2011).

In this issue, Hurtz et al. demon-
strate that BCL6 up-regulation by TKI 
maintains the self-renewal capacity of  
CML-initiating cells by inducing Fork-
head box 3a (FOXO3a) signaling and by 
repressing Arf and p53. In CML, BCL6 
expression was repressed at the mRNA 
and protein level in a BCR-ABL– 
dependent manner and was reactivated 
upon treatment with TKI, particu-
larly in primary CD34+ and primitive 
CD34+38 cell subpopulations. Sensi-
tivity to imatinib was greatly increased 

in primitive mouse hematopoietic cells 
(LinSca1+c-Kit+; LSK) that were  
retrovirally transduced with BCR-ABL 
but lacked BCL6, suggesting that BCL6 
was required for drug resistance in these 
cells. BCL6 was also required for main-
tenance of these cells, as BCL6/ CML 
cells rapidly underwent apoptosis. Fur-
thermore, a dominant-negative form 
of BCL6 suppressed leukemogenesis 
in vivo, and p53 was identified as a key 
transcriptional target of BCL6. In fact, 
p53 was required for the dominant- 
negative form of BCL6 to suppress col-
ony formation in vitro. Together, these 
data provide evidence that BCL6 func-
tions to protect CML stem cells from 
TKI treatment, at least in part, by sup-
pressing the Arf–p53 pathway.

First-string players in leukemic stem 
cell (LSC) survival
Several important factors have recently 
been investigated as potential key play-
ers in LSC survival. Some of these  
belong to the same signaling pathway 
as BCL6, whereas others are less di-
rectly involved; among the former are 
FOXO3a and phosphatase and tensin 
homologue (PTEN).

FOXO3a is a member of the FOXO  
TF family, which induces BCL6 ex-
pression in the BCR-ABL+ cell line 
BV173 (Fernández de Mattos et al., 
2004). The studies by Duy et al. (2011) 
and Hurtz et al. (2011) both suggest 
that FOXO TFs are upstream inducers 
of BCL6, specifically FOXO4 in Ph+ 
ALL and FOXO3a in CML. The 
FOXO TFs, among other activators of 
BCL6, are negatively regulated by 
BCR-ABL through the PI3K–AKT 
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(2011) studies, conditional deletion of 
PTEN abrogated the ability of Ph+ 
ALL and CML cells to up-regulate 
BCL6 in response to TKI treatment. 
Another group also showed a critical 
role for PTEN in both CML and Ph+ 
ALL (Peng et al., 2010), as PTEN was 
down-regulated by BCR-ABL in LSCs, 
and its deletion led to accelerated leu-
kemia development. However, PTEN 
overexpression delayed the develop-
ment of CML and Ph+ ALL and pro-
longed survival of leukemic mice. It is 
likely that PTEN drives this survival 
effect by regulating its downstream 
protein AKT (Fig. 1).

Collectively, these studies reveal 
several potentially targetable proteins  
in a single signaling pathway, including 
TGF-, AKT, and BCL6 (Fig. 1). Naka 
et al. (2010) used a combination of 
TGF- inhibition by Ly364947 and 
TKI treatment and found that CML 
was completely eradicated in the trans-
duction/transplantation mouse model. 
Duy et al. (2011) inactivated BCL6 
with the retro-inverso BCL6 peptide 
inhibitor RI-BPI, resulting in delayed 
progression of Ph+ ALL. In addition, 
treatment with a combination of ima-
tinib and RI-BPI prevented acquisi-
tion of TKI resistance in the long term 
and potentiated the effect of TKI on 
refractory ALL cells. In the CML model, 
RI-BPI targeted primary leukemic 
CD34+ cells, including the more primi-
tive CD34+38 population, and inter-
fered with initiation of CML. Whereas 
RI-BPI alone did not significantly affect 
CML cell viability in vitro, it strongly 
enhanced the effect of imatinib. Sur-
vival of the K562 CML cell line was 
significantly inhibited and apoptosis was 
effectively induced when mTOR, a 
downstream target of AKT, was inhib-
ited by rapamycin (Peng et al., 2010). 
Rapamycin also blocked ALL leuke-
mogenesis induced by PTEN deletion 
in HSCs, suggesting that mTOR, like 
BCL6, is an important player in LSC 
survival (Lee et al., 2010). In keeping 
with a role for mTOR in LSC survival, 
the dual mTORC2/mTORC1 inhibitor 
OSI-027 has been shown to target pro-
genitors from CML patients (Carayol  
et al., 2010). Interestingly, the tumor 

The authors also suggested that TGF-, 
through inhibition of AKT activity, 
was responsible for FOXO3a activa-
tion. Nevertheless, no downstream ef-
fectors of FOXO3a were suggested to 
explain the FOXO3a-mediated main-
tenance of CML stem cells. Hurtz et al. 
(2011) provide a missing piece of this 
puzzle, and it is now possible to hypoth
esize a more complete signaling cascade 
leading from TGF- through AKT to 
BCL6/p53 that maintains the survival 
of LSCs (Fig. 1).

Another player in the BCL6 signal-
ing pathway is the tumor suppressor 
gene PTEN (Stambolic et al., 1998). 
PTEN is critical in adult hemato
poietic cells, and its deletion leads to 
transplantable ALL in association with 
induction of p16Ink4a and p53 (Yilmaz 
et al., 2006; Lee et al., 2010). The 
PI3K–AKT–FOXO pathway is nega-
tively regulated by PTEN, and in the 
Duy et al. (2011) and Hurtz et al. 

pathway (Brunet et al., 1999). In Ph+ 
cells, these TFs are normally inactive 
and localized to the cytoplasm; how-
ever, TKI-mediated inhibition of BCR-
ABL leads to their activation and cell 
cycle arrest (Komatsu et al., 2003). 
BCL6 up-regulation after TKI treat-
ment, as demonstrated in the recent 
studies, provides one possible explana-
tion for why and how CML-initiating 
cells persist in patients despite long-term 
TKI treatment. It has been shown  
that FOXO TFs are important for the 
maintenance of both normal and 
CML stem cells (Tothova et al., 2007; 
Naka et al., 2010). In the specific case 
of FOXO3a, a syngeneic murine trans-
duction/transplantation system that re
produces CML-like disease was used to 
show that FOXO3a is essential for the 
maintenance of CML stem cells (Naka 
et al., 2010). In that study, deletion  
of FOXO3a abrogated the ability of 
CML stem cells to generate disease. 

Figure 1.  PI3K, AKT, FOXO, and BCL6 are key players in Ph+ stem cell survival. Ph+ ALL and 
CML are dependent on signals emanating from BCR-ABL through the PI3K–AKT pathway that may be 
driven by TGF- via inhibition of AKT. BCL6 acts downstream of FOXO TFs and appears to represent a 
critical missing piece of the signaling pathway that leads to cancer stem cell survival. This signaling 
cascade offers potential for therapeutic modulation at various levels, including BCR-ABL inhibition 
by kinase inhibitors, TGF inhibition by Ly364947, and Bcl6 inhibition by RI-BPI.
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Conclusions
Overall, the data strongly suggest that 
LSCs in both Ph+ ALL and CML are 
dependent on signals emanating from 
the PI3K–AKT pathway that are at least 
partially mediated by TGF-. Several 
points in this signaling cascade offer  
the potential for therapeutic modulation, 
including TGF- itself. Because PTEN, 
FOXO3a, and BCL6 all belong to the 
same pathway, it is tempting to specu-
late that an effective TGF- inhibitor 
may be sufficient as a single agent; how-
ever, this might be associated with un-
acceptable toxicity to normal tissues 
that depend on TGF- for survival. 
Therefore, the potential to inhibit the 
pathway at different points is extremely 
exciting. For these reasons, it is also 
wise to continue to investigate other 
factors that have shown potential clini-
cal relevance in CML, such as Alox5, 
PP2A, and JAK2.
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