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Abstract: Several studies have shown that type IV fibrocytes, located in the spiral ligament, degener-
ate first after noise exposure. Interestingly, this is the region where Coch expression is most abundant.
As it is suggested that cochlin plays a role in our innate immune system, our goal is to investigate
hearing thresholds and inner ear inflammation after noise exposure in Coch knockout (Coch−/−) mice
compared to Coch wildtype (Coch+/+) mice. Animals were randomly allocated to a noise exposure
group and a control group. Vestibular and auditory testing was performed at 48 h and one week after
noise exposure. Whole mount staining and cryosectioning of the cochlea was performed in order to
investigate hair cells, spiral ganglion neurons, inner ear inflammation, Coch expression and fibrocyte
degeneration. Hearing assessment revealed that Coch+/+ mice had significantly larger threshold shifts
than Coch−/− mice after noise exposure. We were unable to identify any differences in hair cells,
neurons, fibrocytes and influx of macrophages in the inner ear between both groups. Interestingly,
Coch expression was significantly lower in the group exposed to noise. Our results indicate that the
absence of Coch has a protective influence on hearing thresholds after noise exposure, but this is not
related to reduced inner ear inflammation in the knockout.

Keywords: noise exposure; inner ear inflammation; Coch knockout; spiral ligament

1. Introduction

Exposure to loud noise can lead to a decreased hearing function and tinnitus due to
damage to both sensory and non-sensory cells in the inner ear [1]. Interestingly, the region
that is most sensitive to noise exposure is the inferior region of the spiral ligament where
the type IV fibrocytes are located, and COCH expression is most abundant [2,3]. The COCH
gene is located on the long arm of chromosome 14 and encodes for the COCH protein,
cochlin. This protein contains different domains: an N-terminal signal peptide (SP), an
LCCL (Limulus factor C, cochlin, lung gestational protein) domain, two vWFA domains
(von Willebrand factor A-like) and two short intervening domains (ivd) [4,5]. The exact
function of cochlin is not fully understood but previous studies indicated that cochlin is
involved in the clearance of bacterial infections in the inner ear where the LCCL domain is
cleaved by aggrecanase-1 and secreted into the scala tympani [6]. The vWFA domains are
believed to be involved in maintaining the structure of the extracellular matrix (ECM) due to
their affinity for type I, type II and type IV collagens [5]. Cochlin is expressed in low levels
in the vestibular labyrinth, spleen, lymph nodes, cerebellum and eye but it is abundantly
expressed in the spiral ligament, spiral osseous, and spiral limbus of the inner ear [7].
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Noise exposure can induce temporary (TTS) and permanent (PTS) threshold shifts
resulting in noise-induced hearing loss (NIHL). NIHL recovers in 2–3 weeks, depending
on initial severity, TTS will fully recover while PTS will stabilize at an elevated value [8].
Damage to sensory cells is irreversible because these cells are incapable of regeneration
leading to cochlear dysfunction and permanent hearing loss [3]. The key mechanism
in NIHL is the presence of oxidative stress in the cochlea involving the production of
reactive oxygen species (ROS) and free radicals in cochlear tissues. In addition, cochlear
inflammation is also a major contributor to noise-induced cochlear injury [9]. This inflam-
matory response involves a rapid recruitment and infiltration of inflammatory cells from
the systemic circulation. There are various inflammation-related genes implicated in the
cochlear inflammatory response, but the precise molecular pathways and mechanisms
remain unknown [10]. Different mutations in the COCH gene can cause DFNA9. This is an
autosomal dominant disorder characterized by progressive sensorineural hearing—and
vestibular loss [2,4]. In contrast, DNFB110 is the autosomal recessive variant caused by
inactivating variants that leads to congenital hearing loss that is not associated with vestibu-
lar dysfunction [11–14]. In order to gain a better understanding of the exact function of the
COCH protein and get more insight in the pathology of these disorders, different mouse
models were created: a mouse model that carries the G88E mutation in one and both alleles
of the Coch gene (CochG88E/G88E mice, CochG88E/+ mice) to study the pathology of DFNA9
and a mouse model that is knockout for the Coch gene (Coch−/− mice) to study the function
of the COCH protein, representing recessive COCH (DFNB110) patients [15,16].

The objective of this study is to assess the long-term hearing and vestibular function
of Coch−/− mice and to investigate the role of the COCH protein in inner ear inflammation
after noise exposure. Hypothetically, as COCH maintains the ECM of the inner ear due to
its affinity for other ECM proteins, we assumed that Coch−/− mice may suffer more from
the NIHL due to alternations in their ECM. However, we brought forward an alternative
hypothesis related to the role of COCH plays in the innate immune system: a decreased
inflammatory response to noise exposure may potentially result in less hearing loss in
the Coch−/− mice. The dual role of the COCH protein in ECM functioning and inner ear
inflammation underscores the importance of this study, as well as the unpredictability of
the outcome.

2. Results
2.1. Cochlin Deficiency Causes Hearing Impairment at the Highest Frequencies in Aged Mice

The COCH protein is abundantly expressed in the inner ear and plays a role in
otovestibular functioning. Therefore, long-term follow up of hearing and vestibular func-
tion in Coch+/+ and Coch−/− mice was assessed by Vestibular Dysfunction Rating (VDI),
Forced Swimming Test (FST), Distortion Product Otoacoustic emissions (DPOAE) and
Auditory Brainstem Response (ABR) measurements at 6 months, 12 months, 15 months
and 24 months of age.

• Vestibular evaluation. Similar to recessive COCH patients, normal vestibular function
was observed in Coch−/− mice, even up to 24 months. Behavioral scorings of all mice
in both groups remained within the normal control range (0 to 4) at all time points
tested. No abnormal behavior was observed during the forced swimming test at the
different time points in both groups.

• DPOAE. At 6 months of age, no differences were observed in DPOAE thresholds
between Coch−/− (n = 8) and Coch+/+ mice (n = 12) (Supplementary Table S1A)
(Figure 1A). DPOAE measurements at 12 months of age demonstrate that thresh-
olds of Coch−/− mice (n = 30) are significantly elevated compared to thresholds of
Coch+/+ mice (n = 22) at all frequencies except for 12 kHz (Supplementary Table S1A)
(Figure 1B). However, at 15 months of age, DPOAE thresholds in Coch−/− mice (n = 23)
are only significantly elevated at a few frequencies (5 kHz, 6 kHz, 7 kHz, 24 kHz and
28 kHz) compared to Coch+/+ mice (n = 10) (Supplementary Table S1A) (Figure 1C).
When mice reached the age of 2 years DPOAE measurements demonstrated no dif-
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ferences in thresholds between both groups (n = 5) except at 18 kHz (p = 0.017)
(Supplementary Table S1A) (Figure 1D). These results indicate that Coch−/− mice de-
velop temporary elevated DPOAE thresholds as they age but after two years, wildtype
littermates had also elevated thresholds similar to Coch−/− mice.

• ABR. Long-term follow up of Coch−/− and Coch+/+ mice to evaluate hearing function
showed that Coch−/− mice had significant higher thresholds at 2 kHz and 16 kHz
compared to Coch+/+ mice as assessed by ABR recordings at the age of 6 months
(Supplementary Table S1B) (Figure 2A). ABR measurements performed at the age of
12 months demonstrated that hearing thresholds in Coch−/− mice were significantly
elevated compared to thresholds recorded in Coch+/+ mice at all frequencies tested
(Supplementary Table S1B) (Figure 2B). At the age of 15 months, ABR thresholds of
Coch−/− mice were only significantly elevated at 32 kHz (Supplementary Table S1B)
(Figure 2C) Hearing assessment at 24 months of age revealed that thresholds were
significantly elevated at 16 and 32 kHz when compared to their wildtype littermates
(Supplementary Table S1B) (Figure 2D). While recessive COCH patients suffer from
congenital hearing loss, Coch−/− mice preserved their hearing function until the age
of 2 years except for the high frequencies. The results of the ABR-measurements show
increased thresholds in Coch−/− mice compared to wildtype, at some frequencies,
depending on age. The difference seems most widespread at 12 months (all frequencies
affected), while at 24 months only the high frequencies are affected.
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Figure 1. Distortion Product Otoacoustic Emissions (DPOAE) thresholds of Coch+/+ (n = 12) and Coch−/− mice (n = 8) at
6 months (A), DPOAE thresholds of Coch+/+ (n = 22) and Coch−/− mice (n = 30) at 12 months (B), DPOAE thresholds of
Coch+/+ (n = 10) and Coch−/− mice (n = 23) at 15 months (C) and DPOAE thresholds of Coch+/+ (n = 5) and Coch−/− mice
(n = 5) at 24 months (D). Data is represented as median with interquartile range. * indicates p < 0.05, ** indicates p < 0.01,
*** indicates p < 0.001.
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Figure 2. Auditory Brainstem Responses (ABR) thresholds between Coch+/+ (n = 12) and Coch−/− mice (n = 8) at 6 months
(A), ABR thresholds between Coch+/+ (n = 22) and Coch−/− mice (n = 30) at 12 months (B), ABR thresholds between Coch+/+

(n = 10) and Coch−/− mice (n = 23) at 15 months (C) and ABR thresholds between Coch+/+ (n = 5) and Coch−/− mice (n = 5) at
24 months (D). Data is represented as median with interquartile range. * indicates p < 0.05, ** indicates p < 0.01, *** indicates
p < 0.001.

2.2. Improved Hearing Recovery after Acoustic Overexposure with Cochlin Deficiency

Noise exposure can cause elevated hearing thresholds in mice. In order to investi-
gate the effect of noise-exposure on hearing thresholds and vestibular function in Coch+/+

mice (n = 13) and Coch−/− mice (n = 13), otovestibular functioning was assessed by per-
forming VDR, FTS, DPOAE and ABR measurements before and after exposure to 120 dB
broadband noise.

• Vestibular evaluation. Vestibular rating scores remained within the normal control
range (0 to 4) across all groups at all time point tested. Also, FST revealed no abnormal
behavior in both Coch+/+ and Coch−/− mice.

• DPOAE. Significant interactions between genotype and time were found in the noise
exposure group at high frequencies (21–32 kHz) (Supplementary Table S2A). Post-hoc
tests revealed that DPOAE thresholds were significantly elevated at 48 h post noise
across all frequencies except from 6 kHz and 12k kHz in the Coch+/+ mice. One week
after noise trauma thresholds remained significantly elevated at all these frequencies
except at 10.5 kHz and 14 kHz (Supplementary Table S2B). In the Coch−/− group,
hearing thresholds were significantly elevated at all frequencies after 48 h except at 6
and 7 kHz but one week after noise trauma thresholds recovered to normal values
in the mid-frequency region (10–21 kHz) (Supplementary Table S2B). These results
demonstrate that hearing thresholds of Coch+/+ did not recover following noise trauma
while thresholds of Coch−/− mice recovered at all frequencies except for the low
frequencies (5 kHz–9 kHz) and the high frequencies (24–32 kHz). Because of the early
ARHL observed in Coch−/− mice, this group had significant higher thresholds than
Coch+/+ mice at baseline measurements at the high frequencies (21 kHz–28 kHz). Forty-
eight hours and one week after noise exposure, there were no significant differences
between both groups (Figure 3).
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Figure 3. DPOAE thresholds at different time point (T0 = baseline, T1 = 48 h post-noise and
T2 = one-week post-noise) between Coch+/+ (n = 13) and Coch−/− mice (n = 13) that were exposed to
noise at frequencies with a significant interaction between genotype and time. Data are represented
as median with interquartile range. * indicates p < 0.05; ** indicates p < 0.01.

• ABR. A significant interaction between genotype and time was found in the noise
exposure group revealing a different reaction between Coch−/− and Coch+/+ mice
following noise exposure at all frequencies (supplementary data, Table S3A). Post-hoc
tests were performed to compare hearing thresholds at the different timepoints in
both groups. Hearing thresholds of Coch+/+ mice were significantly elevated at 48 h
and one-week post-noise at all frequencies while hearing thresholds of Coch−/− mice
were significantly elevated 48 h post noise at 2, 8, 16 and 32 kHz. In contrast to the
Coch+/+ mice, hearing thresholds of Coch−/− mice recovered to normal values after
one week except at 16 kHz (supplementary data, Table S3B). A statistically significant
difference was observed at 2 kHz at baseline where Coch−/− mice had higher ABR
thresholds than Coch+/+ mice (p = 0.018). In contrast, 48 h after noise exposure Coch−/−

mice had significantly lower thresholds that Coch+/+ mice (p = 0.04). One week after
noise exposure there was no significant difference between both groups (Figure 4A).
No difference in thresholds was observed at baseline at 4 kHz, whereas 48 h and
one week after noise trauma significantly higher ABR thresholds were observed in
the Coch+/+ group compared to the Coch−/− group (p = 0.002 at 48 h and p = 0.006
at one week) (Figure 4B). At 8 kHz, baseline measurements revealed no difference
in hearing thresholds between both group but Coch+/+ mice had significant higher
thresholds after noise exposure at 48 h (p = 0.004) and one-week post-noise (p = 0.0001)
(Figure 4C). Baseline measurements at 16 kHz demonstrate that Coch−/− mice had
significant higher thresholds than Coch+/+ mice (p = 0.015) while after noise exposure
Coch+/+ mice had significant higher thresholds that Coch−/− mice (p = 0.01 at 48 h and
p = 0.03 at one week) (Figure 4D). Results at 32 kHz showed a significant difference
in thresholds at baseline where Coch−/− mice had significant higher thresholds than
Coch+/+ mice (p = 0.0047), after noise exposure, no differences in hearing thresholds
were observed between both groups (Figure 4E). Hearing assessment indicate that
Coch+/+ mice are more affected by noise exposure than Coch−/− mice as their hearing
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thresholds did not recover one week after noise exposure in contrast to the hearing
thresholds of their Coch knockout littermates.
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Linear mixed models followed by post hoc tests revealed a significant decrease in
wave I amplitudes 48 h after noise exposure in both groups at 8 kHz and 16 kHz when
compared to baseline measurements. Wave I amplitudes remained significantly decreased
after one week of noise exposure in both Coch+/+ and Coch −/− mice (Supplementary Data
Table S4A,B) (Figure 5). Direct comparison by Mann–Whitney U tests of wave I amplitude
between Coch+/+ and Coch −/− mice revealed no statistical differences between both groups
at 8000 Hz (p = 0.54 at baseline, p = 0.73 48 h post noise and p = 0.98 one week post noise).
Also, at 16 kHz, no statistical differences were found in wave I amplitudes between both
groups at baseline (p = 0.99), 48 h after noise (p = 0.61) and one week after noise exposure
(p = 0.28).
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2.3. Immunohistochemistry

One week after noise exposure, mice belonging to the noise-exposure groups and
control groups were euthanized. One cochlea was used to perform whole mount dissection
of the organ of Corti followed by staining with an anti-myosin VIIa antibody and an
anti-synaptophysin antibody to visualize hair cells and neurons, respectively. The other
cochlea was used to make cryosections of the spiral ligament in order to assess fibrocyte
integrity, inner ear inflammation and Cochlin expression.

2.4. Hair Cells and Neurons Remained Intact after Noise Trauma

Whole mount dissection and staining of the organ of Corti revealed that hair cells
and neurons remained intact after noise exposure. Hair cell counts using ImageJ revealed
that no statistical difference was observed in IHC and OHC across all groups (p = 0.16 and
p = 0.69, respectively). (Figure 6).
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Figure 6. Whole mount staining of the organ of Corti in the basal turn after noise exposure of
a wildtype mouse (A) a Coch−/− mouse (B) and a control mouse that was not exposed to noise
(C). No structural damage of hair cells (anti-Myosin VIIa, green) or neurons and synapses (anti-
synaptophysin, red) was observed in both groups.

2.5. Noise Exposure Did Not Cause an Inflammatory Reaction in the Spiral Ligament or
Spiral Limbus

To assess inner ear inflammation, staining with IBA1 and F4/80 antibodies in the
spiral ligament and spiral limbus/spiral ganglion neuron region was performed to vi-
sualize macrophages and activated macrophages, respectively. No significant difference
in macrophage influx in the spiral ligament or the spiral limbus was observed across all
groups (Figure 7).

2.6. Spiral Ligament Fibrocytes Were Not Affected by Noise Trauma in Coch−/− and Coch+/+ Mice

Coch expression is most abundant in the region where the type IV fibrocytes are
located [2]. As these cells are suggested to be highly vulnerable to noise trauma, staining
with an anti-CTGF antibody was performed in order to visualize type IV fibrocytes. No
significant differences could be observed in expression level of these fibrocytes across all
groups (Figure 8A) as well as the area of expression (Figure 8B). Type III fibrocytes are
known for their self-renewal capacities and exhibit stem cell abilities. Staining with an
anti-AQ1 antibody revealed no differences in expression level (Figure 8C) and area of
expression (Figure 8D) of type III fibrocytes among all groups. Also, no migration of type
III fibrocytes to other regions in the spiral ligament could be observed.
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2.7. Noise Trauma Reduces Cochlin Immunoreactivity in the Spiral Ligament

An anti-Coch antibody was used to stain for the COCH protein in the spiral ligament.
It was observed that Coch+/+ mice that were exposed to noise had a significant lower
expression level of the COCH protein than Coch+/+ mice that were not exposed to noise
(Figure 9).
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3. Discussion
3.1. Otovestibular Functioning of the Coch Knockout Mouse Model

Our study revealed that ABR thresholds of Coch−/− mice were significantly elevated
compared to ABR thresholds of Coch+/+ mice at the age of 12 months at all frequencies.
After two years of age, ABR thresholds of Coch−/− mice remained only elevated at 16 kHz
and 32 kHz. A similar pattern was seen in the analysis of the DPOAE measurements
after one year where thresholds were also significantly elevated in the Coch−/− mice at
all frequencies, except 12 kHz. After two years only the DPOAE thresholds measured at
18 kHz remained significantly elevated in the Coch−/− mice compared to the Coch+/+ mice.
We believe that the significant difference in hearing thresholds observed after one year
is due to the large sample size of Coch+/+ (n = 22) and Coch−/− mice (n = 30). After this
timepoint, mice were included in the noise exposure groups and died from natural causes
resulting in a decreased sample size for the measurements at 15 months and 24 months.
Also, hearing function of Coch+/+ mice deteriorated at older ages compensating for the
hearing loss observed in Coch−/− mice in the first 12 months of age.

Similarly, another study found that Coch−/− mice had significant elevated hearing
thresholds when compared to their wildtype littermates at high frequencies and hearing
thresholds were completely absent at 41.2 kHz at the age of 21 months [16].

In contrast to our study, Jones et al. found vestibular dysfunction starting from the age
of nine months, while in our study, no vestibular dysfunction was observed. It is important
to note that we used the VDI which is based on observation of reflexes and behavior while
Jones et al. used vestibular sensory-evoked potential (VSeP) measurements [16]. VSeP
recordings are carried out by using subcutaneous electrodes placed over the nuchal crest,
left pinna and the hip. The head of the mice is secured by a noninvasive head clip to a
mechanical shaker for the delivery of linear vestibular stimuli [16]. VeSP is an electrical
potential that provides a direct test of vestibular function in animals while VDI is based on
observation and behavior of the animals and, therefore, a more subjective test.

According to our study Coch−/− mice did not exhibit vestibular dysfunction, which is
similar to the phenotype observed in recessive COCH patients. In contrast, Coch−/− mice
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have higher ABR and DPOAE thresholds compared to Coch+/+ mice at the age of one year
while recessive COCH patients suffer from congenital hearing loss [11,12].

3.2. Hearing Function after Noise Trauma

Previous studies have demonstrated that cochlin plays a role in coordinating immune
responses elicited by bacterial infection of the cochlea [6,17]. As Coch−/− mice lack the Coch
gene, we would expect the inflammatory response to be less pronounced in Coch−/− mice.
A decreased immune response could result in less permanent hearing loss as inflammation
can further damage the inner ear. On the other hand, the immune response helps clear
the debris of damaged cells in the cochlea and can therefore prove to be beneficial to the
hearing function [3].

Our results show that there was a significant difference in DPOAE thresholds after
noise exposure where thresholds of Coch−/− mice recovered to baseline values one week
after noise exposure in the mid frequency region of 10 kHz to 21 kHz while DPOAE
thresholds of Coch+/+ mice remained elevated at all frequencies. A similar observation can
be drawn from ABR measurements where thresholds of Coch−/− mice recovered to baseline
values one week after noise exposure except at 16 kHz while ABR thresholds of Coch+/+

mice remained elevated at all frequencies. Similar to our study, Seist et al. discovered that
Coch−/− mice had significantly lower DPOAE-and ABR thresholds shifts when compared
to Coch+/+ mice following exposure to 103 dB of broadband noise (8–16 kHz) for 2 h [18].
Threshold shifts recovered after one week are considered as TTS. Elevated thresholds
remaining after one week could be either temporary or permanent as TTS can persist up
to two weeks [19]. Threshold shifts are usually caused by damage to both sensory and
non-sensory cells in the inner ear [3]. Whole mount dissection was performed to assess
hair cell and neural integrity. Staining revealed that there was no loss of hair cells and
neurons in both groups indicating another mechanism is responsible for the difference in
response to noise exposure that is observed between Coch+/+ and Coch−/− mice. In contrast,
Seist et al. observed OHC loss in both Coch−/− and Coch+/+ mice after noise exposure where
the number of surviving OHC was significantly higher in Coch−/− mice when compared
to wildtype animals [18]. It is important to note that the mice that were used in their
study were only 6 weeks old and NIHL vulnerability varies with age at exposure. Kujawa
and Liberman discovered that young mice are more susceptible to noise than older mice.
Moreover, the age of 4–6 weeks is a critical period for noise vulnerability in mice [20].

A reduction in wave I amplitudes at 8 kHz and 16 kHz was observed in both groups
following noise-exposure. Decreased wave I amplitudes could indicate a reduction in
auditory nerve fibres due to noise-exposure, this phenomenon is called synaptopathy [21].
Noise exposure may cause significant loss of ribbon synapses while no apparent loss of
IHCs is observed [22].

3.3. Inner Ear Inflammation Following Noise Exposure

Although the role of cochlin is not yet fully understood, the LCCL domain of cochlin
is involved in promoting immune responses [17]. The LCCL domain has strong homology
with Factor C, an endotoxin-sensitive serine proteinase involved in the immune response
in the horseshoe crab Limulus where it functions as an antibacterial peptide [6,23]. In
addition, cochlin has been identified as an important modulator of immune responses
in the spleen and lymph nodes where it is involved in the regulation of macrophage
activation, recruitment of immune cells and cytokine production [17]. Furthermore, it has
been previously reported that noise exposure leads to inflammation in the inner ear with
an influx of macrophages, specifically into the spiral ligament [24].

A recent study [6] demonstrated that Coch−/− mice have a significantly decreased
immune response after a bacterial infection in the inner ear as functional cochlin is necessary
to induce an innate immune response. Basal populations of resident immune cells were
similar between wildtype mice and Coch−/− mice in the cochlea. However, after infection,
the number of infiltrated neutrophils, macrophages, and dendritic cells was significantly



Int. J. Mol. Sci. 2021, 22, 11549 11 of 19

lower in Coch−/− mice. Baseline cytokine expression did also not differ between wildtype
and Coch−/− mice. However, post infection, levels of IL-1β and IL-6 were significantly
elevated in Coch+/+ mice compared to Coch−/− mice, suggesting that cochlin is necessary
for local upregulation and increased secretion [6]. Another study [25] observed a massive
neutrophil migration in the spiral ligament two days after LPS inoculation in the middle
ear. In contrast, noise exposure did not induce migration of neutrophils in the lateral wall.
Noise exposure and bacterial infection with LPS have different inflammatory pathways
because LPS is recognized as a pathogen-associated molecular pattern, but debris from
the degenerated cells after noise exposure is recognized as a damage-associated molecular
pattern (DAMP) [25].

Interestingly, our results suggest that Coch−/− mice suffer less from noise exposure
compared to wildtype mice but no differences in IBA1 and F4/80 positive macrophages
were found in the spiral ligament and spiral limbus region between both groups. Seist et al.
observed an increased expression of the Adamts4 gene which is responsible for the cleavage
of the LCCL domain of cochlin initiating immune response. In addition, the expression of
genes encoding for the proinflammatory cytokines IL6 and CXCL1 was upregulated in the
perilymph of Coch+/+ mice 6 h post noise exposure when compared to Coch−/− mice [18].
These results suggest that cochlin may be involved in the immune response after noise
exposure in young mice, but this upregulation does not lead to an increase of macrophages
in the inner ear of older mice as indicated by our findings. Further research regarding
cytokine expression and influx of other immune cells in the inner ear after noise exposure
in adult Coch+/+ and Coch−/− mice should be performed in order to confirm our findings.

3.4. Fibrocyte Integrity

The spiral ligament consists of five different fibrocyte types, all with distinct functions.
Type I spiral ligament fibrocytes (SLFs) are located adjacent to the stria vascularis where
they are associated with collagen bundles, type II SLFs play an important role in potassium
recycling and are located near the spiral prominence. These two SLF types make up most of
the spiral ligament. The bony otic capsule is confined by small elongated type III SLFs, the
spindle-shaped type IV SLF are located inferiorly, towards the crista basilaris, while type
V SLF are located near the apical tip, where they make direct contact with the perilymph
of the scala vestibuli [2,26–28]. Fibrocytes in the spiral limbus and spiral ligament play a
role in maintaining the endocochlear potential in the scala media by recycling of K+ ions.
Loss of fibrocytes disrupts the K+ recycling causing an abnormal K+ concentration in the
endolymph which influences the normal activation of the hair cells resulting in hearing
loss [2,29,30].

In previous studies, 94 dB was considered as the border for irreversible damage and
the threshold for degeneration of type IV SLFs. We stained with an anti-CTGF antibody
which is highly selective for type IV SLFs [31]. No significant differences were observed
in expression and area of type IV SLFs, suggesting no degeneration of these fibrocytes
occurred after noise trauma. This is in contrast with other studies reporting that loss of
type IV SLFs can be observed at all levels of noise exposure starting from 94 dB [2,31].
Similar to our study, Cui et al. [29] exposed mice to 120 dB noise and did not detect
significant fibrocyte loss in the spiral ligament up to 8 weeks following noise exposure.
The discordance between the studies is most probably due to the genetic background of
the mice used in these studies as it was previously showed that different strains of mice
demonstrate significant heterogeneity in noise susceptibility [32,33].

An interesting observation is that type III SLFs do not degenerate significantly after
noise exposure. In fact, the number of proliferating cells increase in the type III SLF region.
These fibrocytes can repopulate the type I fibrocyte region after loss of these cells. Type
III SFLs express AQ1 which is a protein involved in cell migratory mechanisms giving
them the possibly to migrate through the spiral ligament. Furthermore, type III SFLs are
considered to have stem cell abilities. Therefore, type III SLFs could play a potential role in
regenerative therapies [26,34,35].
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Type III SFLs were visualized using an AQ1-antibody but no differences were found in
AQ1-expression and area across all groups. This finding is consistent with the observation
that there was no damage to the type IV SFLs which are most sensitive to noise exposure. As
no fibrocyte loss has occurred in the spiral ligament, there was no need for the type III SFLs to
upregulate and migrate through the spiral ligament to repopulate areas of fibrocyte loss.

3.5. Coch Expression

To assess whether cochlin could be responsible for the difference in hearing thresholds
that was observed between Coch+/+ and Coch−/− mice after noise exposure, Coch expres-
sion in wildtype mice was assessed using an anti-COCH antibody. We found that Coch
expression was significantly decreased in Coch+/+ mice after noise exposure, which could
be explained by the observation of Seist et al. that cleaved cochlin is upregulated in Coch+/+

mice following noise exposure [18].

3.6. Alteration in ECM Proteins May Contribute to Hearing Loss after Noise Exposure

Seist et al. concluded that the difference in threshold shifts after noise exposure in
Coch−/− mice is due to a small conductive hearing loss observed at the age of 6 weeks in
these mice attenuating the amount of noise carried in the cochlea and thereby preventing
some of the noise-induced damage [18]. In our study, we followed up Coch+/+ and Coch−/−

mice until the age of two years to assess hearing function with six months being the first
timepoint where measurements were performed. At this time, we only found differences
in ABR thresholds at 2 kHz and 16 kHz and no differences were found across all DPOAE
frequencies between Coch−/− and Coch+/+ mice. Even at the age of 24 months, hearing
thresholds in Coch−/− mice were only elevated at the highest frequencies compared to
wildtype mice. Based upon our observations, we believe there should be another reason re-
sponsible for the different responses in Coch+/+ and Coch−/− mice following noise-exposure
that are outlined below.

Besides a role in the clearance of bacterial infections in the inner ear, cochlin has a
function in maintaining the structure of the ECM of the inner ear by the affinity of the
vWFA domains for type I, type II and type IV collagens [5]. The vWFA2 domains of
cochlin have a structure similar to other vWFA domains: a central beta-sheet of six strands,
flanked by three and four helices. It has a metal ion-dependent adhesion site (MIDAS)
motif, which plays an important role in structural stability and ligand binding in vWFA
domain-containing proteins [36].

A downregulation of Coch following noise exposure may cause alterations in the
ECM proteins which may lead to a disruption of homeostasis in the inner ear causing
hearing loss [37]. A similar phenomenon has been observed in the eye, where upregu-
lation of cochlin results in a higher intraocular pressure (IOP) causing glaucoma [38,39].
Goel et al. [37]. observed that when cochlin was downregulated by injection of Coch-shRNA,
the IOP decreased and the decreased IOP level was maintained for the next two months.
The vWFA domain present in ECM proteins is associated with fluid shear responsiveness
indicating that cochlin may potentially act as a mechanosensing molecule [37]. Increased
fluid shear leads to cochlin multimerization, which is resistant to proteolysis and can
potentially accumulate in the ECM of the trabecular meshwork in glaucomatous eyes [38].
As both the anterior eye chamber and the perilymph space of the ear contain fluid, it
is speculated that cochlin may have a function in maintaining the shear stress and ion
homeostasis of these fluids by interaction with collagen II to build up the ECM. [5,37,39].

4. Materials and Methods
4.1. Study Design

Coch+/+ CBACa.129S1(Cg)-Cochtm1.1Stw/Mmjax (Coch wildtype) and Coch−/− CBA
Ca.129S1(Cg)-Cochtm1.1Stw/Mmjax (Coch knockout) were followed up for a period of
two years for otovestibular functioning. Otovestibular testing was performed at 6 months,
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12 months, 15–18 months, and 24 months. The outline of this study design can be seen
in Figure 10.
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Figure 10. Study design of the long-term follow up of Coch+/+ and Coch−/− mice.

To investigate the effect of noise exposure on hearing thresholds both adult mice (age
between 7–9 months) and old mice (age between 14–16 months) were included. At the
start of the experiment mice were randomly allocated to a noise exposure group and a
control group. The noise exposure group included adult Coch+/+ mice (n = 7), old Coch+/+

mice (n = 6), adult Coch−/− mice (n = 7) and old Coch−/− mice (n = 6). The control groups
consisted of adult Coch+/+ mice (n = 7), old Coch+/+ mice (n = 2), adult Coch−/− mice (n = 6),
and old Coch−/− mice (n = 7).

First, baseline testing was performed in all mice (n = 48) to assess the vestibular
and hearing function before noise exposure. After baseline testing, the noise exposure
group was exposed to 120 dB broadband noise for 2 h. Vestibular and auditory testing
was performed at two different time points (48 h and 1 week) after noise exposure. At
one-week post-exposure, the mice were euthanized using pentobarbital (200 mg/mL) for
immunohistochemical research. A schematic overview of the study design can be seen
in Figure 11.
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4.2. Animals

Coch+/− CBACa.129S1(Cg)-Cochtm1.1Stw/Mmjax mice were obtained from The Jack-
son laboratory (034310-JAX) and further bred at the University of Antwerp. All animal
experimental procedures were approved by the Ethics Committee for Animal Experiments
of the University of Antwerp (approval No 2019-46). Mice were housed four-five per cage
in standard type III plastic cages with wood shavings as bedding and given water and
standard pelleted rodent chow ad libitum. Cages were stored in sound-proof rooms at
constant room temperature (20–24 ◦Celsius) and humidity (45%). They were maintained
on a 12 h/12 h light–dark cycle.

4.3. Noise Exposure

Awake mice were placed in a subdivided cage inside a soundproof box. The noise sig-
nal was generated using RPvdsEX software (Tucker-Davis technologies, Alachua, FL, USA).
The signal was routed through an attenuator and power amplifier (XPS-1200, Gemsound,
New York, NY, USA) to a high-frequency tweeter speaker (HTH 8.7, Visaton, Haan, Ger-
many) positioned immediately above the mice holding cage. Broadband noise (8–16 kHz)
of 120 dB was generated during a time period of 2 h. Mice were monitored the whole
duration of the exposure via a webcam.
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4.4. Vestibular Evaluation
4.4.1. Vestibular Dysfunction Rating

To evaluate the vestibular function, the VDR was used. This is a validated in vivo
score that correlates with bilateral vestibular failure. The test battery consisted of several
criteria, both spontaneous motor behavior and vestibular reflexes that were scored from
0 (normal behavior) to 4 (extreme change in behavior). A description of the rating scores
is provided in Table 1. First, the mice were placed in an open cage for 1 min to assess
spontaneous motor behavior (circling, retropulsion and head bobbing). Circling was
defined as stereotypical circulation, retropulsion showed a persistent backward movement
and head bobbing consisted of intermittent extreme backward extension of the neck. Next,
the mice were rated for different vestibular reflexes (tail lift reflex, contact inhibition of
righting reflex, and air-righting reflex). The tail lift reflex consisted of a spreading of the
forepaws when being picked up by the tail as a “landing” response. Mice with a weakened
or impaired vestibular function curl their body ventrally, crawling up towards their tail.
For the contact inhibition of the righting reflex, mice were in a supine position on a table
and a plastic board was placed in contact with the mice. Healthy, normal mice will right
themselves quickly to a normal position. Vestibular deficient mice, however, remain lying
on their back with their feet up. For the air-righting reflex, mice were dropped supine from
a height onto a foam cushion. Normal mice right themselves in the air during the fall,
whereas vestibular deficient mice do not and land on their back or side.

Table 1. Scoring (0–4) used to evaluate vestibular function through the VDR.

Score Description

0 Normal behavior, normal reflex

1 Possibility of impaired behavior

2 Alteration in behavior, but limited

3 Important change in behavior

4 Extreme change in behavior

4.4.2. Forced Swimming Test

In addition to VDR, a FST was performed. Mice were placed in a transparent cage
filled with 15 cm water of 25 ◦C. The swimming behavior of the mice was evaluated by
two supervisors during 15 s according to the following score system: normal swimming
(score 0), circling (score 1), tumbling or going beneath the surface (score 2).

4.5. Hearing Evaluation
4.5.1. Anaesthesia

ABR and DPOAE measurements were performed under ketamine/xylazine anaesthe-
sia. DPOAE measurements were done before ABR assessment to avoid reduced DPOAE
responses, measurements were conducted consecutively without awakening of the an-
imal. Mice were anaesthetized with an intraperitoneal (i.p.) injection with a ketamine
(100 mg/kg body weight) and xylazine (20 mg/kg body weight) mixture. Reflexes were
assessed by a hind limb withdrawal reflex, in case mice did not reach an areflexive state,
boosters of ketamine/xylazine one-fifth of the original dose were administered fifteen
minutes after anaesthesia induction. Hearing assessment was started fifteen minutes after
ketamine/xylazine injection.

After anaesthesia induction, mice were individually placed in a sound-attenuating
chamber (Industrial Acoustic Company, North Aurora, IL, USA) on a homeothermic
heating pad system (Harvard Apparatus, Holliston, MA, USA) to maintain constant body
temperature (37 ± 0.5 ◦C). Prior to each recording session, ophthalmic ointment (Duratears,
Alcon) was applied to the eyes to prevent corneal drying.
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4.5.2. Distortion Product Otoacoustic Emissions (DPOAE)

Anaesthetized mice were placed on their left flank under a device securely hold-
ing an acoustic probe tightly fitted into the right external auditory canal. Two tones (f1
and f2) were administered simultaneously in the right ear only via a close-field method.
DPOAE responses (2f1−f2) were measured over a frequency range from 5 to 32 kHz,
more specifically at 5.3, 6.1, 7.0, 8.0, 9.2, 10.6, 12.1, 13.9, 16.0, 18.4, 21.1, 24.3, 27.9, and
32.0 kHz. The primary tone ratio f2/f1 was set to 1.22. DPOAE responses were evoked
by a non-symmetric DPOAE protocol, using unequal primary tone stimulus intensities
(i.e., L1 > L2). Five intensity levels were presented with L1 going from 70 to 30 dB SPL and
L2 = L1 − 10 dB SPL. Duration of testing was approximately 20 min per animal. To enable
statistical analysis and calculations of the mean, unobtainable DPOAE thresholds at our
equipment’s limits of 70 dB SPL were defined as 80 dB SPL.

4.5.3. Auditory Brainstem Responses (ABR)

ABR thresholds were determined using procedures described previously, with minor
modifications [40]. Evoked responses were recorded using disposable subcutaneous needle
electrodes (28 G) positioned over the vertex of the skull (active electrode), the left mastoid
(reference electrode) and the right hindlimb (ground electrode). Electrode placement
was manipulated until an impedance of no higher than 2 kOhm was observed. Evoked
potentials were measured after administration of frequency-specific sound stimuli through
a free-field electrostatic speaker placed 10 cm in front of the animal’s head. BioSig32
software (Tucker-Davis Technologies, Alachua, FL, USA) was used to generate tone burst
stimuli of 2 msec in length with a gate of 1 msec at frequencies 2, 4, 8, 16 and 32 kHz in
5 dB steps starting at 80 dB SPL down to a minimum SPL of 10 dB. A stimulus repetition
rate of 32 per second was used and 800 trials were recorded for each frequency to obtain
a good averaged response. Since potentials have very weak amplitude, averaging of
800 stimulations was essential to differentiate from background noise. ABR thresholds
were defined as the lowest stimulus level at which any reproducible ABR waveform could
be reliably observed in the evoked response at appropriate latencies upon visual inspection
and was determined by comparing the ABR waveforms with several suprathreshold
ABRs. Threshold analyses were performed via offline analysis of stored waveforms,
and the thresholds obtained for each frequency were verified at least twice by the same
experimenter. In addition, amplitudes of wave I were assessed at 8 and 16 kHz. At the
other frequencies, this parameter was not analyzed because it was difficult to identify wave
I at 2, 4 and 32 kHz. Upon completion of testing, needle electrodes were removed, and
animals were moved individually to heated cages and monitored until complete recovery.
Duration of testing was approximately 30 min per animal. To enable statistical analysis
and calculations of the mean, unobtainable ABR thresholds at our equipment’s limits of
80 dB SPL were defined as 85 dB SPL.

4.6. Euthanasia

Mice were euthanized with an overdose of pentobarbital (200 mg/mL).

4.7. Immunohistochemistry

The skull of the mouse was cut open with scissors and brain tissue was removed
to expose the temporal bones bilaterally. The otic capsule and surrounding tissue was
removed so a small incision can be made in the apex. The cochleae were fixated in 4%
paraformaldehyde (PFA) for 1 h. Afterwards, they were washed 3 × 5 min with PBS and
the cochleae were put in 0.5 M EDTA overnight. Next, the cochleae were either used for
whole mount dissection or cryosection.

4.7.1. Whole Mount Dissection of the Mouse Cochlea

The cochleae were washed with PBS and the organ of Corti was dissected. The apex,
middle turn and basal turn were put in 2 mL Eppendorf filled with PBS and later placed in
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a 24-well plate for staining. To permeabilize the tissues, they were placed in Triton-x-100 4%
and later blocked with Triton-x-0.5% and Fish gelatin 1%, both for 1 h at room temperature.
The tissues were incubated overnight with primary antibodies: Rabbit anti-myosin VIIa
(Proteus Biosciences (25-6790), 1:200 dilution in Triton-x-0.1% and Fish gelatine 1%) and
Guinee Pig anti-synaptophysin (synaptic systems (101004), 1:2000) to stain hair cells and
spiral ganglion neurons, respectively. Next, samples were washed 3 × 5 min with PBS
and incubated with secondary antibodies Goat anti-rabbit Fluor 555 (Abcam (ab6719),
1:1000 dilution in Triton-x-0.1% and Fish gelatine 1%) and Goat anti-mouse FITC (Dako
(F0313), 1:1000) for 1 h at room temperature and washed again 3 × 5 min with PBS. At
last, the samples were incubated with DAPI (1:1000) at room temperature for 10 min and
cleaned 3 × 5 min with PBS. Samples were visualized using Leica SP 8 laser scanning
confocal microscopy (Leica Microsystems, Mannheim, Germany). ImageJ was used for
image acquisition and processing.

4.7.2. Cryosections and Immunohistochemical Staining

The cochleae were washed with PBS and put in different sucrose concentrations (2 h
in sucrose 5%, 2 h in sucrose 10% and overnight in sucrose 20%). Next, cryosectioning was
performed in the desired orientation and the slices were washed with PBS for 3 × 5 min
and placed in 0.1% Triton 10× for 30 min and later put in blocking solution (20% goat
serum and 20% donkey serum in PBS) for 1 h. The slices were incubated overnight with
primary antibodies at 4 ◦C, next slices were washed 4 × 3 min with PBS. Next, secondary
antibodies were added and incubated for 1 h at room temperature. Then the slices were
washed with PBS and DAPI (1:1000) was added for 10 min. Afterwards, the samples were
washed 2 × 2 min with demi water and mounted with 1 drop of ProGold. Slices were
dried and visualized using Olympus BX51 fluorescence microscope equipped with an
Olympus DP71 digital camera. Olympus CellSens software was used for image acquisition
and processing. ImageJ was used to quantify macrophages and measure CTGF and Coch
expression using two sliced per cochlea for each mouse. An overview of the antibodies
that were used for this IHC staining is given below in Table 2.

Table 2. Overview of antibodies used to stain the spiral ligament.

Primary Antibodies Secondary Antibodies

Rat anti-COCH (Merck Milipore (MABF267), 1:200) Goat anti-rat Fluor 555 (Jackson (112-076-062), 1:1000)

Rabbit anti-IBA1 (Wako (019-19741), 1:1000) Goat anti-rabbit Fluor 555 (Abcam (ab6719), 1:1000)

Rat anti-F4/80 (AbD Serotec (MCA497GA), 1:250) Goat anti-rat Fluor 555 (Jackson (112-076-062), 1:1000)

Rabbit anti-AQ1 (Sigma-Aldrich, 1:2000) Donkey anti-rabbit Fluor 555 (Invitrogen (A31572) 1:1000)

Rabbit anti-CTGF (Abcam(ab6992), 1:500) Donkey anti-rabbit Fluor 555 (Invitrogen (A31572) 1:1000)

4.8. Statistical Analysis

Mann–Whitney U tests were performed to analyze hearing thresholds between Coch+/+

and Coch−/− mice at the different time points tested during the long-term follow up.
To assess the effect of noise exposure on hearing functioning in mice, linear mixed

models were fitted to analyze the interactions between time, genotype and age. Also,
LLM’s were fitted to explore the main effects of time*KO and time*WT. Post-hoc tests
were performed when main effects were significant. To analyze the difference in hearing
thresholds between Coch−/− and Coch+/+ mice at the two timepoints after noise exposure
Mann–Whitney-U tests were performed. IHC stainings were analyzed using ImageJ to
count immunoreactive cells and assess expression level of the staining.

Linear mixed models revealed a significant interaction between genotype and time in
the noise exposure group, but no significant interaction was observed between age and
time or age and genotype. Therefore, adult and old mice were taken together as one group
for the analysis of vestibular function, hearing assessment and immunohistochemistry.
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Statistical analysis was performed using 4 different groups: Coch+/+ noise (n = 13), Coch−/−

noise (n = 13), Coch+/+ control (n = 9) and Coch−/− control (n = 13).

5. Conclusions

Although cochlin is one of the most abundant proteins in the inner ear, its exact
function remains unknown. Due to the presence of the LCCL domain in its protein
structure, it is suggested that cochlin plays a role in our innate immune system by attracting
neutrophils and monocytes. Noise exposure caused PTS in Coch+/+ mice, while it only
caused TTS in Coch−/− mice indicating that Coch−/− mice are less susceptible to NIHL.
However, immunohistochemistry was unable to identify any differences in cell morphology
and inner ear inflammation between both groups. Our results indicate that the absence of
Coch has an influence on hearing thresholds after noise exposure, but this is not related to
inner ear inflammation. Cochlin maintains the ion homeostasis and ECM structure of the
inner ear due to its affinity for collagen II. Future research is needed to elucidate the role
of cochlin as a potential mechanosensing molecule and to investigate whether changes in
Coch expression may cause a disruption of this ion homeostasis and shear stress resulting
in hearing loss.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms222111549/s1, Table S1A: Mann–Whitney U test were performed to assess differences
in DPOAE thresholds between Coch+/+ and Coch−/− mice; Table S1B: Mann–Whitney U test were
performed to assess differences in ABR thresholds between Coch+/+ and Coch−/− mice; Table S2A:
Linear mixed models (LMMs) were fitted for each DPOAE frequency separately to test for significant
time × genotype interactions; Table S2B: Post-hoc tests to assess the difference in DPOAE thresholds
between the different time points were performed if the main effect of time*WT and time*KO were
significant (Table S1A); Table S3A: Linear mixed models (LMMs) were fitted for each ABR frequency
separately to test for significant time × genotype interactions; Table S3B: Post-hoc tests to assess the
difference in ABR thresholds between the different time points were performed if the main effect
of time*WT and time*KO were significant (Table S3A); Table S4A: Linear mixed models (LMMs)
were fitted for wave I amplitudes at 8000 Hz and 16,000 Hz separately to test for significant time ×
genotype interactions; Table S4B: Post-hoc tests to assess the difference in wave I amplitudes between
the different time points were performed if the main effect of time*WT and time*KO were significant
(Table S4A).
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