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CRABP1, C1QL1 and LCN2 are biomarkers of
differentiated thyroid carcinoma, and
predict extrathyroidal extension
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Abstract

Background: The prognostic variability of thyroid carcinomas has led to the search for accurate biomarkers at the
molecular level. Follicular thyroid carcinoma (FTC) is a typical example of differentiated thyroid carcinomas (DTC) in
which challenges are faced in the differential diagnosis.

Methods: We used high-throughput paired-end RNA sequencing technology to study four cases of FTC with different
degree of capsular invasion: two minimally invasive (mFTC) and two widely invasive FTC (wFTC). We searched by genes
differentially expressed between mFTC and wFTC, in an attempt to find biomarkers of thyroid cancer diagnosis and/or
progression. Selected biomarkers were validated by real-time quantitative PCR in 137 frozen thyroid samples and in an
independent dataset (TCGA), evaluating the diagnostic and the prognostic performance of the candidate biomarkers.

Results: We identified 17 genes significantly differentially expressed between mFTC and wFTC. C1QL1, LCN2, CRABP1
and CILP were differentially expressed in DTC in comparison with normal thyroid tissues. LCN2 and CRABP1 were also
differentially expressed in DTC when compared with follicular thyroid adenoma. Additionally, overexpression of LCN2
and C1QL1 were found to be independent predictors of extrathyroidal extension in DTC.

Conclusions: We conclude that the underexpression of CRABP1 and the overexpression of LCN2 may be useful
diagnostic biomarkers in thyroid tumours with questionable malignity, and the overexpression of LCN2 and C1QL1 may
be useful for prognostic purposes.
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Background
Thyroid cancer is the most frequent type of endocrine
cancer with an incidence of 12 cases per 100,000 indi-
viduals [1, 2]. More than 95% of thyroid cancer cases
originate from follicular epithelial cells [3]. Papillary thy-
roid carcinoma (PTC) and follicular thyroid carcinoma
(FTC) are the most common histotypes. Despite the
overall good prognosis of these two main histotypes of
differentiated thyroid carcinoma (DTC) [1], some cases

progress, develop distant metastases and acquire an un-
predictable response to treatment.
The increasing incidence of thyroid cancer has led to the

search for good biomarkers that can help in the diagnosis
of malignancy and/or predict the clinical behaviour of the
tumours. Until now, clinical and histopathological prog-
nostic factors remain the only robust elements to be used
for diagnosis and prognosis of patients with thyroid tu-
mours [4], although new markers are revealing some diag-
nostic or prognostic value per se. As an example, BRAF
mutations have been shown to be useful for predicting re-
currence and/or disease persistence [5], but mostly when
associated with other clinicopathological features. Recently,
TERT promoter mutations revealed an independent
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prognostic value regarding distant metastasis and survival
of patients with thyroid cancer [5].
The classification of benign and malignant thyroid tu-

mours at the histological level still has limitations. Many
follicular patterned tumours are typical examples of this
difficulty. The classical histological criterion to distin-
guish FTC from follicular thyroid adenoma (FTA) is the
presence of any image of capsular or vascular invasion
[6]. This circumstance limits the diagnostic accuracy of
fine needle aspiration biopsy (FNAB) in pre-surgical
grounds. FTC is subclassified into minimally invasive
FTC (mFTC) and widely invasive FTC (wFTC) [3], with
the latter having a worse prognosis than mFTC [3, 7, 8].
The molecular mechanisms that orchestrate the inva-
siveness of FTC cancer cells are poorly understood.
In order to identify molecular alterations associated to

thyroid cancer invasion, we used FTC as a model of an
encapsulated tumour, studying tumours with different
degrees of invasion: two mFTC and two wFTC, using
high-throughput paired-end RNA sequencing (RNA-seq)
technology. The biomarkers proposed here were vali-
dated in a series of DTC, in thyroid cancer cell lines and
in the gene expression data from DTC available in The
Cancer Genome Atlas (TCGA) [9].

Methods
Thyroid cancer samples and cell lines
Two wFTC (cases 1 and 2) and two mFTC (cases 3 and
4) were collected from tumour tissue biobank (Porto).
These four tumours from patients with 55–82 years of
age were subjected to high-throughput paired-end RNA-
seq analyses. Briefly, the patient/case 1 had a tumour
measuring 2 cm in diameter and presenting a predomin-
ant follicular growth pattern and oncocytic features; pa-
tient/case 2 had a tumour measuring 5 cm in diameter
and presenting a predominant solid/trabecular growth
pattern; patient/case 3 had a tumour measuring 3.7 cm
in diameter and presenting a follicular growth pattern;
and patient/case 4 had a tumour measuring 4 cm in
diameter and presenting a follicular growth pattern.
For comparative and validation purposes, 137 frozen

thyroid samples were collected from tumour tissue bio-
bank (Porto): 98 DTC [15 FTC (including the four used
in RNAseq), 23 follicular variant of PTC (FVPTC) and
60 PTC], 20 FTA, and 19 normal samples of adjacent/
contralateral thyroid tissues from patients with DTC
from this series. The histology of all DTC was revised by
two pathologists (CE and MSS) and the final classifica-
tion was made according to the WHO criteria [3]. The
clinicopathological features and genetic alterations of the
DTC are presented in Table 1, and a briefly description
of the series is available in the Additional file 1. Further-
more, ten thyroid cancer cell lines were also used in this
study including one cell line derived from one FTC with

oncocytic pattern (XTC1), three derived from PTC
(BCPAP, K1 and TPC1), and six derived from undiffer-
entiated thyroid carcinoma (C643, HTH74, KAT4, T238,
T241, 8505C).

High-throughput paired-end RNA-seq
Library construction was performed using the TruSeq
RNA Sample Prep Kit v2 according to protocol (Illumina
Inc., San Diego, CA, USA), including poly-A mRNA isola-
tion, fragmentation, and gel-based size selection. Shearing
to about 250 bp fragments was achieved using the Covaris
S2 focused-ultrasonicator (Covaris Inc., Woburn, MA,
USA). Sequencing was performed according to the paired-
end RNA-seq protocols from Illumina for Solexa sequen-
cing on a Genome Analyzer IIx with paired-end module
(Illumina Inc). Seventy-six bps were sequenced, from each
side of a fragment of about 250 bp long.
A particular attention was paid to genes differentially

expressed between mFTC and wFTC. Reads marked by
the Illumina pipeline (Bustard.py, OLB 1.6.0 and 1.8.0)
as passed filtering were used in the analysis.
Gene expression levels in FTCs were computed by

using Cufflinks v1.1.0 [10] with the Illumina iGenomes
Ensembl GRCh37 data set (2011–06-20) as reference, on
reads aligned with TopHat v1.3.3 [11]. Gene expression
levels were compared between the two wFTC (case 1
and 2) and two mFTC (case 3 and 4). Results were rep-
resented as fold change of gene expression in wFTC
comparing with mFTC. Values of fold change in gene
expression were at logarithmic scale (log2). Genes and
transcripts were considered differentially expressed be-
tween mFTC and wFTC whenever Q value <0.05.

Isolation of nucleic acids, reverse-transcription PCR and
cDNA sanger sequencing
Frozen tissue samples available from thyroid tumours (n
= 118) and adjacent/collateral normal thyroid tissues (n
= 19) were crushed and homogenized. Total RNA from
tissues and thyroid cancer derived cell lines was ex-
tracted using TRIzol® Reagent (Ambion®, Life Technolo-
gies™, CA, USA), according to the manufacturer’s
protocol. Genomic DNA was extracted using the Gen-
omic DNA Purification Kit (Citomed, Lisbon, Portugal)
according to the manufacturer’s protocol.
cDNA was synthesized from 1 μg of RNA at 42 °C for

60 min, using oligo (dT) primers and M-MuLV reverse
transcriptase (Fermentas, Thermo Scientific, St. Leon-Rot,
Germany). The reverse-transcription PCR (RT-PCR) prod-
ucts were analysed by cDNA Sanger sequencing using the
Big Dye terminator version 3.1 cycle (Applied Biosystems,
Foster City, CA, USA). The samples were analysed in an
automated sequencing machine (ABI Prism 3100 Genetic
Analyser, Applied Biosystems, Foster City, CA, USA).
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Screening for PAX8/PPARG, RET/PTC1 and RET/PTC3
rearrangements, BRAF and NRAS mutations, and TERT
promoter mutations in thyroid cancer series
The 98 DTC were further characterized for selected mo-
lecular alterations known to be common in thyroid

tumours. PCR followed by Sanger sequencing was used
on genomic DNA for detecting mutations in the most
frequent hotspot regions of BRAF (exon 15), NRAS
(exon 2), and promoter region of TERT, according to
previously described procedures [12, 13]. In our previous

Table 1 Clinicopathological and molecular data of patients with differentiated thyroid cancer (DTC) included in the study

Total FTC FVPTC PTC

Total (%) 98 (100) 15 (15.3) 23 (23.5) 60 (61.2)

Age (n) 98 15 23 60

Mean (years) 43 ± 1.6 53 ± 3.9 43 ± 3.1 40 ± 2.1

Tumour size (n) 93 15 22 56

Mean (cm) 2.8 ± 0.18 3.9 ± 0.46 2.4 ± 0.30 2.7 ± 0.24

Gender (n) 98 15 23 60

Female (%) 84 (85.7) 12 (80) 19 (82.6) 53 (88.3)

Male (%) 14 (14.3) 3 (20) 4 (17.4) 7 (11.7)

Capsule (n) 88 15 21 52

Positive (%) 45 (51.1) 15 (100) 9 (42.9) 21 (40.4)

Capsular invasion (n) 42 15 8 19

Positive (%) 27 (64.3) 15 (100) 2 (25.0) 10 (52.6)

Vascular invasion (n) 89 15 21 53

Positive (%) 48 (53.9) 11 (73) 5 (23.8) 32 (60.4)

Lymph node metastasis (n) 93 15 21 57

Positive (%) 24 (25.8) – 4 (19.0) 20 (35.1)

Extrathyroidal extension (n) 88 15 21 52

Positive (%) 27 (30.7) 1 (6.67) 2 (9.52) 24 (46.2)

Distant metastasis (n) 93 15 21 57

Positive (%) 5 (5.38) 1 (6.67) – 4 (7.02)

Lymphocytic thyroiditis (n) 91 15 22 54

Positive (%) 40 (44.0) 4 (26.7) 8 (36.4) 28 (51.9)

Oncocytic (n) 89 15 21 53

Positive (%) 17 (19.1) 6 (40.0) – 11 (20.8)

PAX8-PPARG rearrangements (n) 98 15 23 60

Positive (%) 2 (2.04) 1 (6.67) 1 (4.35) –

RET/PTC rearrangements (n) 98 15 23 60

Positive (%) 17 (17.3) 1 (6.67) 3 (13.0) 13 (21.7)

RET/PTC1 rearrangement (n) 98 15 23 60

Positive (%) 12 (12.2) 1 (6.67) 1 (4.35) 10 (16.7)

RET/PTC3 rearrangement (n) 98 15 23 60

Positive (%) 2 (2.04) – 1 (4.35) 1 (1.67)

BRAF mutation (n) 98 15 23 60

Positive (%) 21 (21.4) – 2 (8.70) 19 (31.7)

NRAS mutation (n) 98 15 23 60

Positive (%) 16 (16.3) 5 (33.3) 5 (21.7) 6 (10.0)

TERT promoter mutation (n) 98 15 23 60

Positive (%) 3 (3.06) 2 (13.3) 1 (4.35) –

n, number of cases with available data
FTC, follicular thyroid carcinoma; FVPTC, follicular variant of papillary thyroid carcinoma; PTC, papillary thyroid carcinoma
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works we verified that HRAS and KRAS mutations were
very rare (or absent) events. For that reason, we only
screened mutations for NRAS gene.
The presence of PAX8-PPARG and RET/PTC rearrange-

ments were determined by RT-PCR followed by Sanger
sequencing of PCR products. Some positive cases were
confirmed by fluorescence in situ hybridisation (FISH),
following the procedures described previously [12].

Real-time quantitative reverse transcription PCR
Real-time quantitative PCR (qPCR) for C1QL1, LCN2,
IL22RA1, MAMDC2, CILP, ASXL3, CRABP1, and
SCUBE3 genes was performed in the two wFTC (cases 1
and 2) and two mFTC (cases 3 and 4) used in paired-
end RNA-seq, and their corresponding normal thyroid
tissue. qPCR for C1QL1, LCN2, CILP, and CRABP1 were
also performed in the remaining series of DTC, in FTA
and in normal thyroid tissues, as well as in thyroid can-
cer cell lines.
cDNA was amplified for the C1QL1, LCN2, IL22RA1,

MAMDC2, CILP, ASXL3, CRABP1, and SCUBE3 by
qPCR using SYBR® Green PCR Master Mix (Applied
Biosystems, Foster City, CA, USA). A qPCR assay target-
ing Hypoxanthine phosphoribosyltransferase 1 (HPRT)
was used as the housekeeping control. Primer sequences
are available on request. Expression levels were obtained
as the average cycle threshold (CT) of at least two rep-
licas. A CT = 35 was assigned for target genes that were
not expressed in samples with positive expression of the
housekeeping control gene (HPRT).
The relative quantification of target genes was deter-

mined using the comparative CT method (2-ΔΔCT) which
was previously validated by Livak’s Linear Regression
Method (Sequence Detector User Bulletin 2; Applied Bio-
systems) [14]. This provided the fold changes (2-ΔΔCT) in
gene expression normalized to an internal control gene
(HPRT), and relative to one pool of normal thyroid tissues
(calibrator). Expression values (2-ΔΔCT) were normalized
at logarithmic scale (log2). For C1QL1 and LCN2 genes,
fold change [log2 (2-ΔΔCT)] > 1 was considered as gain of
expression, and fold change [log2 (2-ΔΔCT)] ≤ 1 was estab-
lished as normal gene expression. For CRABP1 and CILP
genes, fold change [log2 (2-ΔΔCT)] < −1 was considered as
loss of expression, and fold change [log2 (2-ΔΔCT)] ≥ −1
was established as normal gene expression. The diagnostic
performance (sensitivity and specificity) of those cut-off
values are presented in Table 2.

Data from the cancer genomic atlas (TCGA)
RNASeq (version v2) information were extracted from
TCGA [15] for 393 DTC and 59 thyroid normal samples,
for C1QL1, LCN2, CRABP1 and CILP genes. Gene ex-
pression values for each sample are normalized read
counts, estimated by using RSEM software [16].

Statistical analysis
Statistical analysis was conducted with SPSS version 22.0
(SPSS Inc., Chicago, IL, USA). The results are expressed
as percentage or mean ± SE. Statistical analysis was per-
formed both on the whole DTC series and on the differ-
ent subgroups: FTC, FVPTC and PTC. Receiver
Operating Characteristics (ROC) curves for individual
biomarkers were generated using log2 (2-ΔΔCT) gene ex-
pression values and thyroid tissue type (DTC against
normal or FTA) as input. For evaluation of the com-
bined biomarker panel, the sum of log2 (2-ΔΔCT) expres-
sion values from genes with gain (C1QL1 and LCN2)
and loss (CRABP1 and CILP) in DTC were used. Spear-
man’s rho test (non-parametric) was used for evaluating
the correlation of the expressions between different
genes. Fisher’s exact test, t-test (unpaired, two-tailed),
Mann–Whitney U test, and ANOVA were used when
appropriate. The predictive value of C1QL1, LCN2,
CRABP1 and CILP expression as a prognostic factor in
thyroid cancer and their correlation with clinicopatho-
logical factors – age, tumour size, and extrathyroidal ex-
tension were assessed using univariate and multivariate
logistic regression models. Test results with P-values
<0.05 were considered statistically significant.

Results
Differential gene expression in mFTC and wFTC
Differential expression analysis of the paired-end RNA-
seq data identified 17 genes with significantly differ-
ential expression between mFTC and wFTC (Fig. 1,
Additional file 2: Table S1 and Additional file 3: Table S2).
Increased gene expression of KLK1, NEFL, KIAA1239,
SLC6A17, NXPH4, LCN2, C1QL1 and TRIB3, and de-
creased gene expression of ST6GAL1, SCUBE3, IL22RA1,
MAMDC2, CILP, CYSLTR2, ASXL3, CRABP1 and
LINC00887 were observed in wFTC in comparison with
mFTC. C1QL1, LCN2, IL22RA1, MAMDC2, CILP, ASXL3,
CRABP1, and SCUBE3 genes were selected for validation
through a customized filtering based on gene expression
in thyroid tumours and normal thyroid tissues datasets
[17–19], assessed from Oncomine™ and in the literature
available. Validation of expression levels was done in the
four FTCs from paired-end RNA-seq and in their matched
normal tissue by qPCR. Gain of C1QL1 and LCN2 expres-
sion, and loss of IL22RA1, MAMDC2, CILP, ASXL3,
CRABP1, and SCUBE3 expression were confirmed in
wFTC compared with mFTC and between the four FTC
and their respective corresponding normal thyroid tissue
(Additional file 4: figure S1). Based on the accuracy of
gene expression levels obtained from paired-end RNA-seq
and qPCR in the FTC and in the gene expression levels in
their normal thyroid tissues by qPCR, C1QL1, LCN2,
CRABP1 and CILP genes were selected to be tested as bio-
markers in a well-characterized series of DTC (Table 1).
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Additionally, we identified and experimentally verified
a set of 21 fusion transcripts expressed by DTC
(Additional file 5: figure S2; Additional file 6: Table S3;
Additional file 7: Table S4). However, the fusion tran-
scripts are not likely to be biomarkers because they were
also detected in normal thyroid tissues. Further details
can be found in the Additional file 8.

C1QL1, LCN2, CRABP1, and CILP as biomarkers in DTC
A series of 98 DTC (15 FTC, 23 FVPTC and 60 PTC)
and a pool of 19 normal thyroid tissues and 20 FTA
were used to evaluate the performance of C1QL1, LCN2,
CRABP1, and CILP as biomarkers of DTC. Measure-
ments of the expression levels of those genes were done
by qPCR. C1QL1, LCN2, CRABP1 and CILP were differ-
entially expressed in DTC in comparison with normal
thyroid tissues (Additional file 9: figure S3), with statis-
tical significance (P = 0.002, P = 0.005, P < 0.001 and P =
0.018, respectively). Notably, such significant differences
were also observed for LCN2 and CRABP1 expression
when comparing DTC against FTA (P < 0.001 and P =

0.002, respectively), and FTA against normal thyroid tis-
sues (P = 0.013 and P = 0.022, respectively).
In order to test the aforementioned biomarkers as pu-

tative diagnostic tools for thyroid cancer, ROC curves
were performed (Fig. 2, Additional file 10: Table S5). In
the ROC analysis, comparing DTC versus normal thy-
roid (Fig. 2a), the areas under of the ROC curve (AUC)
for C1QL1, LCN2, CRABP1 and CILP were 0.799 (P =
2.1E-3), 0.783 (P = 3.6E-3), 0.902 (P = 3.4E-5), and 0.687
(P = 5.5E-2), respectively. When these potential bio-
markers were combined in a panel of gene expression,
the AUC value was 0.927 (P = 1.1E-5) in DTC versus
normal thyroid (Fig. 2c), providing a slight improvement
over the AUC results obtained in each individual gene.
Comparing DTC with FTA, the AUC values for C1QL1,
LCN2, CRABP1 and CILP were 0.566 (P = 4.8E-1), 0.898
(P = 1.9E-5), 0.746 (P = 8.3E-3), and 0.675 (P = 6.1E-2), re-
spectively (Fig. 2b). When these potential biomarkers were
combined in a panel of gene expression, the AUC value
was 0.839 (P = 2.7E-4) in DTC versus FTA (Fig. 2d), not
improving the result in comparison with those of the
AUC of LCN2 gene. CRABP1 was the best biomarker for

Fig. 1 Differentially expressed genes found between minimally and widely invasive follicular thyroid carcinoma (FTC). Gene expression was
measured by high-throughput paired-end RNA sequencing and using statistically significant values (Q < 0.05). Genes with lower expression in
widely invasive FTC as compared with minimally invasive FTC are listed at the top of the figure (green). Genes with higher expression in widely
invasive FTC as compared with minimally invasive FTC are listed at the bottom of the figure (red). Details of genes, expression levels, statistical
values, and molecular function of the genes are found in Additional file 2: Table S1 for differentially expressed genes and in Additional file 3: Table
S2 for differentially expressed transcripts

Table 2 Diagnostic performance of potential biomarkers for differentiated thyroid cancer (DTC)

Biomarker Cut-off Sensitivity (%) Specificity (%)

DTC DTC vs normal thyroid DTC vs FTA

C1QL1 >1 62.9 (52.0–72.9) 82.4 (56.6–96.0) 58.8 (33.0–81.5)

LCN2 >1 64.0 (52.9–74.0) 73.3 (44.9–92.1) 83.3 (58.6–96.2)

CRABP1 <−1 84.3 (75.0–91.1) 88.9 (65.3–98.3) 35.7 (12.9–64.8)

CILP <−1 61.4 (50.4–71.6) 66.7 (35.0–89.9) 53.0 (27.9–77.0)

Sensitivities and specificities are indicated comparing DTC with normal thyroid tissue or follicular thyroid adenoma (FTA)
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the detection of DTC when tested against normal thyroid.
On the other hand, LCN2 was the best biomarker for the
detection of DTC when tested against FTA.
We also tested gene expression levels from an add-

itional series of 393 DTC and 59 normal thyroid tissues
available in TCGA [15]. C1QL1, LCN2 and CRABP1
were differentially expressed in DTC in comparison with
normal thyroid tissues (Additional file 11: figure S4),
with statistical significance (P < 0.001).

Clinical and molecular associations with gain of C1QL1
expression
C1QL1 expression levels were successful measured by
qPCR in 89 DTC (15 FTC, 20 FVPTC and 54 PTC), 10
thyroid cancer cell lines, 17 FTA, and 18 matched thy-
roid normal tissues (Fig. 3a). Gain of C1QL1 expression
in relation to thyroid normal tissues was found in FTC,
FVPTC and PTC (Fig. 3b), but the differences only
achieved the threshold of statistical significance in
FVPTC (P = 0.015) and PTC (P = 0.001). Additionally,
eight out of ten (80%) thyroid cancer cell lines showed
gain of C1QL1 expression (Fig. 3c). Gain of C1QL1 ex-
pression was significantly associated with extrathyroidal

extension (P = 0.003) and lymphocytic thyroiditis (P =
0.003) in the DTC samples (Table 3). All the cases with
BRAF mutations present gain of C1QL1 expression (P
< 0.001). In FTC, gain of C1QL1 expression was
present in 71% of wFTC and absent in mFTC (P =
0.007; Additional file 12: Table S6), and lymphocytic
thyroiditis was only present in FTC with gain of
C1QL1 expression (P = 0.026). In FVPTC, absence of
NRAS mutations was significantly associated to the
gain of C1QL1 expression (P = 0.014; Additional file 13:
Table S7). PTC with C1QL1 gain were significantly lar-
ger (2.96 ± 0.33 cm) than PTC without gain of expres-
sion (1.78 ± 0.25 cm; P = 0.021; Additional file 14:
Table S8). Gain of C1QL1 expression in PTC was also sig-
nificantly associated with the presence of extrathyroidal
extension (P = 0.006), and BRAF mutations (P = 0.001).

Clinical and molecular associations with gain of LCN2
expression
LCN2 expression levels were successful measured by
qPCR in 86 DTC (14 FTC, 19 FVPTC and 53 PTC), 10
thyroid cancer cell lines, 18 FTA, and 16 matched thy-
roid normal tissues (Fig. 4a). Gain of LCN2 expression

Fig. 2 Receiver Operating Characteristics (ROC) curves for gene expression of potential biomarkers in thyroid cancers. ROC curves for gene
expression of individual and combined potential biomarkers in differentiated thyroid cancers (DTC) versus normal thyroid tissues and DTC versus
FTA. The area under the ROC curve (AUC) represents the accuracy of the individual and combined potential biomarkers for distinguishing differentiated
thyroid cancers (DTC) from normal thyroid tissue samples or follicular thyroid adenoma (FTA) (a-d). DTC versus normal thyroid for individual (a) and
combined (c) potential biomarkers with gain (C1QL1and LCN2) and loss (CRABP1 and CILP) of gene expression in cancer. DTC versus FTA for individual (b)
and combined (d) potential biomarkers with gain (C1QL1 and LCN2) and loss (CRABP1 and CILP) of gene expression in cancer. Asymptotic significance,
standard error and 95% confidence interval measurements for all values can be found in Additional file 10: Table S5
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was found in FTC, FVPTC and PTC (Fig. 4b), but the
differences only achieved the threshold of statistical sig-
nificance in PTC (P < 0.001). Three out of ten (30%) of
the thyroid cancer cell lines showed gain of LCN2
(Fig. 4c). At variance with DTC, significant loss of
LCN2 expression was found in FTA (P = 0.013; Fig. 4b).
Gain of LCN2 expression in DTC samples was signifi-
cantly associated with the presence of extrathyroidal ex-
tension (P = 0.020), oncocytic features (P = 0.018), and the
presence of BRAF mutations (P = 0.031; Table 3). Oncocy-
tic pattern of the FTC was significantly associated with
the gain of LCN2 expression (P = 0.016; Additional file 12:
Table S6). PTC with gain of LCN2 expression were signifi-
cantly larger (2.72 ± 0.30 cm) than PTC without gain of
expression (1.76 ± 0.34 cm; P = 0.023; Additional file 14:
Table S8). Although not statistically significant (P =
0.130), extrathyroidal extension was more frequent in
PTC with gain (54%) than without gain (31%) of
LCN2 expression. No significant associations that
could be related with gain of LCN2 expression were
observed in FVPTC.

Clinical and molecular associations with loss of CRABP1
expression
CRABP1 expression levels were successful measured by
qPCR in 89 DTC (15 FTC, 19 FVPTC and 55 PTC), 10
thyroid cancer cell lines, 14 FTA, and 19 matched thy-
roid normal tissues (Fig. 5a). Significant loss of CRABP1
expression was detected in FTC, FVPTC and PTC (P <
0.001), and in FTA (P = 0.023; Fig. 5b). Notably, all the
10 thyroid cancer cell lines tested showed loss of
CRABP1 expression (Fig. 5c). Loss of CRABP1 expres-
sion was associated with encapsulated DTC (P = 0.037).
BRAF mutations (P = 0.025; Table 3) were only present
in DTC with loss of CRABP1 expression. No significant
associations were found in FTC, FVPTC and PTC with
loss of CRABP1 expression.

Clinical and molecular associations with loss of CILP
expression
CILP expression levels were successfully measured by
qPCR in 88 DTC (14 FTC, 20 FVPTC and 54 PTC), 10
thyroid cancer cell lines, 17 FTA, and twelve matched

Fig. 3 Differential gene expression of C1QL1 in thyroid tumours and normal tissues. Gene expression was measured in follicular thyroid adenoma
(FTA), follicular thyroid cancer (FTC), follicular variant of papillary thyroid carcinoma (FVPTC), papillary thyroid carcinoma (PTC), normal thyroid
tissues and thyroid cancer cell lines by real-time quantitative PCR. Histogram showing the gene expression of each sample ordered by expression
levels (a). Box plot representation (median and Tukey whiskers) showing gene expression of each subgroup of thyroid tumours – FTA, FTC, FVPTC
and PTC (b). Gene expression of the thyroid cancer cell lines (c). Gene expression was calibrated by the pool of normal thyroid tissues. Statistically
significant values: *P = 0.015, **P = 0.001
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thyroid normal tissues (Fig. 6a). Loss of CILP was detected
in FTC, FVPTC and PTC (Fig. 6b), but differences only
attained the threshold of statistical significance in PTC (P
= 0.013). All the ten thyroid cancer cell lines tested
showed loss of CILP expression (Fig. 6c). NRAS mutations
(P = 0.001; Table 3) were only present in DTC with loss of
CILP expression. The same association was also found in
FVPTC with loss of CILP expression (P = 0.043). No sig-
nificant associations were found in FTC and PTC with
loss of CILP expression.

Association of thyroid cancer risk factors and gene
expression
A regression model was performed with C1QL1, LCN2,
CRABP1 and CILP expression values for thyroid cancer
prognostic factors: age of patients (> 45 years), tumour
size (> 4 cm), and presence of extrathyroidal extension
of the tumour (Table 4). Distant metastasis as prognostic
factor was not considered for the computation in the re-
gression models due to the reduced number of thyroid
cancers with distant metastasis in the present series.

In the univariate analysis, gain of the C1QL1 [odds ra-
tio (OR) = 5.34; P = 0.006] and LCN2 (OR = 3.48; P =
0.029) expression were significantly associated with the
extrathyroidal extension of the tumour. In the multivari-
ate model, gain of C1QL1 (OR = 4.86; P = 0.011) and
LCN2 (OR = 3.39; P = 0.039) expression were independ-
ent predictive factors for extrathyroidal extension in
DTC. Additionally, gain of C1QL1 expression was ob-
served in the larger (> 4 cm) DTC (OR = 4.60), but the
difference was only borderline in terms of statistical sig-
nificance (P = 0.056). No associations were found be-
tween CRABP1 and CILP expression and prognostic
factors of thyroid cancer.

Discussion
The clinical behaviour of thyroid cancer is still difficult
to predict and clinical and histopathological prognostic
factors remain the key elements for diagnosis and prog-
nosis of the patients [4]. Due to the scarcity of molecular
biomarkers that can predict the clinical behaviour of
thyroid tumours, we used the high-throughput paired-
end RNA-seq technology to progress in this subject.

Fig. 4 Differential gene expression of LCN2 in thyroid tumours and normal tissues. Gene expression was measured in follicular thyroid adenoma
(FTA), follicular thyroid cancer (FTC), follicular variant of papillary thyroid carcinoma (FVPTC), papillary thyroid carcinoma (PTC), normal thyroid
tissues and thyroid cancer cell lines by real-time quantitative PCR. Histogram showing the gene expression of each sample ordered by expression
levels (a). Box plot representation (median and Tukey whiskers) showing gene expression of each subgroup of thyroid tumours – FTA, FTC, FVPTC
and PTC (b). Gene expression of the thyroid cancer cell lines (c). Gene expression was calibrated by the pool of normal thyroid tissues. Statistically
significant values: *P = 0.013 **P < 0.001
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Until now, few RNA-seq studies on thyroid cancer have
been published [9, 20–23], but none in FTC. In this pio-
neering study using FTC as a model, we gave a particu-
lar attention towards the identification of genes
differentially expressed in mFTC and wFTC.
In total, 17 genes were found to be differentially

expressed in mFTC and wFTC. After customized filter-
ing and validation of expression values by qPCR, C1QL1,
LCN2, CRABP1 and CILP genes were selected for fur-
ther validations in a larger series of DTC, using FTAs
and a pool of normal thyroid tissues for comparison.
Remarkably, CRABP1 was differentially expressed be-

tween DTC, FTA and normal thyroid tissue. Expression
of CRABP1 was significantly lower in FTC, FVPTC and
PTC and in all ten thyroid cancer cell lines than in nor-
mal thyroid and FTA. In the ROC analysis, AUC for the
CRABP1 had the highest value (0.902), in the compari-
son of DTC versus normal thyroid. Gene expression
from thyroid samples in TCGA reinforced CRABP1 as
biomarker in DTC.
CRABP1 (cellular retinoic acid binding protein1) en-

codes a specific binding protein for a vitamin A family

member and is thought to play an important role in ret-
inoic acid-mediated differentiation and proliferation pro-
cesses. Loss of CRABP1 expression in thyroid cancer
was shown in previous studies [24, 25], and hypermethy-
lation of CRABP1 promoter CpG islands has been
shown as a possible explanation for its reduced expres-
sion in thyroid cancer [26] and in other human cancers
[27–29]. Our results confirm the potential of CRABP1
as a biomarker of DTC, based in a large number of DTC
(n = 89) encompassing several subtypes – FTC, FVPTC
and PTC, and controlled by a pool of normal thyroid tis-
sues and of benign tumours – FTA. Our results suggest
that CRABP1 should be tested in order to see if it may be
used in FNAB, for the differential diagnosis of the thyroid
nodules displaying morphological features suspicious of
malignancy. In contrast to results obtained in other hu-
man cancers [30, 31], we did not find any significant asso-
ciation between CRABP1 expression and several well
established prognostic factor in thyroid cancer.
CILP was found differentially expressed between DTC

and normal thyroid tissue. Loss of CILP expression was
observed in FTC, FVPTC and PTC, but the difference was

Fig. 5 Differential gene expression of CRABP1 in thyroid tumours and normal tissues. Gene expression was measured in follicular thyroid adenoma
(FTA), follicular thyroid cancer (FTC), follicular variant of papillary thyroid carcinoma (FVPTC), papillary thyroid carcinoma (PTC), normal thyroid tissues
and thyroid cancer cell lines by real-time quantitative PCR. Histogram showing the gene expression of each sample ordered by expression levels (a).
Box plot representation (median and Tukey whiskers) showing gene expression of each subgroup of thyroid tumours – FTA, FTC, FVPTC and PTC (b).
Gene expression of the thyroid cancer cell lines (c). Gene expression was calibrated by the pool of normal thyroid tissues. Statistically significant values:
*P = 0.023 **P < 0.001
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only significant for the PTC. Notably, all thyroid cancer
cell lines had loss of CILP expression. NRAS mutations
were only present in DTC with loss of CILP expression.
No associations were observed between CILP expression
and other prognostic factors of thyroid cancer.
CILP (cartilage intermediate layer protein) can act as a

negative regulator of TGFβ and inhibitory effect of CILP
on TGFβ signalling increases with cartilage degeneration
[32]. To the best of our knowledge there are no reports
on record evidencing a possible relationship between

CILP expression and cancer. Based on the data obtained
in our study, it is not clear that CILP may be used as a
good biomarker for DTC in spite of the aforementioned
differentiated expression between PTC and normal thy-
roid tissue. The study of a larger series is required to
clarify this issue.
Similar to the CRABP1, LCN2 was found differentially

expressed between DTC, FTA and normal thyroid tissue.
Gain of LCN2 expression was detected in FTC, FVPTC
and PTC, but this gain only obtained the threshold of

Fig. 6 Differential gene expression of CILP in thyroid tumours and normal tissues. Gene expression was measured in follicular thyroid adenoma
(FTA), follicular thyroid cancer (FTC), follicular variant of papillary thyroid carcinoma (FVPTC), papillary thyroid carcinoma (PTC), normal thyroid
tissues and thyroid cancer cell lines by real-time quantitative PCR. Histogram showing the gene expression of each sample ordered by expression
levels (a). Box plot representation (median and Tukey whiskers) showing gene expression of each subgroup of thyroid tumours – FTA, FTC, FVPTC
and PTC (b). Gene expression of the thyroid cancer cell lines (c). Gene expression was calibrated by the pool of normal thyroid tissues. Statistically
significant values: *P = 0.013

Table 4 Associations of fold change in gene expression with prognostic factors in differentiated thyroid cancer

Age (≥ 45 years) Tumour size (> 4 cm) Extrathyroidal extension

Expression level
(fold change)

Univariate analysis Univariate analysis Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

C1QL1 Gain (>1) 2.02 (0.835–4.88) NS (0.119) 4.60 (0.963–21.9) NS (0.056) 5.34 (1.63–17.5) 0.006 4.86 (1.43–16.5) 0.011

LCN2 Gain (>1) 1.17 (0.484–2.83) NS (0.726) 0.730 (0.209–2.55) NS (0.622) 3.48 (1.14–10.6) 0.029 3.39 (1.06–10.9) 0.039

CRABP1 Loss (<−1) 0.622 (0.197–1.97) NS (0.419) 1.345 (0.268–6.75) NS (0.719) 1.74 (0.436–6.96) NS (0.432) – –

CILP Loss (<−1) 0.481 (0.201–1.15) NS (0.100) 2.75 (0.705–10.7) NS (0.145) 1.40 (0.530–3.70) NS (0.496) – –

Bold values indicate the result was statistically significant
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statistical significant in PTC. In the ROC analysis, AUC
for the LCN2 had the highest value (0.898), in the com-
parison of DTC versus FTA. This finding suggests that
LCN2 overexpression may be an interesting biomarker
of DTC. Gain of LCN2 expression in DTC was signifi-
cantly associated with the presence of extrathyroidal
extension, oncocytic features and presence of BRAF
mutation. In addition, gain of LCN2 expression in PTC
was significantly associated with larger tumour size.
Gene expression found in thyroid samples from TCGA
confirmed LCN2 as biomarker in DTC.
LCN2 is a small secreted glycoprotein from the lipoca-

lins family proteins that is important in the protection
against bacterial infection and in the modulation of
oxidative stress [33]. Consistent with our findings,
LCN2 protein overexpression has previously been
found in a small series of thyroid cancers [34]. Our
data show that higher LCN2 expression (OR = 3.48; P
= 0.029) is significantly associated with extrathyroidal
extension, a prognostic factor that is strongly associate
with progression of thyroid cancer. Functional studies
in thyroid cancer cell lines also support this assumption;
ectopic expression of LCN2 in thyroid cancer cell line
leads to an increase of its metastatic behaviour [35]. LCN2
has been indicated as a potential diagnostic and prognos-
tic cancer biomarker in other cancer models [reviewed in
[33]]. Our results indicate that LCN2 expression may also
serve as a useful biomarker in DTC, namely for the FNAB
diagnosis of thyroid nodules.
C1QL1 was found differentially expressed between

DTC and normal thyroid tissue. We observed a clear cut
gain of C1QL1 expression in FTC, FVPTC and PTC.
The relative low number of FTC of the present series
can justify the lack of statistical significance verified in
the comparison of FTC with normal thyroid tissue re-
garding C1QL1 expression. Gain of C1QL1 expression
was significantly associated with the presence of extra-
thyroidal extension in DTC. In PTC, tumours with gain
of C1QL1 expression were significantly larger than tu-
mours without C1QL1 overexpression. Since extrathyroi-
dal extension and tumour size are major prognostic
factors of thyroid cancer it may be advance that gain of
expression of C1QL1 will probably be a good indicator
of clinical evolution. Notably, gain of C1QL1 expression
was significantly higher in wFTC than in mFTC, reinfor-
cing the assumption that gain of C1QL1 expression is re-
lated with thyroid cancer progression. Although we
found an association of C1QL1 overexpression and
lymphocytic thyroiditis in DTC, further statistical ana-
lyses revealed no significant differences of C1QL1 ex-
pression between the subtypes of DTC with lymphocytic
thyroiditis and without lymphocytic thyroiditis (P =
0.316). Gene expression from thyroid samples in TCGA
reinforced C1QL1 as biomarker in DTC.

C1QL1 is member of a subfamily of small secreted pro-
teins of unknown function -C1q-like that are expressed al-
most exclusively in brain, and produced in differential
patterns by specific types of neurons [36]. There are no
current reports establishing a possible relation between
C1QL1 expression and cancer. Despite this, our study
showed a significant association between higher C1QL1
expression (OR = 5.34; P = 0.006) and extrathyroidal ex-
tension. Additionally, gain of C1QL1 expression was ob-
served in the larger (> 4 cm) thyroid cancers (OR = 4.60;
P = 0.056), thus reinforcing the importance of C1QL1 ex-
pression as predictor of thyroid cancer progression. Fur-
ther studies in larger patient-series are necessary to
confirm the statistical significance of our finding with re-
gard to C1QL1 expression.
Afirma™ Gene Expression Classifier (GEC) and Thyro-

Seq® v.2 are diagnostic tools commercially available and
provide accurate classification of most thyroid nodules
into benign or malignant in FNAB with undetermined
diagnostic [37–41]. Both assays have high negative
(NPV) and/or positive predictive values (PPV) in indicat-
ing malignancy of thyroid nodules [39]. These diagnostic
tools avoid unnecessary surgeries reducing costs and
risks for the patients. Although very useful, these tech-
nologies are based in a panel of numerous biomarkers,
with high costs and not used broadly. Additionally, the
use of molecular data for predict the prognostic of thy-
roid cancer patients remains controversial [42] and the
identification of biomarkers with prognostic potential
(as we describe here for C1QL1 and LCN2) can further
improve the design of this kind of assays. Curiously, the
Afirma™ GEC and ThyroSeq® v.2 panels do not include
any gene validated in our data, reinforcing the relevance
and novelty of the biomarkers described here. A possible
limitation of the present study was the relatively small
discovery set used in the RNA-seq analysis, however, to
obviate that, the results were validated by RT-PCR in a
series of 118 thyroid tumours and 19 normal thyroid
samples and by bioinformatics expression analysis in 393
PTC and 59 thyroid normal samples using the TCGA
dataset [9].

Conclusions
In conclusion, we found that expression of the individ-
ual genes CRABP1 and LCN2 may be useful bio-
markers in DTC, able to improve FNAB differential
diagnosis of benign versus malignant tumours. We also
found that LCN2 and C1QL1 are independent predic-
tors of extrathyroidal extension in DTC. The utility of
these biomarkers should be evaluated in larger patient
series and, in case our findings are confirmed, it will
be very interesting to witness the development of tools
for the diagnosis and/or prognostic of thyroid cancer
using them.
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