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Transmembrane proteins have critical biological functions and play a role in a multitude of cellular pro-
cesses including cell signaling, transport of molecules and ions across membranes. Approximately 60% of
transmembrane proteins are considered as drug targets. Missense mutations in such proteins can lead to
many diverse diseases and disorders, such as neurodegenerative diseases and cystic fibrosis. However,
there are limited studies on mutations in transmembrane proteins. In this work, we first design a new
feature encoding method, termed weight attenuation position-specific scoring matrix (WAPSSM), which
builds upon the protein evolutionary information. Then, we propose a new mutation prediction algo-
rithm (cascade XGBoost) by leveraging the idea learned from consensus predictors and gcForest.
Multi-level experiments illustrate the effectiveness of WAPSSM and cascade XGBoost algorithms.
Finally, based on WAPSSM and other three types of features, in combination with the cascade XGBoost
algorithm, we develop a new transmembrane protein mutation predictor, named MutTMPredictor. We
benchmark the performance of MutTMPredictor against several existing predictors on seven datasets.
On the 546 mutations dataset, MutTMPredictor achieves the accuracy (ACC) of 0.9661 and the
Matthew’s Correlation Coefficient (MCC) of 0.8950. While on the 67,584 dataset, MutTMPredictor
achieves an MCC of 0.7523 and area under curve (AUC) of 0.8746, which are 0.1625 and 0.0801 respec-
tively higher than those of the existing best predictor (fathmm). Besides, MutTMPredictor also outper-
forms two specific predictors on the Pred-MutHTP datasets. The results suggest that MutTMPredictor
can be used as an effective method for predicting and prioritizing missense mutations in transmembrane
proteins. The MutTMPredictor webserver and datasets are freely accessible at http://csbio.njust.edu.cn/
bioinf/muttmpredictor/ for academic use.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the development and application of next-generation
sequencing technology, a large amount of genetic mutation data
has been detected, which can be utilized to study the correlation
between human genetics and diseases [1]. The rapid identification
of pathogenic genetic mutations can help understand the patho-
genesis of diseases, which can also contribute to the early detec-
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tion of disease and timely treatment [2]. However, it is time-
consuming and laborious to distinguish disease-associated muta-
tions from neutral ones using traditional methods. Thus, develop-
ing computational techniques to address this is desirable [3].

Missense mutation (MM) is one kind of genetic variants and
many methods have been developed to predict disease-
associated MM. According to the features utilized, Marwa et al.
divided these methods into two categories, i.e. individual and
consensus-based predictors [4]. More specifically, there are three
subcategories for the individual predictors, including: (1)
sequence-based, such as PROVEAN [5] and SIFT [6]; (2) structure-
based, for example, SDM [7] and APOGEE [8], and (3) integrated
(sequence & structure), for instance, SNAP [9], PolyPhen-1 [10],
and PolyPhen-2 [11,12]. Consensus-based predictors often inte-
grate the outputs of several individual predictors (such as Pre-
dictSNP [13] and Meta-SNP [14]) and are superior to individual
ones in mutation effect prediction [13,15,16].

Among the above predictors, PolyPhen-1 [10] distinguishes
specific types of proteins and uses the transmembrane hidden
Markov model [17] for membrane region prediction. However,
most predictors are not designed for transmembrane proteins
which have diverse important function roles, such as cell signaling,
cell adhesion, and energy generation [18-22]. It is reported that
approximately 60% of membrane proteins are considered as drug
targets [23].

Mutations can affect proteins on several levels. They can disrupt
structural stability, affect folding/modular degradation, and lead to
improper transportation or the emergence of toxic conformations
[24]. This influence manner also appears in membrane proteins.
Specifically, the a-helix subsequence and helicity in membrane
proteins are critical in interacting with lipids and/or other helices
to form a higher structure [25]. This procedure is called folding
stage. In order to ensure that membrane protein is assembled cor-
rectly, cells have already evolved coordination and quality control
systems, namely protein deposition networks [26,27]. However,
even with the above systems, assembly efficiencies of many pro-
teins at normal body temperature are still less than 50% [28], lead-
ing to the destruction of protein deposition network [25]. In
membrane protein mutation research field, formation of Tertiary
(misfolding) and Quaternary (abnormal oligomerization) struc-
tures are defined as mismatches [25]. Species with misassembled
mutations may eventually cause disease by affecting the normal
flow of proteins, leading to a decrease in the number of functional
proteins on target membrane; the retention of toxic functional gain
proteins in endoplasmic reticulum; and/or overwhelming estrogen
receptors. The quality control component then triggers an unfolded
protein response and apoptosis [29]. On the other hand, mis-
matched membrane proteins may reach their target membrane,
resulting in abnormal function of target and further leading to dis-
eases, such as cardiopathies, neurological diseases, and cancer
[30,31]. Furthermore, even one single missense mutation occurring
on the critical site of a-helix can be deleterious to protein folding
and/or its biological function [25]. Thus, the study of transmem-
brane protein mutations is conducive to a clearer understanding
of its functional mechanism, which is also essential for diagnosing
and treating specific diseases.

Recently, a variety of database or methods have been developed
to store or predict mutations in transmembrane proteins. The
MutHTP (mutations in human transmembrane proteins) database
were developed to deposit and retrieve mutations in such proteins
[32]. Besides, BorodaTM [33], Pred-MutHTP [31], mCSM-
membrane [34], and TMSNP [35] are specific predictors for muta-
tions prediction in such proteins. Specifically, in 2019, Kulandai-
samy et al. collected MM in transmembrane proteins from
HumSavar (http://www.uniprot.org/docs/humsavar), SwissVar
[36], 1000 Genomes [37], ExAC [38], COSMIC [39], and ClinVar
6401
[40]. After selecting, mapping, and extracting procedures, MutHTP
was constructed, which stored MM, insertion, and deletion muta-
tions [32]. Furthermore, BorodaTM was developed, which was
the first method specifically designed for mutations prediction in
transmembrane proteins [33]. The training and test proteins in
BorodaTM [33] all have 3D structures in the PDB database [41].
Pred-MutHTP [31] was proposed and four specific datasets were
available for mutation prediction at its website. In 2020, mCSM-
membrane was developed, which utilized graph-based signatures,
protein geometry, and physicochemical properties to predict the
pathogenicity of mutations [34]. However, mCSM-membrane
could only predict mutations in proteins with known 3D structures
in PDB database [41]. In 2021, TMSNP database was constructed,
which comprised 196,705 non-pathogenic, 2,624 pathogenic, and
437 likely pathogenic mutations, respectively in transmembrane
proteins [35].

Although numerous methods have been developed, the concept
and characteristics of ‘‘mutation microenvironment information”
are not considered generally, which may be useful for improving
the prediction performance. Second, few methods take the outputs
of individual predictors, which can make the model more robust.
Third, the feature reutilized in gcForest [42] and DenseNet [43]
can be leveraged to significantly improve the model’s prediction
performance. However, such ‘‘gained feature” is not used in most
methods.

In this study, some further improvements are made with
respect to the following main aspects. Firstly, we propose a weight
attenuation feature based on evolutionary information, termed
WAPSSM (weight attenuation position-specific scoring matrix).
This feature extracts the microenvironment information, along
with different weights to measure different influence on the muta-
tion site. Second, we leverage the idea inspired by consensus pre-
dictors that take the outputs of individual predictors as part of
the feature vector. Third, we utilize the previous level’s output as
the input to the following level, which is learned from gcForest
[42]. Building upon such advantages, we propose the cascade
XGBoost-based algorithm and develop a powerful predictor, ter-
med MutTMPredictor, for improving prediction of transmembrane
protein mutations. Extensive benchmarking experiments demon-
strate the effectiveness of WAPSSM and cascade XGBoost algo-
rithm. Moreover, performance comparison with several existing
predictors on six different datasets and blind test using a third-
party dataset show that MutTMPredictor is effective for predicting
mutations in transmembrane proteins.
2. Mutation datasets and feature representation

2.1. Benchmark datasets

In this work, we utilized seven datasets to evaluate and com-
pare the performance of different predictors. (1) 546 mutations
dataset: we collected this dataset from BorodaTM [33], which
comprised 154 neutral and 392 disease-associated missense muta-
tions in 64 transmembrane proteins. Notably, these proteins have
1 to 13 transmembrane alpha-helices and known 3D structures
in the PDB [41]. (2) Pred-MutHTP dataset: mutations in Pred-
MutHTP [31] were collected from MutHTP [32] by retaining muta-
tions present in at least two databases and removing the sequence
redundancy using CD-HIT [44]. In addition, three sub-datasets (i.e.
‘‘Cytoplasmic or inside”, ‘‘Membrane”, and ‘‘Extracellular or out-
side”) were constructed based on different topological regions
where the mutations were located. (3) 67,584 mutations dataset:
the original dataset comprised 29,033 disease-associated and
38,680 neutral missense mutations. Some proteins and mutations
were deleted, because the wild-type amino acids at given positions

http://www.uniprot.org/docs/humsavar


Table 1
Statistical summary of the seven benchmark datasets used in this study.

Order Name Number of mutations
(number of proteins with
mutations)

Note

Disease Neutral

1 546 mutations 392 (31) 154 (51) From BorodaTM [33]
2 Whole data*

(Pred-MutHTP)
11,846 (1,014) 9,533

(2,958)
From Pred-
MutHTP [31]

3 Cytoplasmic or
inside

4,416 (625) 2,958
(1,513)

From Pred-
MutHTP [31]

4 Membrane 2,421 (454) 1,285
(853)

From Pred-
MutHTP [31]

5 Extracellular or
outside

4,948 (677) 5,083
(1,800)

From Pred-
MutHTP [31]

6 67,584
mutations

29,020 (2,581) 38,564
(11,597)

From BorodaTM [33]

7 TMSNP 2,624 (354), 437
likely (143)

196,705
(2,924)

From TMSNP [35]

Note: For each dataset the number of proteins with mutations is given in paren-
thesis. Whole data*(Pred-MutHTP): all mutations in human transmembrane pro-
teins are considered.
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did not match those in UniProt [45]. Accordingly, we removed 13
disease-associated and 116 neutral mutations. (4) TMSNP data-
base: TMSNP [35] stored a certain set of membrane proteins taken
from UniProt [45]. It retrieved the disease-causing/pathogenic
mutations occurring in transmembrane helical regions from Clin-
Var [40] and SwissVar [36] and nonpathogenic mutations/allele
frequency from GnomAD [46] and ClinVar [40]. A statistical sum-
mary of these seven benchmark datasets is provided in Table 1.

2.2. Feature representation and selection

In this work, each mutation was represented by a feature vector
in a multi-dimensional information space. Herein, we extracted
four different types of features, including features collected from
BorodaTM [33], features based on evolutionary information, out-
puts of four individual mutation analysis tools, and outputs of
three sub_XGBoost models. A detailed description of these features
is provided in the following subsections.

2.2.1. Features collected from BorodaTM
BorodaTM [33] utilized CompoMug [47] to extract features for

each mutation, including protein sequence-based, structure-
based, and energy-based features. Specifically, as for sequence-
based characteristics, 12 types of physicochemical properties (such
as isoelectric point, ZIMJ680104 and net charge, KLEP840101) were
extracted from AAindex [48]. Besides, structure-based characteris-
tics mainly contain secondary structure, residue solvent exposure,
and number of residues contact in 5Å proximity. Energy-based
characteristics mainly comprise Van-der-Waals, entropic, and
energy within 5Å centered by the mutant site. We collected the
above feature descriptors from BorodaTM [33], named as ‘‘Origi-
nal”. A detailed list of ‘‘Original” features can be found in Supple-
mentary Table S1.

2.2.2. Gaussian WAPSSM
Some characteristics have been frequently used for represent-

ing proteins, e.g. position-specific scoring matrix (PSSM) [49].
Numerous research works have proven its discriminative capabil-
ity for sequence classification problems in bioinformatics, such as
protein-DNA binding site prediction [50] and transmembrane pro-
tein prediction [51]. We also used PSSM as part of the feature vec-
tor. PSI-BLAST [49] was utilized to generate the PSSM
characteristics by searching each query against the SWISS-PROT
database [45]. Specifically, PSI-BLAST [49] can generate multiple
sequence alignment (MSA) to retrieve the biological evolutionary
6402
information of the closest relatives for the query protein, by setting
the e-cutoff value to 1e-3, number of iterations to 3, and substitu-
tion score matrix to BLOSUM62 [52].

On the basis of evolutionary information (i.e. PSSM), we need to
take the following two aspects into consideration. First, the charac-
teristic of a mutation site i should consist of its own and neighbor-
ing residues (i.e. the ‘‘microenvironment”). Second, different
neighboring residues may have a diverse impact on the mutation
site i. That is, a neighboring residue located further away from
the centered residue i would have a lesser impact. In contrast,
those located in the closer proximity would have a more significant
impact. In light of above two aspects, we developed a weight atten-
uation PSSM (named WAPSSM) extraction algorithm by combining
the original PSSM matrix and the concept of weight attenuation.

The obtained xPSSMi comprises three parts of weighted sub-
vectors, including w�k � ei�k; ::: ;w�1 � ei�1

� �
1�k, w0 � ei, and

w1 � eiþ1; ::: ;wk � eiþk

� �
1�k, where w0 � ei represents the PSSM feature

of the mutation site i itself, whereas w�k � ei�k; ::: ;w�1 � ei�1
� �

1�k and

w1 � eiþ1; ::: ;wk � eiþk
� �

1�k are the weighted local microenvironment
PSSM features before and after the mutation site i. According to our
preliminary analyses, herein we set k to 3.

Gaussian WAPSSM algorithm

Input: the original PSSMn�20 matrix and half of the
microenvironment size k

Step 1: Use the sigmoid function h xð Þ ¼ 1= 1þ e�xð Þ to
transform the original PSSM element values into range (0,
1). Thereafter, we obtain the PSSM matrix:

½eT1; eT2; � � � ; eTi ; � � � ; eTn�
T
n�20, where ei ¼ ½ei1ei2 � � � ei20� and n is

the protein sequence length. Here, we used the numerical
codes 1, 2, 3, . . ., 20 to represent 20 native amino acid types.

Step 2: For each mutation site i, collect its microenvironment-
related local PSSM feature, formulated as imPSSMð2kþ1Þ�20,
where 2k + 1 is the number of residues in the
microenvironment centered at the mutation site i.

Step 3: In order to measure the impact of residues within
different distances on the mutation site, the Gaussian
weight vector w is utilized to measure the degree of such
attenuation. Herein, we set

w : h xð Þ ¼ 1ffiffiffiffiffi
2p

p
r
e�

x�lð Þ2
2r2 l ¼ 0;r ¼ 1ð Þ.

Step 4: Building upon Step 3,

w ¼ w�k ::: w�1 w0 w1 ::: wk
� �T can be obtained,

i.e. w�k ¼ h �kð Þ; ::: ;w0 ¼ 1; ::: ;wk ¼ h kð Þ.
Step 5: Equip the local feature imPSSMð2kþ1Þ�20 with the

Gaussian weight vector w. We would obtain the WAPSSM
feature wPSSMi ¼ w�k � ei�k ::: w0 � ei ::: wk � eiþk

� �
.

Output: WAPSSM feature
2.2.3. Outputs of four individual mutation analysis tools
In this work, we took advantage of consensus methods by tak-

ing the outputs of several individual mutation analysis tools as part
of the feature vector. Specifically, we first fed the mutations into
PROVEAN [5], PolyPhen-2 [12], and fathmm [53] webservers. Sub-
sequently following the prediction, we downloaded the respective
output files and extracted the results predicted by each tool. This
kind of feature is named as ‘‘Individuals’ output”.

2.2.4. Outputs of three sub_XGBoost models and the cascade XGBoost
algorithm

In the gcForest work, Zhou et al. designed a cascade forest algo-
rithm, which took the outputs of the previous level as part of the
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input for the following level [42]. Herein, we also collected the out-
puts of three sub_XGBoost models, which were utilized in the cas-
cade XGBoost algorithm, as follows:

Cascade XGBoost algorithm

Input: original feature, PSSM, and outputs of four mutation
analysis tools

Step 1: Utilizing the Gaussian WAPSSM algorithm, we can

obtain the WAPSSM feature vector, named as f 1.
Step 2: Collect the original features in BorodaTM [33], labeled

as f 2.
Step 3: Set different weights n1; n2; n3; n4 to outputs of

PROVEAN, SIFT, fathmm, and PolyPhen-2. Thereafter, we

can obtain a new feature vector f 3. That is,

f 3 ¼ n1�PPROVEAN n2�PSIFT n3�Pfathmm n4�PPolyPhen-2

h i
.

Step 4: Feed f 1 into sub_XGBoost1. Label the outputs as

O1
XGBoost.

Step 5: Feed f 2 into sub_XGBoost2. Label the outputs as

O2
XGBoost.

Step 6: Feed f 3 into sub_XGBoost3. Label the outputs as

O3
XGBoost.

Step 7: Concatenate the above feature vectors and mark as

f total. That is,

f total ¼ f 1 f 2 f 3 O1
XGBoost O2

XGBoost O3
XGBoost

h i
.

Step 8: Use mRMR [54] to remove the redundant and

irrelevant features from f total. Thereafter, we can obtain
feature vector f s.

Step 9: Feed f s into the XGBoost model for final prediction
p1; p2½ �.

Output: p1; p2½ �

1
Firstly, for each mutation, we denoted the WAPSSM feature as f ,

labeled the ‘‘Original” feature as f 2. In addition, we named the
mutation analysis outputs as PPROVEAN, PSIFT, Pfathmm, and PPolyPhen�2

and set different weights n1; n2; n3; n4 to the above four outputs
(i.e. n1 � PPROVEAN, n2 � PSIFT, n3 � Pfathmm, and n4 � PPolyPhen�2), which

were concatenated and labelled as f 3.

Secondly, we fed f 1, f 2, and f 3 into three sub_XGBoost models
(namely sub_XGBoost1, sub_XGBoost2, and sub_XGBoost3), and
documented the corresponding outputs as O1

XGBoost, O
2
XGBoost, and

O3
XGBoost respectively.

Thirdly, we concatenated the features (i.e. f 1, f 2, f 3, O1
XGBoost,

O2
XGBoost, and O3

XGBoost) and labeled as f total. Notably, f total may contain
redundant and noisy features, which might lead to the decrease of
the model performance. Thus, mRMR [54] was applied to rank and
select more important features, denoted the selected feature vector
as f s.

Finally, we fed f s into the XGBoost model, and denoted the final
prediction results as p1; p2½ �, where p1 and p2 represent the proba-
bility of belonging to neutral and disease-associated class.

2.2.5. Feature selection using the minimum redundancy maximum
relevance algorithm

In order to filter out redundant and identify features that con-
tribute the most to model performance, in this work, we applied
the minimum redundancy maximum relevance (mRMR) algorithm
[54] to rank and select the most critical features from the extracted
feature vector, introduced as follows:
6403
maxD S; Cð Þ; D ¼ 1
Sj j

X
xi2S

I xi; Cð Þ ð1Þ

minR Sð Þ;R ¼ 1

Sj j2
X

xi ; xj2S
I xi; xj
� � ð2Þ

max FðD;RÞ; F ¼ D� R ð3Þ
where xi and xj are two specific feature vectors, I(xi; xj) is the mutual
information function, S is the entire feature set, C is the mutation
class (i.e. disease-associated and neutral mutation), and D is the
correlation of xi and C. The function max D(S, C) in Eq. (1) means
that feature xi has the most significant effect on class C. Besides, R
represents the correlation between xi and xj. Function min R(S) in
Eq. (2) means that the feature vectors xi and xj have the minimum
redundancy. As shown in the formula (3), mRMR can find out a fea-
ture subspace, which has the minimum redundancy between fea-
tures and the maximum relevancy with the mutation class [54].

2.3. Performance evaluation

In this work, we utilized two evaluation methods (i.e. random-
ized 10-fold cross-validation and leave-one-out cross-validation)
to assess the XGBoost model and compare MutTMPredictor with
other machine learning methods and existing predictors.

(1) Randomized 10-fold cross-validation

The specific process follows. The mutation dataset was divided
into ten parts, and the test procedure was implemented in ten ran-
domization cycles. For each cycle, nine parts of the dataset were
used as the training set to train the model, while the remaining
part was used to test the performance of the trained model. We
then calculated the average values of ten cycles as the model
performance.

(2) Leave-one-out cross-validation

Among seven datasets, the 546 mutations dataset is relatively
small. Thus, the performance of the predictor may be biased on
such dataset. Moreover, it is also somewhat unreasonable to use
only 10% of dataset (only 55 mutations) and compare with the
existing predictors. Therefore, we performed the ‘‘leave-one-out”
test on this dataset.

2.4. Evaluation metrics

Based on the confusion matrix, several performance metrics can
be derived, such as Recall, sensitivity (Sen), specificity (Spe), precision
(Pre), accuracy (ACC), Matthew’s Correlation Coefficient (MCC), F1-
score (F1), and negative predictive value (NPV), error rate (ER), false
negative rate (FNR), and false positive rate (FPR). In this work, the
above performance metrics were calculated to evaluate the devel-
oped predictor and other existing predictors [31,34,35].

Pre ¼ TP=ðTP þ FPÞ ð4Þ

Spe ¼ TN=ðTN þ FPÞ ð5Þ

NPV ¼ TN=ðTN þ FNÞ ð6Þ

Recall=Sen ¼ TP=ðTP þ FNÞ ð7Þ

F1 ¼ 2� TP = 2� TP þ FP þ FNð Þ ð8Þ
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Error rate ¼ FP=ðTP þ TN þ FP þ FNÞ ð9Þ

ACC ¼ ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ ð10Þ

False positive rate ¼ FP=ðTN þ FPÞ ð11Þ

False negative rate ¼ FN=ðTP þ FNÞ ð12Þ

MCC ¼ ðTP � TN - FP

� FNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p
ð13Þ

where TP (true positive)/TN (true negative) are the number of
disease-associated mutations/neutral mutations that are correctly
predicted as disease-associated/neutral mutations; FP (false posi-
tive) is the number of neutral mutations that are incorrectly pre-
dicted as disease-associated mutations; FN (false negative) is the
number of disease-associated mutations that are incorrectly pre-
dicted as neutral mutations, respectively.

Among all performance metrics, MCC is considered to be the
best indicator for evaluating the model performance, especially
on unbalanced datasets [55]. The value of MCC ranges from �1 to
1, while those of Pre, Spe, NPV, Recall, Sen, F1, and ACC range from
0 to 1. Generally, the larger the metric’s value, the better the mod-
el’s predictive performance [56]. Herein, we also utilized another
metric, i.e. the area under the curve (AUC), which is defined as
the area under the receiver-operating characteristic (ROC) curve
[57] and the coordinate axis. The closer the AUC value is to 1.0,
the more accurate the prediction model.

Apart from traditional performance metrics, we also utilized
three types of errors: error rate, false positive rate, and false negative
rate, which reflect the predictive performance of the trained mod-
els and range also from 0 to 1. Generally, the lower the errors val-
ues, the better the predictor.

3. Results and discussions

3.1. Illustration of the developed MutTMPredictor

Fig. 1 illustrates the workflow of MutTMPredictor. Fig. 1(A)
shows feature extraction steps: (1) Extract WAPSSM built on orig-
inal PSSM matrix; (2) Collect the ‘‘Original” features from Boro-
daTM [33]; (3) Generate ‘‘Individuals’ output” of SIFT [6],
PROVEAN [5], PolyPhen-2 [11,12], and fathmm [53], (4) Feed
‘‘WAPSSM + two other types” features into three sub_XGBoost
models and name the outputs as ‘‘Output1”, ‘‘Output2”, and ‘‘Out-
put3”, respectively. As depicted in Fig. 1(B), we concatenated the
extracted features obtained from Fig. 1(A) and applied mRMR
[54] to perform feature selection. Thereafter, we obtained the fea-
ture vector subspace and then fed into the XGBoost algorithm for
making the final prediction.

3.2. Comparison of PSSM with WAPSSM

In Section 2.2.2, we proposed the Gaussian WAPSSM algorithm,
which requires two variables: the PSSM matrix and half of the
microenvironment size. We empirically set half of the microenvi-
ronment size to 3 (i.e. 2k + 1 = 7). Herein, we conducted some com-
parison experiments to examine whether the new encoding
WAPSSM is effective and superior to the original PSSM. The
XGBoost model was implemented using scikit-learn [58], which
was trained on the training data (90%) and then tested on the test
data (10%). The performance comparison results are documented
in Table 2.

As shown in Table 2, WAPSSM features could achieve more TP
and TN, less FN and FP than PSSM. Besides, the MCC and ACC values
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of WAPSSM features were 0.2657 and 0.6364, which were 0.1688
and 0.0728 higher than those of PSSM. In terms of the Pre, Recall,
and F1 values, WAPSSM were also higher than those of PSSM. Tak-
ing the results in Table 2 into consideration, we concluded that
WAPSSM was more effective than PSSM for mutation prediction
transmembrane proteins.

3.3. Effectiveness of different types of features and their combinations

In Section 2.2, three types of features (including ‘‘WAPSSM”,
‘‘Original”, and ‘‘Individuals’ output”) were obtained. Herein, we
further concatenated them in a consecutive manner (i.e.
WAPSSM + Original + Individuals’ output) and labeled it as ‘‘Com-
bined”. In this section, we mainly examined the features effective-
ness and demonstrate whether the ‘‘Combined” features can
further improve the prediction performance. In these experiments,
the XGBoost model was trained on the training dataset and tested
on the test dataset again. The performance comparison results are
shown in Table 3.

In terms of TP, TN, FP, and FN values listed in Table 3, we can see
that the ‘‘Combined” features performed best. In terms of the Pre,
Sen, and F1 values, ‘‘Combined” was also superior to ‘‘WAPSSM”,
‘‘Original”, and ‘‘Individuals’ output” features. In addition, the
ACC value of ‘‘Combined” features was 0.8364, which was 0.2000,
0.1273, and 0.0909, respectively, higher than that of the
‘‘WAPSSM”, ‘‘Original”, and ‘‘Individuals’ output”. The MCC values
of ‘‘Original”, ‘‘WAPSSM”, and ‘‘Individuals’ output” were 0.4249,
0.2657, and 0.5068. By combining the three types of features
together (i.e. WAPSSM + Original + Individuals’ output), the MCC
value could be further increased to 0.6763, which was 0.4106,
0.2514, and 0.1695, respectively higher than that of ‘‘WAPSSM”,
‘‘Original”, and ‘‘Individuals’ output”. Taken together, we con-
cluded that the ‘‘Combined” feature is an overall best choice for
representing mutations in transmembrane proteins.

In this part, some comparison experiments were performed to
assess the effectiveness of each ‘‘Individuals’ output” feature and
their combinations. Detailed information can be found in Supple-
mentary Text S1 and Table S2. Besides, we also designed experi-
ments to test whether the prediction performance changed after
removing the WAPSSM feature. For more details, please refer to
Supplementary Table S3 and Text S2.

3.4. Cascade XGBoost improved transmembrane protein mutation
prediction

There exist some redundant features that might decrease the
performance of prediction model. As such, feature selection meth-
ods, including Chi-Square (CHI2) [59], Information Gain (IG) [60],
and Mutual Information (MI) [61], and mRMR [54], have been
applied to select features. According to the results of CHI2, IG,
MI, and mRMR, we finally selected mRMR [54] to perform feature
selection and reserved some features with the property of mini-
mum redundancy maximum relevance for the cascade XGBoost
model.

In this section, we compared the performance of our new pro-
posed cascade XGBoost with that of the XGBoost model. Again,
two models were trained on the training data and tested on the
test data. The comparison results are listed in Table 4. From Table 4,
we can see that the cascade XGBoost model predicted seven more
TP and one fewer FN than the XGBoost model. On the other hand,
MCC and ACC values of cascade XGBoost were 0.7166 and 0.8727,
which were 0.0403 and 0.0363 respectively higher than those of
XGBoost. On concerning to the Pre, Recall, and F1 values, cascade
XGBoost was also superior to XGBoost. Altogether, we concluded
that the new proposed cascade XGBoost model is a better choice
for mutation prediction.



Table 3
Performance comparison of ‘‘Original”, ‘‘WAPSSM”, ‘‘Individuals’ output”, and ‘‘Combined” features on the test data of the 546 mutations dataset.

Features TP TN FP FN Pre Sen F1 ACC MCC

WAPSSM 26 (47.3%) 9 (16.4%) 16 (29.1%) 4 (7.27%) 0.6190 0.8667 0.7222 0.6364 0.2657
Original 27 (49.1%) 12 (21.8%) 13 (23.6%) 3 (5.45%) 0.6750 0.9000 0.7714 0.7091 0.4249
Individuals’ output 28(50.91%) 13(23.64%) 12(21.82%) 2(3.64%) 0.7000 0.9333 0.8000 0.7455 0.5068
Combined 28 (50.9%) 18 (32.7%) 7 (12.7%) 2 (3.64%) 0.8000 0.9333 0.8615 0.8364 0.6763

Table 2
Performance evaluation of WAPSSM and the original PSSM features on the test data of the 546 mutations dataset.

Features ACC MCC Pre F1 Spe Recall TP TN FP FN

WAPSSM 0.6364 0.2657 0.6190 0.7222 0.3600 0.8667 26 (47.3%) 9 (16.4%) 16 (29.1%) 4 (7.27%)
PSSM 0.5636 0.0969 0.5750 0.6571 0.3200 0.7667 23 (41.8%) 8 (14.5%) 17 (30.9%) 7 (12.7%)

Fig. 1. An overall workflow of MutTMPredictor.

F. Ge, Yi-Heng Zhu, J. Xu et al. Computational and Structural Biotechnology Journal 19 (2021) 6400–6416

6405



Table 4
Performance comparison of XGBoost and cascade XGBoost on the test data of the 546 mutations dataset.

Model TP TN FP FN ACC Pre Recall F1 MCC

XGBoost# 28(50.9%) 18(32.7%) 7(12.7%) 2(3.64%) 0.8364 0.8000 0.9333 0.8615 0.6763
cascade XGBoost# 35(63.64%) 13(23.64%) 6(10.91%) 1(1.81%) 0.8727 0.8537 0.9722 0.9091 0.7166

Note: we adopted the programs in iLearn toolkit [62] to implement CHI2, IG, and MI methods and the comparison results and description of CHI2, IG, MI, and mRMR methods
can be respectively found in Supplementary Figs. S1 (A)-S1 (D), Tables S4-S5, and Text S3. XGBoost#: all features were used; cascade XGBoost#: the top 27 features selected by
mRMR [54] were applied.
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3.5. Performance comparison between cascade XGBoost and seven
machine learning methods

We compared cascade XGBoost with seven traditional machine
learning methods to further illustrate its effectiveness. These seven
methods were divided into two groups: (1) single methods, includ-
ing Support vector machine (SVM) [63,64], K-nearest neighbors
(KNN) [65], Decision tree (DT) [66], and (2) ensemble methods,
including Random forest (RF) [67,68], Extremely randomized trees
(ERT) [69], AdaBoost [70], and Gradient boosted decision trees
(GBDT) [71].

As mentioned in Section 2.1, the 546 mutations dataset used in
this section was relatively small, with only 392 disease-associated
and 154 neutral mutations. Thus, the model performance may be
biased if we only utilized the test data (only 55 mutations) to test
each model. Accordingly, we designed the following experiments
by performing 10-fold cross-validation on the entire dataset. Com-
parison results are discussed in Supplementary Text S4, Tables S7
and S8. By summarizing the results analyses, we conclude that
the cascade XGBoost model performed best.

Building upon the new feature encoding algorithm and other
extracted features, along with the cascade XGBoost model, we
implemented a new transmembrane protein mutation predictor,
named MutTMPredictor. In the following sections, the experiments
are conducted to assess the efficiency of MutTMPredictor in muta-
tion effect prediction.
3.6. Performance comparison of MutTMPredictor with six existing
predictors on 442 mutations

In this section, we performed the leave-one-out cross-
validation test to benchmark MutTMPredictor against several
existing state-of-the-art predictors. Notably, as for MutTMPredic-
tor, we utilized ‘‘individuals’ output” as part of feature vector. To
prevent model over-fitting, before implementing comparison
experiments, we first constructed a new dataset based on the
546 mutations and removed protein sequences used in individual
predictors (i.e. fathmm [53], PROVEAN [5], SIFT [6], and
PolyPhen-2 [11,12]), described below.
Table 5
Performance comparison of MutTMPredictor and six existing predictors on 442 mutations

Predictor TP TN FP

fathmm# 227(51.36%) 51(11.54%) 41(9.28%)
PROVEAN# 305(69.00%) 54(12.22%) 38(8.60%)
SIFT# 322(72.85%) 50(11.31%) 42(9.50%)
PolyPhen-2# 326(73.76%) 45(10.18%) 47(10.63%
Entprise 299(54.76%) 168(30.77%) 46(8.42%)
BorodaTM 360(65.93%) 151(27.61%) 3(0.56%)
MutTMPredictor 347(78.51%) 80(18.10%) 12(2.71%)

Note: PROVEAN#/SIFT#, http://provean.jcvi.org; PolyPhen-2#, http://genetics.bwh.harv
generated the outputs of individual predictors, BorodaTM [33] and Entprise [72] were no
546 mutations when constructing the new dataset. If no protein sequences were remove
384(70.33%); TN, 142(26.01%); FP, 12(2.20%); FN, 8(1.47%); Pre, 0.9697; Recall, 0.9796; F1,
values, it can be clearly seen that MutTMPredictor is superior to Entprise and BorodaTM o
MutTMPredictor on 546 mutations in Table 5.
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As described in BorodaTM [33], all 64 proteins containing 546
mutations, all have known 3D structures in PDB [41]. Considering
that BorodaTM [33], PolyPhen-2 [11,12], and MutTMPredictor all
utilized protein structural characteristics, we only retained pro-
teins whose ‘‘released-date” was after the individual predictors’
published date. Accordingly, after protein sequence removing pro-
cedure, we could construct a new dataset based on 546 mutations.
Specifically, we searched each protein from PDB [41] and extracted
its ‘‘deposition_date” and ‘‘release_date”.

The publication year of four individual predictors is described
herein: SIFT(2002) [6], PROVEAN (2012) [5], PolyPhen-2(2010)
[11,12], and fathmm (2013) [53]. According to these dates, we
decided to take ‘‘Year: 2013” as the cut-off threshold. That is, we
only kept those proteins whose ‘‘released-date” is after 2013. For
detailed information about the ‘‘deposition_date” and ‘‘release_-
date” of proteins and whether we should ‘‘keep” or ‘‘delete” a
specific protein, please refer to Supplementary Table S9.

After the above steps, we deleted 27 proteins containing 104
mutations and eventually kept 37 proteins with 442 mutations.
After that, we constructed a test dataset, which comprised 350
disease-associated and 92 neutral mutations. Next, we conducted
the following experiments on the remaining 442 mutations to
compare MutTMPredictor with six existing predictors. Specifically,
for fathmm [53], PROVEAN [5], SIFT [6], and PolyPhen-2 [11,12],
we fed all 442 mutations into their webservers. Then we calculated
the performance metrics based on the returned predictions and
provided the results in Table 5 and Fig. 2(A)–(B). In Table 5, we col-
lected the prediction results of BorodaTM [33] and Entprise [72]
from BorodaTM [33]. Besides, we further calculated TP, TN, FP,
and FN values for BorodaTM and Entprise based on the given
ACC, Pre, Recall, F1, and MCC values.

Based on the comparison results in Table 5 and Fig. 2(A)–(B), we
draw the following conclusions: (1) For PROVEAN, SIFT, fathmm,
and PolyPhen-2, MCC values ranged from 0.1686 to 0.4936, and
ACC ranged from 0.6290 to 0.8416. The average values of MCC
and ACC were 0.3948 and 0.7806, which were much lower than
those of Entprise (i.e. 0.6940 and 0.8553) and BorodaTM (0.8563
and 0.9358).

(2) Entprise is superior to the above four predictors. For
instance, the MCC value of Entprise was 0.6940, which was
.

FN Pre Recall F1

123(27.83%) 0.8470 0.6486 0.7346
45(10.18%) 0.8892 0.8714 0.8802
28(6.33%) 0.8846 0.9200 0.9020

) 24(5.43%) 0.8740 0.9314 0.9018
33(6.04%) 0.8667 0.9006 0.8833
32(5.86%) 0.9917 0.9184 0.9536
3(0.68%) 0.9666 0.9914 0.9788

ard.edu/pph2; fathmm#, http://fathmm.biocompute.org.uk/inherited.html. When
t included, so the proteins used in Entprise and BorodaTM were not removed from
d, the evaluation values of MutTMPredictor on 546 mutations are given below: TP,
0.9746; MCC, 0.9090; and ACC, 0.9634. In terms of TP, FP, FN, Recall, F1,MCC, and ACC
n 546 mutations dataset. To avoid confusion, we did not list the prediction results of

http://provean.jcvi.org
http://genetics.bwh.harvard.edu/pph2
http://fathmm.biocompute.org.uk/inherited.html


Fig. 2. MCC and ACC values of fathmm, PROVEAN, SIFT, PolyPhen-2, Entprise, BorodaTM, and MutTMPredictor on 442 mutations.
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0.2236, 0.2004, 0.2476, and 0.5254 higher than those of PolyPhen-
2, SIFT, PROVEAN, and fathmm.

(3) BorodaTM is the first predictor that could predict mutations
in transmembrane protein. As can be seen from Table 5 and Fig. 2,
five performance metrics of BorodaTM were much higher than
those of Entprise, PROVEAN, SIFT, fathmm, and PolyPhen-2. Specif-
ically, Pre, Recall, F1, ACC, and MCC values of BorodaTM were
0.9917, 0.9184, 0.9536, 0.9358, and 0.8563, which were 0.1250,
0.0178, 0.0703, 0.0805, and 0.1623 respectively higher than those
of Entprise.

(4) From Table 5 and Fig. 2, it can be easily found that
MutTMPredictor performed best among seven predictors. Specifi-
cally, MutTMPredictor predicted more TP and TN, and fewer FP
and FN than other predictors. Besides, it also achieved an MCC
value of 0.8950, which was 0.0387 and 0.2010 higher than that
of BorodaTM and Entprise.

3.7. Interpretation of incorrectly predicted mutations

In this section, we comprehensively evaluated the results of
fathmm [53], PROVEAN [5], SIFT [6], and PolyPhen-2 [11,12] and
found that 18 out of 442 mutations were predicted incorrectly by
all four predictors concurrently. These 18 mutations included
P11166 (R223P), P28472 (G32R), O15118 (I1220T), O15118
(V757A), P02730 (R832H), P02730 (E508K), P28472 (Q173L),
P29033 (A148P), P29033 (R32L), P29033 (G45E), P29033 (I203T),
P29033 (F191L), P30542 (R105H), Q13255 (E741D), Q9H221
(G575R), Q9Y6J6 (A66V), Q9Y6J6 (T8A), and Q9Y6J6 (T8I). It is of
particular interest to note that, among these 18 mutations, there
were two disease-associated mutations, i.e. P11166 (R223P) and
P28472 (G32R), and 16 neutral mutations.

Herein, we elaborated on the above two disease-associated
mutations that four existing predictors incorrectly predicted. From
the perspective of physicochemical properties, in two mutations,
i.e. P11166 (R223P) and P28472 (G32R), the wild-type and mutant
residues have a contrasting difference. Specifically, In the case of
P28472 (G32R), the wild-type residue G is hydrophilic, whereas
mutant residue R is alkaline. In P11166 (R223P), the wild-type resi-
due R is alkaline, whereas mutant residue P is hydrophobicity. As
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known, mutations with different physicochemical property
changes could result in the abnormal expression of protein biolog-
ical function. As reported, for P11166 (R223P), the R223 residue is
involved in the hydrogen bond interactions that enable the trans-
porter inward open configuration [73]. As such, the mutation
occurring at this site may lead to the transporter property changes
[74]. Besides, Ref. [75] reported that G32R in P28472 could result
in hyperglycosylated and reduce GABA currents in GABRB3.

Among the above 18 mutations, MutTMPredictor incorrectly
predicted only two mutations, i.e. P29033 (I203T), PDB ID: 5ER7
and P30542 (R105H), PDB ID: 5UEN, both of which belonged to
neutral mutations. We utilized PYMOL software [76] to show the
3D structures of two proteins with ‘‘sticks + spheres” representa-
tion, as depicted in Fig. 3.

From Fig. 3, we can see that both mutations in 5ER7 and 5UEN
occur within the inner region of proteins. P29033 (5ER7) is
assigned as a known gap junction beta-2 protein, which is located
in the plasma membrane [77]. Meanwhile P30542 (5UEN) is a
member of the heterotrimeric guanine nucleotide-binding
protein-coupled receptor family A, which is reported to be associ-
ated with several neurological diseases, such as Parkinson and Alz-
heimer [78]. Thus, P30542 is being pursued as a therapeutic target
to treat the above human diseases [60].

As reported, even one missense mutation occurs on the critical
site of a-helix, it may be deleterious to protein folding and/or its
biological function [25]. As such, the a-helices in membrane pro-
teins are often ‘‘hot spots” of disease-associated missense muta-
tions [79]. From Fig. 3, we can see that mutations I203T in PDBid
5ER7, and R105H in PDBid 5UEN are both located within the a-
helices region. Furthermore, for I203T, both I and T are hydrophilic
amino acid residues. But the mutant residue T is less hydrophobic
than the wild-type residue I, resulting in the loss of hydrophobic
interactions [80]. For R105H, both R and H are alkaline amino acid
residues. Similarly, the residue H is less alkaline than the wild-type
R. However, the above two missense mutations are labeled as neu-
tral, which is often ignored in functional analysis of a specific gene.
For example, P29033 (I203T) has not been included in GJB2 deaf-
ness gene analysis [81]. Notably, the above two mutations (I203T
and R105H) in the corresponding proteins were incorrectly pre-



Fig. 3. The 3D structure, mutant site, and residues within 5Å around the mutation site of protein 5ER7 and 5UEN. 3(A): 3D structure of 5ER7 (i.e. P29033) and the mutation
site I203 with ‘‘sticks + spheres” format, where I203T represents that the residue I at the position 203 mutated to T. In the dashed box of 3(A), we depicted the residues within
5Å around the mutation site I203, with sticks format. 3(B): 3D structure of 5UEN (i.e. P30542) and the mutation site R105 with ‘‘sticks + spheres” format, where R105H
represents that residue R at the position 105 mutated to H. Again, in the dashed box of 3(B), we depicted the residues within 5Å around the mutation site R105, with sticks
format. Single-letter abbreviations for 20 types of native amino acid utilized in Fig. 3 and this section include: G, Glycine; A, Alanine; V, Valine; L, Leucine; I, Isoleucine; P,
Proline; F, Phenylalanine; Y, Tyrosine; W, Tryptophan; S, Serine; T, Threonine; C, Cystine; M, Methionine; N, Asparagine; Q, Glutarnine; D, Aspartic acid; E, Glutamic acid; K,
Lysine; R, Arginine; H, Histidine.
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dicted by five predictors at the same time. Among the 18 incor-
rectly predicted mutations, the number of neutral mutations pre-
dicted incorrectly as positive (i.e. FP) was larger than FN. This
implies that all these predictors set a more stringent threshold
for predicting disease-associated mutations.
3.8. Performance comparison of MutTMPredictor with the consensus
predictor PredictSNP and its component predictors on 546 mutations

In this section, we compared MutTMPredictor with the consen-
sus predictor PredictSNP [13] and its component predictors,
including MAPP [82], PhD-SNP [83], PolyPhen1 [10], and SNAP
[9]. Specifically, we fed 546 mutations into the PredictSNP web-
server, downloaded the outputs, and calculated the prediction per-
formance. The results are documented in Tables 6–7.

In Tables 6–7, MAPP [82], PhD-SNP [83], PolyPhen1 [10], and
SNAP [9] are single predictors, which applied the score threshold,
support vector machine, prediction rules, and neural network to
predict mutation effect. In contrast, PredictSNP is a consensus
Table 7
Performance comparison of MutTMPredictor, PredictSNP, MAPP, PhDSNP, PolyPhen1, and

Predictor TP TN FP

PredictSNP 329(60.26%) 107(19.60%) 47(8.61%)
MAPP 288(52.75%) 103(18.86%) 51(9.34%)
PhDSNP 339(62.09%) 96(17.58%) 58(10.62%
PolyPhen1 297(54.40%) 101(18.50%) 53(9.71%)
SNAP 288(52.75%) 114(20.88%) 40(7.33%)
MutTMPredictor 384(70.33%) 142(26.01%) 12 (2.20%

Table 6
Performance comparison of MutTMPredictor, PredictSNP, MAPP, PhDSNP, PolyPhen1, and

Predictor ACC precision recall F1score

PredictSNP 0.7985 0.8750 0.8393 0.8568
MAPP 0.7161 0.8496 0.7347 0.7880
PhDSNP 0.7967 0.8539 0.8648 0.8593
PolyPhen1 0.7289 0.8486 0.7577 0.8005
SNAP 0.7363 0.8780 0.7347 0.8000
MutTMPredictor 0.9634 0.9697 0.9796 0.9746

Note: the PredictSNP webserver can provide prediction results for nine predictors, inclu
PolyPhen-2 [11], SIFT [6], SNAP [9], and PredictSNP [13]. In Tables 6-7, the results of nsSN
too many ‘‘unknown” in nsSNPAnalyzer and PANTHER outputs; (2) performance compa
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predictor which integrates the outputs of several single predictors.
Detailed results are discussed below.

(1) Four single predictors and consensus predictor. As for four
single predictors, the ACC values ranged from 0.7161 to
0.7967 with the average of 0.7445. MCC values were in the
range from 0.3743 to 0.4932 with the average of 0.4230.
AUC values were in the range from 0.7067 to 0.7670 with
average of 0.7388. The consensus predictor PredictSNP
increased the ACC, MCC, and AUC values to 0.7985, 0.5190,
and 0.7670, which were 0.0018, 0.0258, and 0.0229, respec-
tively higher than the above best predictor PhDSNP. Appar-
ently, PredictSNP outperformed the four single predictors.

(2) Consensus predictor and MutTMPredictor. The ACC, MCC,
and AUC values of MutTMPredictor were 0.9634, 0.9090,
and 0.9508, which were 0.1649, 0.3900, and 0.1838 higher
than PredictSNP. In terms of the TP, TN, FP, and FN values,
MutTMPredictor could predict 55 more TP, 35 more TN, 35
fewer FP, and 55 fewer FN than PredictSNP (Table 7). Such
advantage is also reflected by the ER, FPR, and FNR values.
SNAP in terms of TP, TN, FP, FN, and three types of error on 546 mutations dataset.

FN ER FPR FNR

63(11.54%) 0.0861 0.3052 0.1607
104(19.05%) 0.0934 0.3312 0.2653

) 53(9.71%) 0.1062 0.3766 0.1352
95(17.40%) 0.0971 0.3442 0.2423
104(19.05%) 0.0733 0.2597 0.2653

) 8 (1.47%) 0.0220 0.0779 0.0204

SNAP on 546 mutations dataset.

MCC SN AUC SP NPV

0.5190 0.8393 0.7670 0.6948 0.6294
0.3743 0.7347 0.7670 0.6688 0.4976
0.4932 0.8648 0.7441 0.6234 0.6443
0.3879 0.7577 0.7067 0.6558 0.5153
0.4364 0.7347 0.7375 0.7403 0.5229
0.9090 0.9796 0.9508 0.9221 0.9467

ding MAPP [82], nsSNPAnalyzer [84], PANTHER [85], PhD-SNP [83], PolyPhen1 [10],
PAnalyzer, PANTHER, SIFT, and PolyPhen-2 were not listed, because: (1) there were
rison with SIFT, and PolyPhen-2 is discussed in the previous section.



F. Ge, Yi-Heng Zhu, J. Xu et al. Computational and Structural Biotechnology Journal 19 (2021) 6400–6416
For example, MutTMPredictor (with ER of 0.0220, FPR of
0.0779, and FNR of 0.0204) had lower errors than PredictSNP
(with ER of 0.0861, FPR of 0.3052, and FNR of 0.1607).

There are three main possible reasons for aforementioned phe-
nomena: First, single and consensus predictors may exhibit excel-
lent prediction performance on their own datasets. However, the
performance may be lower when switched to 546 mutations data-
sets; Second, PredictSNP is a consensus predictor by taking six best
outputs from eight single predictors and accordingly it generally
outperforms its component predictors [13], and Third, MutTMPre-
dictor takes the outputs of fathmm [53], PROVEAN [5], SIFT [6], and
PolyPhen-2 [11,12] and can be seen as a consensus predictor in
some sense. Besides, we utilize the cascade XGBoost algorithm to
reuse the useful features. As such, MutTMPredictor outperforms
single and consensus predictors and is more robust for large-
scale mutation prediction.
3.9. Performance comparison of MutTMPredictor with Pred-MutHTP
and mCSM-membrane on 546 mutations

Pred-MutHTP [31] and mCSM-membrane [34] are two predic-
tors specifically developed for the pathogenicity prediction of
mutations in transmembrane proteins. In this section, we con-
ducted comparison experiments to further examine the effective-
ness of MutTMPredictor on 546 mutations dataset. In particular,
we fed one of 546 mutations once into the webserver of Pred-
MutHTP [31] and mCSM-membrane [34] and then calculated their
evaluation metrics based on the returned prediction results. It is
noteworthy that, when feeding 546 mutations into the webserver
of mCSM-membrane, 101 out of 546 mutations were returned with
the ‘‘error” mark, such as ‘‘Error: Provided PDB file has multiple
models”. Accordingly, we evaluated the results of mCSM-
membrane in two ways: (i) assessing total 546 mutations. Herein,
we treated the aforementioned 101 mutations with ‘‘error” mark
as ‘‘prediction errors”. (ii) deleting the aforementioned 101 muta-
tions. That is, we calculated the performance metrics values only
based on the prediction results of 445 mutations. After that, we list
the performance comparison results of (i) and (ii) in ‘‘mCSM-
membrane (546 mutations)” and ‘‘mCSM-membrane (445 muta-
tions)” of Tables 8–9 and Fig. 4.

According to the performance results in Tables 8–9 and Fig. 4,
we have the following observations:
Table 8
Performance comparison of MutTMPredictor, Pred-MutHTP, and CSM-membrane on the 5

Predictor TP TN FP

Pred-MutHTP (546 mutations) 362(66.30%) 103(18.86%) 50(9.16%)
mCSM-membrane (546 mutations) 322(59.08%) 110(20.18%) 42(7.71%)
mCSM-membrane (445 mutations) 321(72.13%) 111(24.94%) 12(2.70%)
MutTMPredictor (546 mutations) 384(70.33%) 142(26.01%) 12(2.20%)

Pred-MutHTP: https://www.iitm.ac.in/bioinfo/PredMutHTP/; mCSM-membrane: http://b

Table 9
Performance comparison of MutTMPredictor, Pred-MutHTP, and mCSM-membrane in term

Predictor Error rate

Pred-MutHTP (546 mutations) 0.0916
mCSM-membrane (546 mutations) 0.0771
mCSM-membrane (445 mutations) 0.0270
MutTMPredictor (546 mutations) 0.0220
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(1) Pred-MutHTP (546 mutations) predicted less TP and TN,
more FP and FN than MutTMPredictor (546 mutations),
and could predict more TP and less FN than mCSM-
membrane (546mutations) (Table 8). Certainly, this conclu-
sion can also be drawn in terms of error rate, false positive
rate, and false negative rate in Table 9.

(2) The MCC and AUC values of ‘‘mCSM-membrane (445 muta-
tions)” were 0.9268 and 0.9497, which were 0.4097 and
0.1753 respectively higher than those of ‘‘mCSM-
membrane (546 mutations)”. In addition, according to the
performance results in terms of the error rate, false positive
rate, and false negative rate in Table 9, we can see that
‘‘mCSM-membrane (546 mutations)” is also superior to
‘‘mCSM-membrane (445 mutations)”.

(3) As depicted in Fig. 4, the MCC value of MutTMPredictor was
0.9090, which was 0.3919 and 0.2888 respectively, higher
than that of mCSM-membrane (546 mutations) and Pred-
MutHTP (546 mutations). In contrast, the MCC value of
mCSM-membrane (445 mutations) was 0.9268, which was
0.0178 higher than that of MutTMPredictor. However, in
terms of the AUC value, MutTMPredictor achieved an AUC
value of 0.9508, which was 0.0011, 0.1764, and 0.1514
higher than that of mCSM-membrane (445 mutations),
mCSM-membrane (546 mutations), and Pred-MutHTP (546
mutations), respectively.

(4) From Table 9, we can see that the error rate and false positive
rate of MutTMPredictor were 0.0050 and 0.0197 respectively
lower than those of mCSM-membrane (445 mutations).
However, the false negative rate of mCSM-membrane (445
mutations) was 0.0173 lower than that of MutTMPredictor.
Such results indicated that mCSM-membrane (445 muta-
tions) predicted fewer false negatives than MutTMPredictor.

The underlying reasons for the above results are discussed as
follows: (1) features utilized by three methods are quite different.
Specifically, Pred-MutHTP mainly used protein sequence-based
features, such as substitution matrices values, residue distributions
in certain regions, as well as physicochemical properties and evo-
lutionary information [31]. mCSM-membrane mainly utilized
graph-based signatures, protein geometry, and physical and chem-
ical properties [34]. In contrast, MutTMPredictor applied various
features extracted from characteristics of protein sequence, struc-
ture and outputs of four existing predictors. Therefore, features uti-
lized in MutTMPredictor are more comprehensive. (2) For the total
46 mutations dataset.

FN ACC Pre Recall F1 Spe NPV

31(5.68%) 0.8516 0.8786 0.9211 0.8994 0.6732 0.7687
71(13.03%) 0.7927 0.8846 0.8193 0.8507 0.7237 0.6077
1(0.22%) 0.9708 0.9640 0.9969 0.9802 0.9024 0.9911
8 (1.47%) 0.9634 0.9697 0.9796 0.9746 0.9221 0.9467

iosig.unimelb.edu.au/mcsm_membrane/.

s of three types of error on 546 mutations dataset.

False positive rate False negative rate

0.3268 0.0789
0.2763 0.1807
0.0976 0.0031
0.0779 0.0204

https://www.iitm.ac.in/bioinfo/PredMutHTP/
http://biosig.unimelb.edu.au/mcsm_membrane/


Fig. 4. Performance comparison of Pred-MutHTP, mCSM-membrane, and MutTMPredictor in terms of MCC and AUC on 546 mutations dataset.
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546 mutations, mCSM-membrane [34] only predicted 445 muta-
tions. That is, mCSM-membrane could only predict about 81.50%
mutations, whereas Pred-MutHTP [31] and MutTMPredictor pre-
dicted all 546 mutations.

3.10. Performance evaluation of MutTMPredictor on 67,584 mutations
dataset

We did not use the structure- and energy-based features for the
prediction task of 67,584 mutations due to certain reasons. In order
to check the prediction performance of models trained using differ-
ent numbers of input features ranked by mRMR [54], we displayed
the MCC and ACC value changes of MutTMPredictor in Supplemen-
tary Fig. S2. Detailed analyses are documented in Supplementary
Text S5.

On this large test dataset, we compared the performance of
MutTMPredictor with fathmm [53], PROVEAN [5], SIFT [6], and
Table 10
Performance evaluation of MutTMPredictor and four existing predictors on 67,584
mutations dataset.

Predictor ACC Pre Recall F1 Spe NPV

SIFT# 0.7298 0.6422 0.8370 0.7268 0.6491 0.8411
PolyPhen-2# 0.7362 0.6357 0.8939 0.7430 0.6189 0.8869
PROVEAN# 0.7680 0.6963 0.8155 0.7512 0.7323 0.8406
fathmm# 0.7993 0.7694 0.7605 0.7649 0.8284 0.8213
MutTMPredictor 0.8776 0.8641 0.8526 0.8567 0.8965 0.8914

Note: PROVEAN#: ; PolyPhen-2#: ; fathmm#: .

Table 11
Confusion matrix and three types of errors of MutTMPredictor and four existing predictor

Predictor TP TN FP

SIFT# 24290(35.94%) 25031(37.04%) 13533(20
PolyPhen-2# 25638(38.13%) 23864(35.49%) 14695(21
PROVEAN# 23665(35.02%) 28240(41.79%) 10324(15
fathmm# 22069(32.65%) 31948(42.27%) 6616(9.7
MutTMPredictor 24743(36.61%) 34572(51.15%) 3992(5.9
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PolyPhen-2 [11,12]. For MutTMPredictor, we input top 20 features
selected by mRMR [54] and applied 10-fold cross-validation to
evaluate it. For each cycle in 10-fold cross-validation, we docu-
mented the TP, TN, FP, and FN values in Supplementary Table S10
and then we further calculated the sums of TP, TN, FP, and FN
and recorded them in Table 11. As four predictors, again, we sub-
mitted 67,584 mutations to their respective webservers and calcu-
lated the performance metrics based on the prediction results.
Comparison results are provided in Tables 10–11 and depicted in
Fig. 5(A)–(B).

Table 10 shows that in terms of ACC, Pre, F1, Spe, and NPV values,
the performance of MutTMPredictor was the best. However, in
terms of the Recall value, PolyPhen-2 was the best predictor, fol-
lowed by MutTMPredictor. A possible reason is that PolyPhen-2
could predict more TP and fewer FN than MutTMPredictor.

As shown in Table 11, MutTMPredictor had the smallest false
positive rate (0.1035), followed by fathmm (0.1716). In contrast,
PolyPhen-2 predicted a much larger number of FP than the other
four predictors. Specifically, the false positive rate of PolyPhen-2
was 0.0302, 0.1134, 0.2095, and 0.2776, respectively higher than
that of SIFT, PROVEAN, fathmm, and MutTMPredictor. In terms of
the error rate value, MutTMPredictor also had the smallest value
(0.0591), which was 0.1411, 0.1594, 0.0936, and 0.0388, respec-
tively lower than that of SIFT, PolyPhen-2, PROVEAN, and fathmm.

As depicted in Fig. 5(A) and (B), MCC values of SIFT, PolyPhen-2,
PROVEAN, and fathmm ranged from 0.4847 to 0.5898 with average
value of 0.5324. MutTMPredictor could increase MCC to 0.7532,
which was 0.2208 higher than the average MCC. On the other hand,
s on 67,584 mutations dataset.

FN ER FPR FNR

.02%) 4730(7.00%) 0.2002 0.3509 0.1630

.85%) 3043(4.53%) 0.2185 0.3811 0.1061

.28%) 5355(7.92%) 0.1527 0.2677 0.1845
9%) 6915(10.28%) 0.0979 0.1716 0.2386
1%) 4277(6.33%) 0.0591 0.1035 0.1474



Fig. 5. Performance assessment of five predictors in terms of the MCC and AUC values on 67,584 mutations dataset.
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AUC values of SIFT, PolyPhen-2, PROVEAN, and fathmm were
0.7439, 0.7616, 0.7739, and 0.7945. In contrast, MutTMPredictor
achieved an AUC of 0.8746, which was 0.1307, 0.1130, 0.1007,
and 0.0801 respectively, higher than that of SIFT, PolyPhen-2, PRO-
VEAN, and fathmm.

3.11. Performance evaluation of MutTMPredictor on mutations located
in three different topological regions of membrane proteins

3.11.1. Performance comparison between MutTMPredictor and Pred-
MutHTP

Four datasets were collected from the Pred-MutHTP [31] web-
site, including the whole dataset and three datasets containing
mutations in different topological regions of membrane proteins,
i.e. ‘‘Cytoplasmic or Inside”, ‘‘Membrane”, and ‘‘Extracellular or
Outside”. We conducted several experiments to compare
MutTMPredictor with Pred-MutHTP on the four datasets. Detailed
comparison results are documented in Tables 12–13.

From Table 12, we can see that MutTMPredictor predicted more
TP/TN and less FP/FN than Pred-MutHTP on the four datasets. For
example, for the ‘‘Cytoplasmic or Inside” mutations, MutTMPredic-
tor predicted 1,190 more TP, 306 less FP, and 460 less FN than Pred-
MutHTP over ‘‘10-fold”. On the other hand, MutTMPredictor
achieved ER of 0.0909, FPR of 0.2264, and FNR of 0.1270, which
were 0.0414, 0.0382, and 0.1498 respectively lower than Pred-
MutHTP. Such advantages can also be seen in terms of SN, SP,
ACC, MCC, and AUC values listed in Table 13. For example, for the
‘‘Extracellular or Outside” mutations using the ‘‘test” evaluation,
Pred-MutHTP achieved the SN, SP, ACC, MCC, and AUC values of
0.7871, 0.7490, 0.7724, 0.5300, and 0.8400, respectively. In con-
trast, MutTMPredictor improved the corresponding values of these
metrics to 0.8922, 0.8855, 0.8889, 0.7778, and 0.8889.

The underlying reasons for the above phenomena are described
below. First, in terms of different types of features, Pred-MutHTP
mainly used evolutionary information, physiochemical properties,
neighboring residue information, and specific membrane protein
attributes [31]. In contrast, MutTMPredictor used individual’s out-
puts except for the above features, which might make MutTMPre-
dictor more robust. Second, in terms of feature selection and
classification methods, Pred-MutHTP utilized two feature selection
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methods, including CfsSubsetEval and Consistency evaluator in
WEKA [86]. Then Pred-MutHTP adopted all available methods in
WEKA and selected the voting algorithm to classify mutations
[31]. In contract, MutTMPredictor applied the mRMR [54] feature
selection method to score each feature and then fed the top fea-
tures into the cascade XGBoost model for making the final
prediction.

3.11.2. Performance comparison of MutTMPredictor, four non-specific,
and two specific predictors

In this section, we compared MutTMPredictor with four predic-
tors non-specific for membrane proteins (including fathmm [53],
PROVEAN [5], SIFT [6], and PolyPhen-2 [11,12]) and two predictors
specific for membrane proteins (i.e. Pred-MutHTP [31] and TMSNP
[35]). The performance results are documented in Tables 14–15.

From Tables 14–15, we can see that specific predictors were
generally superior to non-specific predictors. For example, for
‘‘Cytoplasmic or Inside region” mutations, the AUC values of four
non-specific predictors were in range of (0.6844, 0.7524) with
the average of 0.7118. In contrast, the specific predictors increased
the AUC to the range (0.7900, 0.8277) with the average of 0.8137.

Pred-MutHTP, TMSNP, and MutTMPredictor appeared to be
more effective for predicting the ‘‘Membrane” mutations than the
other two topological types. Specifically, the AUC values of Pred-
MutHTP, TMSNP, and MutTMPredictor were 0.8400, 0.8353, and
0.9141 on ‘‘Membrane” mutations, which were much higher than
those on ‘‘Cytoplasmic or Inside region” and ‘‘Extracellular or Out-
side” mutations.

MutTMPredictor performed best among all the three specific
predictors. For instance, on the ‘‘Membrane” mutations, the ACC,
Recall, F1, Spe, NPV, MCC, and AUC values of MutTMPredictor were
0.9321, 0.9544, 0.9485, 0.8898, 0.9113, 0.8490, and 0.9141, which
were 0.0402, 0.0418, 0.0125, 0.1317, 0.3381, 0.2507, and 0.0788,
respectively higher than those of TMSNP, and 0.1388, 0.1406,
0.1043, 0.1417, 0.2656, 0.3090, and 0.0741, respectively higher
than those of Pred-MutHTP.

The underlying reasons for the above phenomena are discussed
as follows. First, fathmm [53], PROVEAN [5], SIFT [6], and
PolyPhen-2 [11,12] are generic methods and can be applicable to
mutations in all kinds of proteins, but may not perform well when



Table 13
Performance evaluation of MutTMPredictor and Pred-MutHTP on mutations located in three different topological regions of membrane proteins.

Dataset Predictor Num of fea# Validation# SN SP ACC MCC AUC

Whole data MutTMPredictor 61 10-fold 0.8906 0.8371 0.867 0.7297 0.8048
test 0.9193 0.8449 0.8866 0.7693 0.8821

Pred-MutHTP#v 20 10-fold-group-wise 0.7632 0.7246 0.7462 0.4800 0.8200
test 0.7814 0.7860 0.7841 0.5000 0.8600

Cytoplasmic or Inside MutTMPredictor 20 10-fold 0.8732 0.7738 0.8333 0.6527 0.8235
test 0.8691 0.7668 0.8298 0.6388 0.8179

Pred-MutHTP#v 15 10-fold 0.7232 0.7354 0.7293 0.4500 0.7900
test 0.7544 0.7613 0.7564 0.4700 0.8100

Membrane MutTMPredictor 60 10-fold 0.9544 0.8898 0.9321 0.8490 0.9141
test 0.9744 0.8681 0.9353 0.8605 0.9213

Pred-MutHTP#v 15 10-fold-group-wise 0.8138 0.7481 0.7933 0.5400 0.8400
test 0.8664 0.8380 0.8542 0.7000 0.9100

Extracellular or Outside MutTMPredictor 25 10-fold 0.8750 0.8720 0.8735 0.7470 0.8889
test 0.8922 0.8855 0.8889 0.7778 0.8889

Pred-MutHTP#v 19 10-fold-group-wise 0.7335 0.7484 0.7450 0.4400 0.8100
test 0.7871 0.7490 0.7724 0.5300 0.8400

Note: the SN, SP, ACC, MCC, and AUC values of Pred-MutHTP were collected from Pred-MutHTP [31].

Table 12
Performance evaluation of MutTMPredictor and Pred-MutHTP in terms of confusion matrix and three types of errors on mutations located in three different topological regions of
membrane proteins.

Dataset Predictor Num of fea# Validation# TP TN FP FN ER FPR FNR

Whole data MutTMPredictor 61 10-fold 10501(49.72%) 7803(36.98%) 1523(7.20%) 1284(6.11%) 0.0720 0.1629 0.1094
test 2175(51.50%) 1569(37.15%) 288(6.82%) 191(4.52%) 0.0682 0.1551 0.0807

Pred-MutHTP 20 10-fold-group-wise 9130(42.71%) 6822(31.91%) 2593(12.13%) 6822(13.25%) 0.1213 0.2754 0.2368
test 1380(32.28%) 1972(46.13%) 537(12.56%) 386(9.03%) 0.1256 0.214 0.2186

Cytoplasmic or Inside MutTMPredictor 20 10-fold 3856(52.24%) 2289(31.07%) 669(9.09%) 560(7.60%) 0.0909 0.2264 0.1270
test 790(53.56%) 434(29.42%) 132(8.95%) 119(8.07%) 0.0895 0.2332 0.1309

Pred-MutHTP#v 15 10-fold 2666(36.16%) 2711(36.77%) 975(13.23%) 1020(13.84%) 0.1323 0.2646 0.2768
test 790(53.57%) 325(22.07%) 102(6.92%) 257(17.44%) 0.0692 0.2387 0.2456

Membrane MutTMPredictor 60 10-fold 2304(62.50%) 1137(30.71%) 148(3.80%) 117(2.99%) 0.0380 0.1102 0.0456
test 457(61.59%) 237(31.94%) 36(4.85%) 12(1.62%) 0.0485 0.1319 0.0256

Pred-MutHTP#v 15 10-fold-group-wise 2074(55.99%) 865(23.34%) 291(7.86%) 474(12.81%) 0.0786 0.2519 0.1862
test 366(49.42%) 266(36.00%) 51(6.96%) 56(7.62%) 0.0696 0.162 0.1336

Extracellular or Outside MutTMPredictor 25 10-fold 4332(43.23%) 4431(44.12%) 652(6.47%) 616(6.18%) 0.0647 0.1280 0.1250
test 902(44.94%) 882(43.95%) 114(5.68%) 109(5.43%) 0.0568 0.1145 0.1078

Pred-MutHTP#v 19 10-fold-group-wise 1679(16.74%) 5794(57.76%) 1948(19.42%) 610(6.08%) 0.1942 0.2516 0.2665
test 969(48.34%) 579(28.90%) 194(9.68%) 262(13.08%) 0.0968 0.2510 0.2129

Note: TP, TN, FP, and FN values of Pred-MutHTP# were calculated based on the given SN, SP, ACC, and the number of total/20% test mutations in Pred-MutHTP [31]. Based on
the obtained TP, TN, FP, and FN values, we further calculated the ER, FPR, FNR, Pre, F1, and NPV values of Pred-MutHTP. ‘‘Num of fea#” is the number of features used in the
model prediction. Validation#: in Pred-MutHTP [31], the authors used CD-HIT [44] to aggregate sequences into ten clusters and performed 10-fold-group-wise cross-
validation on the datasets. However, the authors did not provide the specific sequences in ten clusters. Herein, we applied 10-fold cross-validation to the corresponding
datasets. ‘‘test” means 20% independent test.
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being compared with specific predictors for predicting mutations
in membrane proteins. Second, when searching mutations in the
above three datasets, we found many mutations were not stored
in the TMSNP database [35]. Hence, we were only able to calculate
the evaluation metrics based on fewer mutations. Third,
MutTMPredictor utilized the cascade XGBoost algorithm combined
with a richer set of features, including evolutionary information,
wild-type and mutant amino acids physiochemical properties,
neighboring residue information, and four individual’s outputs. In
summary, MutTMPredictor achieved a better performance than
other predictors on all the three datasets.
3.12. Other performance comparison experiments

Except for the above comparison experiments, on the 67,584
mutations, Pred-MutHTP, and TMSNP datasets, we also performed
other experiments to evaluate the effectiveness of MutTMPredictor
further, described as follows:

(1) Reconstructing an objective test dataset based on 67,584
mutations dataset
6412
We constructed an objective test dataset based on the 67,584
mutations dataset. In such test dataset, the training data of the four
individual predictors did not overlap with each other. Performance
comparison results and analyses can be found in Supplementary
Tables S11-S14 and Text S6.

(2) Blind test on a third-party test dataset using
MutTMPredictor

Herein, we performed additional blind test on a new third-party
test dataset from the TMSNP database [35], which comprised
196,705 non-pathogenic, 2,624 pathogenic, and 437 likely patho-
genic mutations in membrane proteins. More specifically, we per-
formed three levels of blind test, including (I) test on the entire
database, (II) test on three balanced sub-datasets, and (III) test only
on pathogenic/like pathogenic mutations. Supplementary Text S7
and Table S15 provide detailed descriptions of the dataset process-
ing, bind test results, and the corresponding analyses.

(3) Performance comparison on three balanced sub-datasets
from TMSNP



Table 14
Performance evaluation of MutTMPredictor, four non-specific, and two specific predictors on mutations located in three different topological regions of membrane proteins.

Topology Predictor types* Predictor ACC Pre Recall F1 Spe NPV MCC AUC

Cytoplasmic or Inside Non-specific SIFT 0.6958 0.7480 0.7421 0.7450 0.6268 0.6194 0.3681 0.6844
PolyPhen-2 0.7255 0.754 0.8039 0.7782 0.6085 0.6752 0.4207 0.7062
PROVEAN 0.7017 0.7850 0.6911 0.7351 0.7174 0.6087 0.4010 0.7042
fathmm 0.7529 0.8182 0.7552 0.7854 0.7495 0.6722 0.4975 0.7524

Specific Pred-MutHTP# 0.7293 0.7321 0.7232 0.7276 0.7354 0.7265 0.4500 0.7900
TMSNP(1.91%)# 0.9362 0.9603 0.9680 0.9641 0.6875 0.7333 0.6743 0.8277
MutTMPredictor# 0.8333 0.8537 0.8732 0.8627 0.7738 0.8049 0.6527 0.8235

Membrane Non-specific SIFT 0.7563 0.7906 0.853 0.8206 0.5743 0.6746 0.4458 0.6844
PolyPhen-2 0.7760 0.7911 0.8930 0.8390 0.5556 0.7338 0.4853 0.7062
PROVEAN 0.7542 0.811 0.8133 0.8121 0.6428 0.6463 0.4567 0.7042
fathmm 0.7669 0.8978 0.7257 0.8026 0.8444 0.6204 0.5435 0.7524

Specific Pred-MutHTP# 0.7933 0.8769 0.8138 0.8442 0.7481 0.6457 0.5400 0.8400
TMSNP(49.92%)# 0.8919 0.9606 0.9126 0.9360 0.7581 0.5732 0.5983 0.8353
MutTMPredictor# 0.9321 0.9426 0.9544 0.9485 0.8898 0.9113 0.8490 0.9141

Extracellular or Outside Non-specific SIFT 0.7006 0.6863 0.7239 0.7046 0.6779 0.7161 0.4022 0.7009
PolyPhen-2 0.7359 0.6993 0.8153 0.7528 0.6587 0.7855 0.4793 0.7370
PROVEAN 0.7173 0.7189 0.7009 0.7098 0.7332 0.7158 0.4344 0.7171
fathmm 0.7450 0.8331 0.6041 0.7003 0.8822 0.6959 0.5072 0.7431

Specific Pred-MutHTP# 0.7450 0.4629 0.7450 0.5676 0.7484 0.9047 0.4400 0.8100
TMSNP(1.83%)# 0.9185 0.9688 0.9394 0.9538 0.7368 0.5833 0.6110 0.8381
MutTMPredictor# 0.8735 0.8697 0.8750 0.8724 0.8720 0.8772 0.7470 0.8889

Note: The evaluation values of Pred-MutHTP# and MutTMPredictor# are from ‘‘10-fold”/‘‘10-fold-group-wise” row in Table 13. TMSNP*: we downloaded the entire TMSNP
database (i.e. TMSNPdb_2021-09-17.csv) and searched each mutation in ‘‘Cytoplasmic or Inside”, ‘‘Membrane”, and ‘‘Extracellular or Outside” datasets. As many mutations
were not stored in the TMSNP database, we calculated the evaluation metrics based on the searched results. Values in parenthesis of TMSNP# denote the ratio of the mutation
number stored in TMSNP relative to the total number in the datasets. For example, TMSNP (49.92%)# means that 49.92% of mutations in the ‘‘Membrane” dataset can be found
in the TMSNP database.

Table 15
Performance comparison of MutTMPredictor, four non-specific, and two specific predictors in terms of the confusion matrix and three types of errors for predicting the mutations
located in three different topological regions of membrane proteins.

Topology Predictor types* Predictor TP TN FP FN ER FPR FNR

Cytoplasmic or Inside region Non-specific SIFT 3277(44.44%) 1854(25.14%) 1104(14.97%) 1139(15.45%) 0.1497 0.3732 0.2579
PolyPhen-2 3550(48.14%) 1800(24.41%) 1158(15.70%) 866(11.74%) 0.1570 0.3915 0.1961
PROVEAN 3052(41.39%) 2122(28.78%) 836(11.34%) 1364(18.50%) 0.1134 0.2826 0.3089
fathmm 3335(45.23%) 2217(30.07%) 741(10.05%) 1081(14.66%) 0.1005 0.2505 0.2448

Specific Pred-MutHTP 2666(36.16%) 2711(36.77%) 975(13.23%) 1020(13.84%) 0.1323 0.2646 0.2768
TMSNP(1.91%)# 121(85.82%) 11(7.80%) 5(3.55%) 4(2.84%) 0.0355 0.3125 0.0320
MutTMPredictor 3856(52.24%) 2289(31.07%) 669(9.09%) 560(7.60%) 0.0909 0.2264 0.1270

Membrane Non-specific SIFT 2065(55.72%) 738(19.91%) 547(14.76%) 356(9.61%) 0.1476 0.4257 0.147
PolyPhen-2 2162(58.34%) 714(19.27%) 571(15.41%) 259(6.99%) 0.1541 0.4444 0.107
PROVEAN 1969(53.13%) 826(22.29%) 459(12.39%) 452(12.20%) 0.1239 0.3572 0.1867
fathmm 1757(47.41%) 1085(29.28%) 200(5.40%) 664(17.92%) 0.054 0.1556 0.2743

Specific Pred-MutHTP 2074(55.99%) 865(23.34%) 291(7.86%) 474(12.81%) 0.0786 0.2519 0.1862
TMSNP(49.92%)# 1462(79.03%) 188(10.16%) 60(3.24%) 140(7.57%) 0.0324 0.2419 0.0874
MutTMPredictor 2304(62.50%) 1137(30.71%) 148(3.80%) 117(2.99%) 0.0380 0.1102 0.0456

Extracellular or Outside Non-specific SIFT 3582(35.71%) 3446(34.35%) 1637(16.32%) 1366(13.62%) 0.1632 0.3221 0.2761
PolyPhen-2 4034(40.22%) 3348(33.38%) 1735(17.30%) 914(9.11%) 0.173 0.3413 0.1847
PROVEAN 3468(34.57%) 3727(37.15%) 1356(13.52%) 1480(14.75%) 0.1352 0.2668 0.2991
fathmm 2989(29.80%) 4484(44.70%) 599(5.97%) 1959(19.53%) 0.0597 0.1178 0.3959

Specific Pred-MutHTP 1679(16.74%) 5794(57.76%) 1948(19.42%) 610(6.08%) 0.1942 0.2516 0.2665
TMSNP(1.83%)# 155(84.24%) 14(7.61%) 5(2.72%) 10(5.43%) 0.0272 0.2632 0.0606
MutTMPredictor 4332(43.23%) 4431(44.12%) 652(6.47%) 616(6.18%) 0.0647 0.1280 0.1250
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In order to compare MutTMPredictor with TMSNP, we per-
formed comparison experiments on three balanced sub-datasets
as external validation on the independent test data. Detailed com-
parison and analyses can be found in Supplementary Tables S16-
S17 and Text S8.

(4) Removing training sequences from the blast database during
the performance test

We also conducted comparison experiments to examine
whether we need to discard training sequences from the blast
database. The details can be found in Supplementary Tables S18-
S19 and Text S9. According to the obtained results, we argue that
it is unnecessary to discard the training sequences from the blast
6413
database during the testing and discard the test sequences from
the blast database during training.

In summary, we conclude that MutTMPredictor is a robust
mutation predictor with excellent prediction performance.

4. Conclusions

In this work, we have developed a new feature encoding algo-
rithm based on evolutionary information, referred to WAPSSM.
Moreover, we proposed a cascade XGBoost algorithm. Benchmark-
ing experiments illustrate the effectiveness of the proposed
WAPSSM and cascade XGBoost algorithms. Based on four types
of features and cascade XGBoost, we developed a new mutation
predictor named MutTMPredictor. Performance benchmarking
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experiments on seven datasets demonstrate that MutTMPredictor
is an effective predictor for transmembrane protein mutation
prediction.

Three key factors can be attributed to the performance
improvement of MutTMPredictor, including the weight attenua-
tion for WAPSSM extraction, integration of the outputs of individ-
ual predictors, and cascade XGBoost. Despite its promising
performance, MutTMPredictor also has some room for further
improvement. For example, more effective mutation coding algo-
rithms are anticipated to be developed and applied in the future
work. In addition, it is also possible to develop ensemble deep
learning models to further improve the predictive performance
when more datasets in transmembrane proteins become available.
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