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Abstract: It is very important to keep structures and constructional elements in service during
and after exposure to elevated temperatures. Investigation of the structural behaviour of different
components and structures at elevated temperatures is an approach to manipulate the serviceability
of the structures during heat exposure. Channel connectors are widely used shear connectors not
only for their appealing mechanical properties but also for their workability and cost-effective nature.
In this study, a finite element (FE) evaluation was performed on an authentic composite model, and
the behaviour of the channel shear connector at elevated temperature was examined. Furthermore,
a novel hybrid intelligence algorithm based on a feature-selection trait with the incorporation of
particle swarm optimization (PSO) and multi-layer perceptron (MLP) algorithms has been developed
to predict the slip response of the channel. The hybrid intelligence algorithm that uses artificial neural
networks is performed on derived data from the FE study. Finally, the obtained numerical results
are compared with extreme learning machine (ELM) and radial basis function (RBF) results. The
MLP-PSO represented dramatically accurate results for slip value prediction at elevated temperatures.
The results proved the active presence of the channels, especially to improve the stiffness and loading
capacity of the composite beam. Although the height enhances the ductility, stiffness is significantly
reduced at elevated temperatures. According to the results, temperature, failure load, the height of
connector and concrete block strength are the key governing parameters for composite floor design
against high temperatures.

Keywords: channel shear connector; artificial intelligence; prediction; multi-layer perceptron; feature-
selection; elevated temperatures

1. Introduction

Since composite beams have great advantages such as considerable span length,
small floor depth, and high stiffness, they are widely used in a variety of structures and
buildings [1–3]. Shear connectors are typically employed in composite floor systems due to
their superior shear performance in comparison with other structural elements. Different
types of shear connectors have been proposed in which each one could address a significant
issue of composite floor systems [4]. Generally, connectors are divided into two major
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groups including C-shaped and L-shaped connectors, while other cross-sections like V-
shaped and I-shaped connectors are also used in different cases. One of the crucial problems
of all shear connectors is their ability to retain shear strength at elevated temperatures [5].

Limited studies performed push-out tests with different loading patterns to evaluate
slip and failure loads in the channel shear connectors. Channel shear connectors exhibited
ductile performance; however, this behaviour was amplified in more extended channels.
Nevertheless, the composite beams demonstrated brittle behaviour when channels were
embedded in unconfined plain concrete. In contrast, when the channels were embedded in
high-strength concrete (HSC) [6], the behaviour of the composite beam was ductile [7–10].
In addition, extended channel shear connectors represent better flexibility compared to
lower channels. Bearing capacity increases linearly with length in a way that a C-shaped
channel with 150 mm length has almost 60 percent higher load carrying capacity in com-
parison to a 100 mm channel. Moreover, when the C-shaped channel is embedded in
high-strength concrete, failure modes are determined by concrete [11–15]. Although slip
between the I-beam and the slab is inevitable, it could be considered small with an appro-
priate shear connector design. Thick channel connectors provide lower slip and higher
load capacity [16]. Using engineering cementitious concrete (ECC) produced with synthetic
fibres [17,18] along with channel connectors would increase both ductility and loading
capacity, especially in reversed low-cycle loading [19–22].

Composite materials are formulated to possess the required properties and are em-
ployed as alternatives to natural and simple materials. Typically, composite materials are
designed according to the specific application, and some of them are utilized for a variety
of applications after successful testing [23–27]. Structural elements always have significant
problems retaining their strength during heat exposure [8,28]. Many studies have taken
variety of approaches to mitigate fire-induced damage to steel and concrete [29]. These
studies are highly valued not only to increase safety of occupants during and after the fire,
but also to decrease the refurbishment and retrofitting costs [30,31]. There are limited stud-
ies on the behaviour of shear connectors at elevated temperatures [32,33]. Combined with
profiled slabs, shear studs have better performance due to steel profile coverage as a shield
around the concrete against fire damage. Since lightweight concrete has better strength
against fire, shear studs embedded in lightweight concrete show better ductility compared
to studs embedded into normal concrete [6,32,34,35]. Three main types of failure have
been observed during the experimental tests including shear connector fracture, concrete
crushing and concrete shear plain failure. According to experimental studies, connectors
will lose their strength in the case of fire but this deterioration can be changed in different
situations [36–40]. However, few studies have investigated the behaviour of channel shear
connectors at elevated temperatures. Thus, it is a subject that needs to be covered by more
robust and comprehensive experimental studies. Reverse-channel connections enhance
ductility at elevated temperature, but the stiffness decreases dramatically as the ultimate
strength [41]. According to analytical studies, channel shear connectors working with
HSC blocks can resist the deterioration induced by fire during the first 10 min of exposure.
However, the failure may be an over-turning mode which does not correspond to failure
mode at ambient temperature. Fire deteriorates the ductility of the connector [42]. In
addition, C-shaped connectors can perform better than other shear connectors at elevated
temperatures, which indicates high energy absorption [43–46]. According to previous
studies, channel connectors have appealing features which make them suitable for steel–
concrete composite structures. However, the main issue of the channel connectors is their
performance at elevated temperatures. Therefore, finding an approach to cover the stiffness
and ultimate capacity loss during fire exposure is an important goal.

As one of the supplementary approaches for empirical tests, the finite element method
has always been used to verify the test results and extract additional data from the sam-
ples [47–49]. Furthermore, different programs have been produced based on FE principles,
including ABAQUS and ANSYS, which are employed in various applications in engi-
neering problems. Simulating composite materials has always been controversial among
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researchers. Although finding the best way to produce a reliable model is an issue, the
FE-based programs have gone some way towards to addressing this demand. For example,
the ABAQUS program has been successfully used for modelling the steel–concrete compos-
ite structures [50], and the results were reliable enough to be used in further studies. In
another study, ABAQUS was utilized to simulate monotonic testing to verify experimental
results and simultaneously provide new data from other samples [51].

Recently, using artificial intelligence (AI) techniques has become a common approach
to address some of the technical problems in civil engineering, especially to predict and
evaluate mechanical properties [52–57]. The nature of AI algorithms is based on learning
and mocking, which makes them a favourable approach to avoid further experimental tests.
AI techniques including machine learning and neural networks have been proposed and
performed on a variety of engineering problems. Neural networks (NNs) are a common
group of techniques that are employed to predict and analyse test results [58–61]. The
development of different types of NNs has led to several algorithms including artificial
neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS) and multi-layer
perceptron (MLP) [62–65].

The structural performance of shear connectors has been evaluated using NN algo-
rithms. In a study, three well-known algorithms including Extreme Learning Machine
(ELM), ANFIS and ANN were applied on the test results of shear strength from tilted angle
connector samples and based on the results, all three algorithms produced competitive
outcomes, while ELM performed slightly better than other algorithms [66]. The combi-
nation of ANN with PSO was developed in a study to predict the slip value of channel
shear connectors embedded in normal and high strength concrete, where PSO showed a
considerable role in improving the accuracy of the prediction [67]. Based on a review study,
the ANN algorithm has been typically used to evaluate the shear strength of composite
beams, whereas ANN was developed using optimization algorithms such as PSO, genetic
algorithm (GA) and independent component analysis (ICA), while PSO represented better
results compared to other techniques. According to review research, ANN and machine
learning have been extensively employed to predict the performance of construction ma-
terials faced with fire, and the results indicated the ANN is a suitable technique in the
prediction and evaluation of materials’ properties at elevated temperatures [68]. There are
limited studies on the application of AI on the performance of shear connectors at elevated
temperatures. The performance of angle shear connectors at elevated temperatures has
been investigated using ANFIS and ELM combined with PSO and GA techniques, and
the combination of ANFIS-PSO-GA demonstrated better outcomes. The combination of
ANN and ELM with GA was used to predict the slip strength of C-shaped connectors at
ambient temperatures of 550, 700 and 850 ◦C, and it was found that ANN and ELM are both
capable of precise prediction of composite floor properties facing different heat stages. ELM,
however, represented the lowest processing time [5]. MLP networks are another type of NN
that have not been widely used in civil engineering problems, especially for evaluating the
behaviour of materials at elevated temperatures. However, some studies have successfully
developed MLP algorithms to predict the properties of structural elements. In a study,
MLP was developed with PSO to predict the flexural strength of thin-walled sections. It
was reported that MLP-PSO was able to accurately predict the test results. The MLP neural
network is suitable for prediction, especially in problems with stochastic irregularities. An
MLP–PSO combination was used in another study to predict the compressive strength of
upright columns, and the combination of feature selection technique with NN method led
to promising results [51].

There are limited studies in both experimental and numerical aspects of shear con-
nectors at elevated temperatures. In this research, the AI techniques based on the feature-
selection method were employed to find the governing parameters of channel shear con-
nector design amongst the existed characteristics that affect the tensile strength of the
steel–concrete composite floor system and to predict the shear behaviour in composite
shear connector system. First, in order to obtain a proper database of relevant data, a finite
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element (FE) model was constructed and validated using ABAQUS software so that the
models constructed were in good agreement with the test results. Push-out tests were also
simulated using the ABAQUS program, and results were collected into datasets. Secondly,
with respect to the reviewed studies, a hybrid AI algorithm was developed to predict
the FE results. Accordingly, a feature selective (FS) algorithm was used in addition to a
hybrid neural network including MLP and PSO algorithms to predict the slip strength of
the channel connector at elevated temperatures and select the most crucial parameter in
the design of composite floor system.

2. Experimental Program

In this part, an experimental procedure for the study of channel connectors at elevated
temperature is briefly discussed, similar to the procedure used in [5]. The monotonic
push-out tests were performed on channel shear connectors at elevated temperatures to
investigate the strength properties of the composite system at high temperatures.

The test sample is a composite floor system that included an IPE270 profile, a channel
as a connector that has been welded to each profile flange by fillet weld and two concrete
blocks with dimensions 150 mm × 250 mm × 400 mm placed on both sides of the IPE270
profile (Figure 1). In order to prevent the cracking of concrete, a transverse closed rect-
angular reinforcement with a diameter of 10 mm per concrete block was provided. The
reinforcement applied in rectangular closed stirrups in two upper and lower rows was kept
in two rows of vertical reinforcement.
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Figure 1. Schematic view of the test specimen.

A typical load–slip curve is depicted in Figure 2 [69]. The knowledge about the stiffness
of composite beam has been primarily used in the equation of the partial interaction theory
of composite steel–concrete beams. Since there is no linear relationship between load and
slip, a few mathematical expressions are needed to explain the shear connector load–slip
relationship throughout the curves. Therefore, it is difficult to find a typical regression
formula for the shear connector stiffness. Based on the temperature corresponding to
the taken time, standard provisions have identified the typical fire curve for performing
elevated temperature tests and the three most common standard fire curves are shown
in Figure 3.
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3. Finite Element (FE) Modelling

The ABAQUS/CAE v.14.1 (2014, Simulia, Providence, RI, USA) was employed to
model the presented test specimen(s). The Finite Element (FE) models were adjusted to
replicate the empirical tests [70]. To assure that the FE model was able to verify the real
specimen(s), a range of element types and mesh matrices were carried out as trial-and-error
procedures to find a sustainable structured mesh [71,72]. Figure 4 shows a 3D view of the
model and the inner cut to demonstrate the position and details of the shear connector and
transverse rectangular reinforcements.
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3.1. Model Prepration

The selected interaction for different sections was surface-to-surface mode, and differ-
ent constraints were defined for different parts of the frame [73]. Each channel connector
was assumed to be a fixed member and defined as a tie section on the top of the flange.
In addition, the diagonal bracing connections were simulated as couplings. The contact
properties were designated as tangential contacts with a 0.3 friction coefficient. The lateral
loads were applied to the main reference point which was placed at the exterior edge of the
web. Moreover, the monotonic loading was acquired using the time coefficient description.
A combination of the quadrilateral four-noded shell (S4R) and linear triangular (S3) ele-
ments was conducted to assimilate the composite sections (Figure 5). Table 1 presents the
employed geometrics of the channels which have been simulated in the ABAQUS. Other
properties and features used were as discussed in the experimental section.

Table 1. Simulated channel geometric features.

Channel Type
Geometry (mm) Channel View

Length Width Thickness
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To simulate the effect of fire on the model, Eurocode2 and Eurocode3 British Standards
Institution provisions were employed for concrete and steel, respectively. Figures 6–9 show
the used standard curves for both concrete and steel in the FE model.

3.2. Model Authentication

Figure 10 shows the step-by-step sequence of the typical shear connector deformation
at the ambient temperature. The exhibited deformations could be verified with the real
test specimens.
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Figure 10. Step-by-step deformation of the model.

Figure 11 illustrates a schematic view of the typical channel at 700 ◦C temperature, where
the bottom of the connector has failed (the area in red). In addition, thinning occurred.

The governing failure mode was a ductile mechanism due to the connector failure at
the bottom of the channel web while the concrete block was still serviceable. To demonstrate
the authenticity of the ABAQUS results, Figure 12 shows two comparative curves for a
better understanding of the accuracy and validation of the FE results. In these curves
the models were able to acceptably simulate the load–slip curves for different heats and
shear connectors.
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Figure 12. Comparative load–slip curves for (a) C7550 type connector at 550 ◦C, and (b) C10030 type
connector at ambient temperature.

3.3. Finite Element Results

Finally, the results of the FE models that employed both C7530 and C10050 shear
connectors are presented in Table 2, and Figure 13 demonstrates the obtained load–slip
curves for the aforementioned models.



Materials 2022, 15, 1402 10 of 30

Table 2. FE analysis results.

Channel Type Temperature (◦C) Failure Load (kN) Maximum Slip (mm)

C7530

Ambient 169.24 13.51

550 144.00 28.17

700 124.36 38.11

850 42.10 57.83

C7550

Ambient 260.52 13.17

550 218.74 36.95

700 160.19 43.56

850 109.08 52.21

C10030

Ambient 192.26 16.5

550 167.19 44.27

700 135.41 60.04

850 71.38 78.33

C10050

Ambient 215.03 11.43

550 168.55 26.04

700 149.89 49.21

850 73.56 76.54

Based on the obtained results, The C7550 and C10050 models indicated the most stiffened
behaviour at ambient heat, and the C10030 model presented the most stiffened state at 850 ◦C.
Both C10030 and C10050 models showed a ductile performance at elevated temperatures.
According to Table 2, using the longer width increased the stiffness of the specimens at
ambient temperature. On the other hand, employing longer height improved the ductility
especially at 700 ◦C and 850 ◦C. The better stiffness at the ambient temperature could be
related to the embedded length of the channel which could be increased by enlarging the
width. It could also be due to the strength properties of the high-strength concrete block
presenting a better bearing capacity. High ductility of the specimens at elevated temperatures
could be related to the length of the channel connectors, where increasing the length increased
the slip value, while failure load decreases due to fatigue in the channels. Using HSC blocks
might be effective as a cover for retaining the rigid state of the steel at elevated temperatures,
but this effect could not be considered for safety remarks [32].
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Figure 13. Load-slip curves of the FE models for (a) model with C7530, (b) model with C7550,
(c) model with C10030 and (d) model with C10050 shear connector.

4. Statical Data

The applied data in this research were derived from finite element results that eventu-
ally formed a database with 1010 rows of inputs. This database has seven inputs and one
target output. The summary of this data is shown in Table 3.
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Table 3. Details of the input and output variables.

Inputs and Outputs Variables Minimum Maximum Mean Value Standard Deviation

Input 1 Load (kN) 0.006 260.52 105.67 55.869
Input 2 Length(mm) 30 50 41.9 9.823
Input 3 fc(N/mm2) 38.2 82 50.97 17.266
Input 4 Connector-thickness(mm) 5.5 7.0 5.49 0.500
Input 5 profile-thickness(mm) 7.5 8.5 7.99 0.500
Inputs 6 Height(mm) 75 100 87.25 12.504
Input 7 Temperature(C) 25 850 521.56 328.455
Output Slip (mm) 0.024 78.33 37.44 24.088

5. Artificial Intelligence Prediction

In this paper, a combination of MLP with PSO algorithm based on the random produc-
tion of the initial population is utilized. PSO is a universal method of minimization that can
be employed to deal with problems whose answer is a point or surface in n-dimensional
space. In order to identify the most influential input, instead of traditional methods, the
feature selection technique is utilized, which is the best way to identify the most influential
features of a problem.

5.1. Algorithm Methodology
5.1.1. Multi-Layer Perceptron (MLP)

MLP network is a feed-forward algorithm that can be utilized as a powerful hyper-surface
reconstruction tool that is able to successfully map a set of multi-dimensional input data
(x
−i; i = 1, . . . , N ) onto a set of appropriate multi-dimensional outputs (y

−
i; i = 1, . . . , N ). The

MLP configuration has been extensively used in static regression applications, and it consists
of one input layer, one or more hidden layer(s) and one output layer. The MLP network uses
a supervised learning technique called backpropagation for training the network [74].

Figure 14 shows a schematic of the MLP neuron compositions and Figure 15 shows
a schematic configuration of the single-layer MLP, which is used in the analysis of the
current study.
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5.1.2. Particle Swarm Optimization (PSO)

In the PSO algorithm, particles are the building blocks of the population, and they
work together to obtain the optimum approach to the target [51,62,67]. For this reason, it is
called swarm intelligence. The most important feature of any particle is its position, and
the critical issue is what indicator or target the particle offers and how fast it moves. In this
study, the PSO algorithm is employed along with MLP as a unique intelligence algorithm.
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The goal of the PSO algorithm is to find the optimal objective function. A flowchart of the
PSO algorithm is illustrated in Figure 16.
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5.1.3. Feature Selection (FS) Technique

FS method is preferred in cases where the readability and interpretation of the subjects
are important because the discounted values are preserved as the main features in the
reduced space. This method of dimensionality leads to the creation of a quality database
without deleting helpful information [75]. The feature selection process is divided into
four parts including production method, performance evaluation, stop criteria and valida-
tion method, which are shown in Figure 17.
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In this study, some of the significant features of the channel shear connectors and
the concrete blocks are identified through one or more conversions on the input features.
Once mapping points from one ample space to another in a smaller space happens, many
points may overlap. Feature extraction helps to find new dimensions that have minimal
overlap [74]. Given this technique, we can safely say that there is no better combination of
inputs than this technique provided. If we were to manually examine all possible modes,
the 127 input combination modes would be impossible to verify. If we tried all the possible
scenarios with only seven performances, we accelerated the impact of the inputs by about
18 times.

5.1.4. MLP-PSO-FS (MPF) Technique

This study deployed a combination of MLP, PSO and FS to develop a hybrid algorithm
called MPF for predicting the shear performance of a composite structure consisting of
channel shear connectors at elevated temperatures. Figure 18 shows a sequential combina-
tion diagram of particle swarm optimization-feature selection (PSO-FS) and multi-layer
perceptron (MLP). In PSO, congestion generally begins with a set of random solutions, with
each one called a particle. The particle swarm moves in complex space. A function (f) is
evaluated at each step by input. In the global version of the PSO, pi represents the most
appropriate point in the entire population. A new velocity is obtained for each i particle in
each iteration according to the best individual neighbourhood positions. The new speed
can be obtained as follows:

vi(t + 1) = [wvi(t) + c1∅1(pi(t)− xi(t)) + c2∅2(pi(t)− xi(t))] (1)

When the speed exceeds the specified limit, it will be reset to its proper range. Depend-
ing on the speed, each particle changes its position according to the following equation:

si(t + 1) = si(t) + vi(t + 1) (2)
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where si = particle’s position; vi = particle’s velocity; pi = most the appropriate position;
w = inertia weight; c1 and c2 = acceleration coefficients; and ∅1 and ∅2 = uniformly
distributed random vectors in [0, 1].
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5.1.5. Extreme Learning Machine (ELM)

Huang et al. [76] suggested ELM as an AI tool for single-layer feed-forward neural
network (SLFN) architecture. In ELM, the weights of SLFN inputs are obtained randomly,
while the output weights are analytically defined. The most remarkable advantage of
the ELM algorithm is its speed in finding the weights of the network; in addition, it can
determine all the network factors and prevent unnecessary interference of humans. Unlike
other AI tools, ELM is a new tool, suitable for finding the weights of SLFN. Due to its
benefits, ELM could gain popularity and workability. The three steps involved in ELM
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development are: (1) one SLFN is constructed, (2) the weights and biases of the network
are randomly selected, and (3) the output weights are calculated by inverting the hidden
layer output matrix.

5.1.6. Radial Basis Function (RBF) Neural Network

In RBF, the input function (f (x)) is estimated by a set of D-dimensional radial activation
functions. Figure 19 indicates the typical architecture of one network with an input layer
of D neurons, the output layer of P neurons, a hidden layer of M neurons, biases at each
output neuron and adjustable weights between the hidden and output layers. Regarding a
set of N data points in a multidimensional space, the main goal of interpolation is to find
a function in which every D-dimensional input feature vector (xn = {: i = 1 . . . , D}) has a
corresponding P-dimensional target output vector (fn = {: k = 1 . . . , P}). The approximation
function f (x) might be explained as a linear combination of radial basis functions in which
the output of network kth consists of the sums of weighted hidden layer neurons plus the
bias when the system is represented by nth input vector as:

f̂k(Xn) =
M

∑
j=1

wkjhj(Xn) + wk0, (k = 1, 2, . . . , P) (3)

where wkj is the corresponding weight to jth basis function and kth output, hj(Xn) is the
output from jth hidden neuron for the input vector (xn), and wk0 is a bias term at kth
output neuron.
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6. Performance Evaluation

Three objective criteria, including correlation coefficient (R2), Pearson’s correlation
coefficient (r) and root mean square error (RMSE) were used to evaluate the accuracy of
the results and the reliability of the proposed neural network. RMSE is the most common
criteria used to measure the accuracy of continuous variables with a quadratic scoring
rule that also measures the average error rate. This square root is the average square
difference between prediction and actual observation. In the case of r, a higher value, up to
1, represents a suitable fit between measured and predicted values, while a negative value
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shows that the model’s performance is worse than the average of the developed models.
These statistical indicators can be characterized as follows:

RMSE =

√√√√ 1
M

M

∑
i=1

(Pi − Oi)
2 (4)

r =
M(∑M

i=1 Oi.Pi)− (∑M
i=1 Pi)·(∑M

i=1 Oi)√
(M ∑M

i=1 O2
i −

(
∑M

i=1 Oi

)2
)·(M ∑M

i=1 P2
i −

(
∑M

i=1 Pi

)2
)

(5)

R2 =
∑M

i=1
(
Oi − Oi

)
·
(

Pi − Pi
)√

∑M
i=1
(
Oi − Oi

)2
∑M

i=1
(

Pi − Pi
)2

(6)

where Pi = predicted varaible, Oi = observed variable and M = number of considered data.
Considering the number of data and avoiding overfitting, 70% of the inputs were

randomly devoted to the training phase of the models, and the remaining 30% were
assigned to the testing phase. All the codes were developed in the MATLAB environment,
and available functions of the MATLAB v2019c software (2019, Mathworks, Natick, MA,
USA) were used in the developing process.

7. Model Development

For the first time, this study uses the FS method to integrate with the MLP-PSO
as a hybrid neural network (MPF) to predict the performance of the specific channel
shear connector at elevated temperatures. Each algorithm has its own parameters that
can be approximated by changing them. To achieve the desired results, a large number
of implementations of neural networks with different configurations are taken, and the
best settings are obtained for all algorithms and neural networks, which are presented in
Tables 4–7.

Table 4. The used parameter characteristics for PSO in this study.

FIS
Clusters

Population
Size

Iterations
Inertia
Weight

Damping
Ratio

Learning Coefficient

Personal Global

10 125 45 1 0.99 1 2

Table 5. Parameter characteristics used for MLP in this study.

Hidden Layers Training Function

10 Levenberg–Marquardt Backpropagation (LMBP)

Table 6. Parameter characteristics used for RBF in this study.

Mean Squared Error Goal Spread of Radial Basis
Functions

Maximum Number of
Neurons

0.02 10 40

Table 7. Parameter characteristics used for FS in this study.

Number of Runs Number of Functions (nf)

3 4

8. Results and Discussion

A database may contain a lot of input data but not all inputs are suitable for use in
the neural network. Some have no effect on the output prediction, and some may cause
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network deviation. Therefore, with a large number of inputs, finding the best combination
is very time-consuming. The number of possible combinations for k members of a set of
n members is equal to (1 (n ∼= k)). For example, in this research, the number of inputs is
seven, so the number of combinations of four inputs is 35 states and the total number of
possible states is 127. It is evident that the implementation of the neural network and its
results for this number of iterations is impossible given the different combinations of neural
network settings, so the only way to select different input states and settings is based on
past experiences and initial assumptions. Therefore, using the FS method is inevitable, and
by running the FS method on our inputs, only seven runs of all inputs will now be checked,
and the best combination will be identified. We start with the adjustment of the MPF neural
network and try to find the best population with a constant number of repeats equal to 40.
The population was identified equal to 125 and the corresponding results are presented in
Figure 20 and Table 8 in the test phase.
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Figure 20. MPF adjustment based on the population number: (a) effect of the population number on
(R2), (b) effect of the population number on (r), and (c) effect of the population number on (RMSE).

Table 8. The calculated accuracy criteria for the performance of the implemented models (iterations = 40).

Population

Network Result

Testing Phase Training Phase

RMSE r R2 RMSE r R2

100 15.621 0.959 0.919 12.785 0.974 0.948
75 15.028 0.961 0.924 12.787 0.974 0.949
125 14.182 0.966 0.932 13.217 0.972 0.945
150 14.812 0.964 0.930 12.909 0.973 0.946
175 15.300 0.965 0.931 12.682 0.973 0.947
200 15.619 0.960 0.921 12.403 0.975 0.951

After finding the best population, the calculations are performed again to find the
optimal number of iterations. As shown in Figure 21 and Table 9, the number of optimal
repeats in the test phase is 45.
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Table 9. The calculated accuracy criteria for the performance of the implemented models (Population = 125).

Iteration

Network Result

Testing Phase Training Phase

RMSE r R2 RMSE r R2

30 14.347 0.967 0.936 12.917 0.972 0.946
35 14.478 0.966 0.932 13.193 0.972 0.945
40 14.182 0.966 0.932 13.217 0.972 0.945
45 13.072 0.972 0.945 13.533 0.970 0.941
50 14.708 0.966 0.934 12.991 0.972 0.945
30 14.347 0.967 0.936 12.917 0.972 0.946

After finding the best parameters for the neural network, it is time to find the optimal
input combination through the feature selection technique. As mentioned earlier, in this
technique, there is no need to test all possible combinations, and only each set of k members
should be tested once. For example, if we want to determine the best combination of inputs
with four members, we only run the network once and set nf to four, then four inputs are
selected, which have the most effect on the response. Table 10 and Figure 22 specify the
best value of k.

Table 10. The calculated accuracy criteria for the performance of the implemented models for different
input numbers.

Combination Number

Network Result

Testing Phase Training Phase

RMSE r R2 RMSE r R2

1 39.825 0.706 0.498 35.160 0.775 0.601
2 14.408 0.967 0.936 14.344 0.966 0.933
3 15.490 0.959 0.921 12.570 0.975 0.950
4 13.072 0.972 0.945 13.533 0.970 0.941
5 14.199 0.964 0.930 13.004 0.973 0.947
6 15.180 0.963 0.927 12.665 0.974 0.948
7 15.210 0.961 0.929 12.415 0.972 0.948
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According to the results of Table 10, all the answers are accurate enough and reli-
able, which proves the validity of both experimental and FE results in datasets. Table 10
presents the results of the MPF algorithm based on the employed precise criteria, where
model 4 was selected as the best prediction with impressive evaluation parameters includ-
ing RMSE = 13.072, r = 0.972 and R2 = 0.945 and RMSE = 13.533, 0.970 and R2 = 0.941 for
test and train phases, respectively. The small differences between test and train phase
results for model 4 indicates that the MPF algorithm accurately predicted the behaviour
of the composite floor system at elevated temperatures. In addition, models 2 and 5 were
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the next accurate predictions among other results. Furthermore, Table 11 indicates the
most significant input combinations that the FS technique has chosen, where the load and
temperature are the most important parameters for prediction of the slip value. However,
four parameters, including load, temperature, compressive strength and channel height are
marked as the most effective composition for prediction of the slip. Therefore, in order to
enhance the shear strength and the compressive strength, the connector’s height should be
constant in further designs, and other parameters could also be held constant or considered
as lower priority. To limit the slip value, it should be focused on concrete design and
finding the best configuration for channel connectors. The best compositions for predicting
slip value based on the FS method were tabulated. Figures 23 and 24 reveal the regression
diagrams of the aforementioned input models, where four inputs show the most accurate
prediction of the slip value. Figure 25 indicates the tolerance diagram of the four input
models, in which both test and train phases have a slight difference between measured and
experimental values.

Table 11. Most effective inputs based on feature selection.

Feature
Number of Combination

1 2 3 4 5 6 7

Load (kN) X X X X X X X
Length(mm) X X X
fc(N/mm2) X X X X

connector-thickness(mm) X X
profile-thickness(mm) X X

Height(mm) X X X X
Temperature(◦C) X X X X X X

After obtaining the best combination for the MPF neural network, it was necessary to
check with one or two other neural networks whether the innovative hybrid network is
working properly. In this study, RBF and ELM were employed to challenge the MPF results.
Given that the best input parameters were obtained by the feature selection technique,
trying different combinations at this stage was avoided and two combinations with four
and seven inputs are used as per Table 11. In addition, the neural network settings were as
per Table 6. Figure 26 demonstrates the regression charts of the ELM and RBF, in which
the answers for both seven- and four-input models are accurate, indicating the efficiency
of using the FS method in this paper and justifying the application of FS in other, similar
studies. Figures 27 and 28 present the tolerance diagram with respect to the train and test
results of the RBF and ELM, respectively.

As shown in Table 12 and Figure 29, the best performance parameters for the MPF
are RMSE = 13.072, r = 0.972 and R2 = 0.945, which are indicated as FS-4. As for the
ELM, RMSE = 13.286, r = 0.969 and R2 = 0.938. In addition, for RBF in the test phase,
RMSE = 13.884, r = 0.969 and R2 = 0.939 in the test phase. The best result for RMSE is the
lowest value, while for r and R2, the best result is 1; therefore, the values closer to 1 are
better results. Considering all the conditions stated above, it is clear that the MPF algorithm
performs better than the other two algorithms.
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9. Conclusions

The present study aimed to predict the strength properties of a specific C-shaped
shear connector at different heat stages. To this end, a new AI technique was developed
to evaluate the results. Firstly, finite element (FE) analysis was applied by the ABAQUS
program to model the composite floor system and simulate push-out tests at elevated
temperatures. Then the results were collected, and a validated database was established.
Secondly, a well-known neural network algorithm called multi-layer perceptron (MLP) was
developed with the particle swarm optimization (PSO) technique to present a novel hybrid
algorithm for evaluating the FE data. In addition, the feature selection (FS) method was
used to avoid trying all possible input modes and wasting time while providing the best
possible input combination, which may be neglected in other ways. Using the FS method
facilitated the prediction process for the hybrid algorithm. In this regard, FE modelling
was discussed by explaining the mechanical and geometrical properties of the composite
model along with the validation procedure, and the results were presented. Next, the
MLP-PSO-FS (MPF) methodology was developed. Then the AI results were interpreted
and to verify the MPF results they were compared with the results of two well-known
algorithms, namely ELM and RBF. The dataset used consisted of 1010 rows of laboratory
data including seven inputs, namely length (mm), fc (N/mm2), channel-thickness (mm),
profile-thickness (mm), height (mm), temperature (◦C), and failure load (kN), while the slip
(mm) was considered as the output. The MPF obtained the best results using the feature
selection technique, which was followed by a description of each neural network. The most
important results can be summarized as follows:

• Based on FE results, using longer channels could increase the ductility of the composite
system at lower heats; however, at elevated temperatures, the stiffness of the composite
system experiences a noticeable loss.

• According to FS technique results, the failure load and temperature are the most effective
inputs that can help to accurately predict slip value without using other inputs. Further-
more, concrete compressive strength and connector height are the two key parameters
for a sustainable design of a composite floor system at elevated temperatures.

• The combination of an MLP neural network with the PSO optimization algorithm
based on a random population achieved the best results with excellent accuracy. The
result of the MPF algorithm on the model with a combination of four inputs was the
most precise prediction with RMSE = 13.072, r = 0.972 and R2 = 0.945.

• ELM and RBF were also applied on the main models (four and seven inputs) to predict
slip value. Both had better performance on seven-input models with RMSE = 13.286,
r = 0.969 and R2 = 0.938 for ELM, and RMSE = 13.884, r = 0.969 and R2 = 0.939 for RBF.

Finally, despite the rankings of these three algorithms, it should be noted that the
results of all three networks performed very well in the prediction of slip value at elevated
temperatures. However, combining PSO with MLP provided the best results. In the RBF
and ELM models, the best results were obtained with seven inputs but, similar to the
MLP-PSO, the results with four inputs were very acceptable. Performing cyclic loading on
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channel connectors could be considered as further study. In addition, other geometrical
shapes and sizes could be developed to investigate their performance as stiffeners.
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