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Abstract Introduction: Structural magnetic resonance imaging is a marker of gray matter health and decline
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that is sensitive to impaired cognition and Alzheimer’s disease pathology. Prior work has shown that
both amyloid b (Ab) and tau biomarkers are related to cortical thinning, but it is unclear what unique
influences they have on the brain.
Methods: Ab pathology was measured with [18F] AV-45 (florbetapir) positron emission tomography
(PET) and tau was assessed with [18F] AV-1451 (flortaucipir) PET in a population of 178 older adults,
of which 123 had longitudinal magnetic resonance imaging assessments (average of 5.7 years) that
preceded the PET acquisitions.
Results: In cross-sectional analyses, greater tau PET pathology was associated with thinner cortices.
When examined independently in longitudinal models, both Ab and tau were associated with greater
antecedent loss of gray matter. However, when examined in a combined model, levels of tau, but not
Ab, were still highly related to change in cortical thickness.
Discussion: Measures of tau PET are strongly related to gray matter atrophy and likely mediate re-
lationships between Ab and gray matter.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

One of the earliest established and most widely replicated
neuroimaging findings in Alzheimer’s disease (AD) is a
reduction in gray matter and greater rates of longitudinal at-
rophy [1–5] seen with magnetic resonance imaging (MRI).
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Similarly, lower baseline levels and greater gray matter
atrophy have been found in participants with mild
cognitive impairment [6], subjective memory complaints
[7], and cognitively normal individuals with abnormal levels
of amyloid b (Ab) [4,5,8–10] relative to those without any
AD pathology. In a clinical setting, structural pathological
MRI measures and rates of change have prognostic value,
predict conversion from mild cognitive impairment to AD
[11–14], and an increased risk of later AD dementia in
cognitively normal individuals [15].

While much of the focus has understandably been on the
medial temporal lobes, loss of gray matter is not restricted to
imer’s Association. This is an open access article under the CC BY-NC-ND
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Table 1

Sample demographics

Cross-sectional Longitudinal
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these regions. Analyses looking at whole-brain spatial pat-
terns see loss of gray matter prominently throughout the
temporal, parietal, frontal, and occipital regions [3,4,6].
Prior work shows that such structural atrophy is related to
levels of Ab [5,10,16,17], but increased levels of Ab may
simply be a proxy for other AD-related pathologies such
as neurofibrillary tangles (NFTs).

Positron emission tomography (PET) ligands that bind to
NFTs [18–21] have provided a new biomarker to understand
AD. Tau PET is elevated in AD [22–28] and in cognitively
normal individuals with elevated Ab pathology
[23,25,29,30]. Elevated tau PET binding predicts other
neurodegenerative biomarkers such as hypometabolism
[31–33] and structural atrophy [34–36].

Owing to the accessibility and prevalence of structural
MRI imaging, it is critical to understand the relationship be-
tween tau PET and gray matter integrity. Prior work has
examined cross-sectional relationships between tau PET us-
ing AV-1451 and cortical thickness [34–37], finding that
increased levels of tau PET binding were associated with
thinner cortices, particularly in temporal, lateral parietal,
and occipital regions. There is also initial evidence that
prior longitudinal changes in structural MRI over a limited
time window (w3 years) predict current levels of NFT
pathology measured with PET [35]. This cross-sectional
and longitudinal work reveals that there is a clear relationship
between in vivo measures of tau pathology and structural
integrity but has only evaluated the influence of tau pathology
without also additionally considering measures of Ab.

In a population of cognitively normal and mildly
impaired older adults, the current work examines the influ-
ence of Ab and NFT pathology on structural integrity. We
examine both the concurrent relationship between cortical
thickness and pathology and the relationship between cur-
rent levels of pathology and antecedent longitudinal change
in cortical thickness. By considering both pathologies simul-
taneously, it is possible to estimate the unique influence each
has on structural atrophy. This is critical not only to under-
stand how tau pathology is related to another marker of neu-
rodegeneration but also to explore whether tau pathology
mediates prior observed relationships between Ab and
gray matter health.
Variable cohort (N 5 178) cohort (N 5 123)

Age, years 70.1 (8.2) 70.8 (8.4)

Female (%) 106 (60) 74 (60)

MMSE 29.0 (1.8) 29.1 (1.9)

CDR-sum 0.3 (0.8) 0.2 (0.7)

AV-45 summary (SUVR) 1.27 (0.64) 1.29 (0.66)

AV-1451 summary (SUVR) 1.29 (0.35) 1.26 (0.30)

Months between AV-45 and

AV-1451

3.6 (6.7) 4.3 (7.8)

Follow-up (years) 5.7 (2.4)

Follow-up (visits) 3.1 (1.1)

Abbreviations: CDR-sum, Clinical Dementia Rating–sum of boxes;

MMSE, Mini–Mental Status Examination; SUVR, standardized uptake

value ratio.

NOTE. Unless otherwise noted values represent means and standard de-

viations.
2. Methods

2.1. Participants

Participants were selected from ongoing studies on aging
and dementia from the Knight Alzheimer’s Disease
Research Center at Washington University. Cognitive status
was assessed using the clinical dementia rating (CDR) [38].
Participants were required to have tau PET imaging and
structural MRI at their most recent neuroimaging assess-
ment. The cross-sectional cohort consisted of 178 individ-
uals (age 46–91 years) with either no cognitive impairment
(n 5 156, CDR 5 0) or very mild dementia (n 5 22,
CDR 5 0.5). From this initial population, 123 individuals
had at least one MRI session that preceded the acquisition
of tau PET (age 55–91 years; n 5 111, CDR 5 0; n 5 12,
CDR 5 0.5). Full demographics for the cohort at the time
of the tau PET session are presented in Table 1.

2.2. MRI acquisition and processing

T1-weighted images were acquired using a magnetization-
prepared rapid gradient-echo sequence on a 3T Siemens scan-
ner. Scans had a resolution of either 1 ! 1 ! 1.25 mm or
1! 1! 1mm.Structural scanswere processedwithFreeSur-
fer [39]. For each hemisphere, cortical thickness values were
obtained for all FreeSurfer cortical regions of interest
(ROIs), and volumes were obtained for all FreeSurfer subcor-
tical ROIs. Cortical thickness was calculated as the shortest
distance between the cortical gray/white boundary and the
gray/cerebrospinal fluid (CSF) boundary [40]. Cortical sur-
face meshes are placed into a common anatomical space
within FreeSurfer for vertex-wise analyses. Parcellations of
the T1-weighted image into cortical and subcortical regions
were also performed for utilization in the processing of PET
data. Longitudinal datawere processed through the FreeSurfer
5.3 longitudinal stream [41]. Therewere a total of 390 sessions
in the longitudinal analyses (mean 3.1 visits, 5.7 years).

2.3. PET acquisition and processing

Ab PET imaging was completed using [18F] AV-45
(florbetapir). Data from the 50- to 70-minute postinjection
window were analyzed using an in-house pipeline using
ROIs derived from FreeSurfer [39,42] (PET Unified
Pipeline, https://github.com/ysu001/PUP). Tau PET
imaging was performed using [18F] AV-1451 (flortaucipir).
Data from the 80- to 100-minute postinjection window
were analyzed. For both tracers, regional estimates were
transformed into standardized uptake value ratios using a
cerebellar cortex reference region, although alternate

https://github.com/ysu001/PUP
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reference regions are also used in the literature [43]. Data
were partial volume corrected using a regional spread func-
tion technique [44,45]. This approach corrects for the
spillover signal from adjacent ROIs based upon the
scanner point spread function and the relative distance
between ROIs. ROI PET data were averaged across
hemispheres for statistical analyses. A summary global Ab
[42] and tau [30] measures were calculated as previously
published. On average, PET data were acquired within
3.6 months of one another.
2.4. Statistical analyses

Cross-sectional vertex-wise analyses were performed us-
ing the FreeSurfer Qdec application (www.surfer.nmr.mgh.
harvard.edu). Three statistical models were examined using
general linear models. The first related the summary mea-
sure of tau [30], as measured with flortaucipir, to vertex mea-
sures of cortical thickness. The second model related the Ab
summary measure, as measured with florbetapir, to vertex
measurements of cortical thickness. Finally, to assess the
unique influence of each pathology, the last model included
both the Ab and tau summary measures. All three models
were run separately for the left and right hemispheres and
included current age, gender, and scan resolution
(1 ! 1 ! 1 or 1 ! 1 ! 1.25) as covariates. Vertices
were considered significant after a false discovery rate
correction considering both hemispheres.

Longitudinal analyses were performed two ways. The
first set of analyses examined relationships of pathology
with antecedent longitudinal change in cortical thickness
at the cortical surface level using spatiotemporal linear
mixed-effects (LMEs) models [14,46] implemented in
MATLAB. LMEs are highly flexible approaches for
analyzing longitudinal neuroimaging data because they
can handle unequal numbers of data points and temporal
spacing between assessments across subjects. The
spatiotemporal approach is an extension of LMEs for
mass-univariate analyses but also takes into account pooled
covariance structure across neighboring vertices of homog-
enous regions. Three models were again run and were
similar in structure to the cross-sectional models. In the
first model, preceding longitudinal change in cortical thick-
ness was predicted by the main effects of our current tau
PET summary measure, gender, current age, time, scan res-
olution (1 ! 1 ! 1 or 1 ! 1 ! 1.25), and the interaction
between tau PET and time. Models included random
subject-specific slopes and intercepts. The second model
implemented was identical in structure but used Ab PET
rather than tau as a predictor. The third, combined model
examined the main effects and interactions with time of
both global tau and Ab PET. All three models were imple-
mented separately for the left and right hemispheres, and
vertices were considered significant after surviving false
discovery rate correction accounting for comparisons in
both hemispheres.
Finally, a series of LME data were run using ROIs derived
from FreeSurfer to examine the effects of local pathology on
local atrophy. Regional data were averaged between left and
right hemispheres. Instead of examining the association be-
tween global summaries of Ab and tau and cortical thick-
ness, these analyses specifically modeled Ab and tau PET
binding within each ROI (e.g., precuneus) to thickness in
that same ROI. This was done to avoid any bias that could
be introduced by using summary measures formed from
specific ROIs. The first model looked at the relationship be-
tween longitudinal measurements of thickness in that ROI
predicted by main effects of current tau in that specific
ROI, gender, current age, time, scan resolution, and the
time by tau interaction. Models contained subject-specific
random-effects intercepts and slopes. Similar models were
run using Ab rather than tau PET as a predictor, and finally
combined models including both tau and Ab and their inter-
actions with time. These three models were run for all 34
cortical regions identified by FreeSurfer. Models were im-
plemented using the lme4 package in R, version 3.4.1, and
ROIs were considered significant after false discovery rate
correction.
3. Results

3.1. Cross-sectional associations with global pathology

The vertex-wise results are presented in the left-hand col-
umn of Fig. 1. Fig. 1A depicts those vertices that had a sig-
nificant relationship with the global tau PET measure.
Fig. 1B depicts those vertices significantly related to the
global Ab PETmeasure. Fig. 1C shows those vertices signif-
icantly related to tau while additionally controlling for levels
of Ab. There were no vertices significantly related to Ab
when entered alone (Fig. 1B) or when tau was also included
in the model (not shown). For simplicity, only the results
from the left hemisphere are presented. Results for the
right hemisphere are highly similar and presented in
Supplementary Fig. 1.

3.2. Longitudinal associations with global pathology

Results from the spatiotemporal LMEs are presented in
the right-hand column of Fig. 1. Fig. 1D shows those areas
of the cortex that showed a significant global tau burden
by time interaction, that is, how current levels of tau predict
antecedent thickness change in cortical thickness. Fig. 1E
depicts the Ab by time interaction. Fig. 1F shows the tau
by time interaction after additionally controlling for the
main effect of global Ab burden and Ab by time interaction.
There were no significant Ab by time effects once tau was
simultaneously considered in the model.

3.3. Longitudinal associations with local pathology

Results examining the relationships between ante-
cedent structural change and local AD pathologies are
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Fig. 1. The relationship between global AD pathology and gray matter. Three GLMs were implemented to estimate vertex-wise relationships between (A)

global tau PET summary measure, (B) Ab mean cortical SUVR, or (C) global tau controlling for Ab, and left-hemisphere cross-sectional cortical thickness.

Spatiotemporal LMEs models were used to investigate relationships between (D) global tau and time from initial MRI, (E) global Ab and time, or (F) global

tau and time controlling for Ab and time, and antecedent longitudinal change in cortical thickness. All models controlled for the main effects of gender, current

age, and scan resolution. Cross-sectional models used the Qdec multiple comparisons correction (FDR) procedure at P, .025 level to approximate comparisons

in both hemispheres. Longitudinal models used the LME FDR2 comparisons correction in MATLAB and accounted for comparisons in both hemispheres.

Values depicted from each model are thresholded at the level of significance identified by their respective FDR procedures. Abbreviations: Ab, amyloid b;

AD, Alzheimer’s disease; FDR, false discovery rate; GLM, general linear model; LMEs, linear mixed-effects; MRI, magnetic resonance imaging; PET, positron

emission tomography; SUVR, standardized uptake value ratio.
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shown in Fig. 2 and presented in Table 2. To be visually
consistent with Fig. 1, results are displayed on the left
hemisphere but represented the statistical results from
the average of data from left and right hemispheres.
Fig. 2A depicts the significant regional tau burden by
time interaction (e.g., the relationship between precuneus
tau and change in precuneus cortical thickness). Fig. 2B
depicts the local Ab by time interaction. Fig. 2C depicts
the local tau by time interaction when both tau and Ab
main effects and interactions were considered in the
model simultaneously. There were no significant associa-
tions between local Ab and change in cortical thickness
once tau was additionally considered in the model.
4. Discussion

Prior work has demonstrated that structural MRI is a
sensitive marker to AD dementia [1–5] and preclinical
AD [4,5,8–10]. The advent of tau PET imaging has
provided another in vivo biomarker of the molecular
pathology in AD. The current work examined the
association between cortical thickness and tau pathology
measured with flortaucipir PET. We found that current
levels of tau PET binding, rather than Ab PET, were
related to concurrent cortical thinning and preceding
structural atrophy.
We found that both global and local levels of florbetapir
were associated with greater antecedent atrophy. This is
consistent with prior work in the field demonstrating struc-
tural declines in preclinical AD [4,5,8–10]. Early work has
also indicated a significant relationship between tau PET
binding and gray matter health [34–37]. When
simultaneously considering both biomarkers, levels of tau
PET mediated the effects of Ab on cortical thickness. This
suggests that in prior work, the association between gray
matter and Ab may have been a proxy for emerging NFT
pathology. This also suggests that the relationship between
tau PET and cortical thickness is distinct from the
influence of Ab.

The association between increasing levels of tau PETand
cortical thinning was not restricted to the medial temporal
lobe but was widespread throughout the temporal, occipital,
parietal, and even portions of the frontal lobes. The effects in
the temporal and parietal regions were particularly reminis-
cent of spatial signatures seen when examining whole-brain
atrophy maps in AD [3–5], indicating a stable network of
brain regions that also demonstrate tau-related atrophy.
The pattern of areas demonstrating atrophy is also more
similar to the spatial topography of tau rather than Ab
PET [22–28,31]. This effect was not however simply a
product of the regions going into our summary measures.
Analyses looking only at local tau and Ab accumulation



Fig. 2. The relationship between local AD pathology and gray matter. Linear mixed-effects models were implemented to model region-wise relationships be-

tween (A) local tau and time, (B) local Ab and time, or (C) local tau and time controlling for local Ab and time, on longitudinal local cortical thickness in all 34

FreeSurfer cortical regions. All models controlled for the main effects of gender, age, and scan resolution. Both hemispheres’ values were averaged together.

Values depicted are adjusted2log10(P) values after FDR correction for multiple comparisons. Abbreviations: AD, Alzheimer’s disease; FDR, false discovery

rate.
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recapitulated similar regional maps, suggesting a stronger
local relationship between structural atrophy and tau than
atrophy and Ab.

The current work and prior results [35] indicate that NFT
pathology measured with flortaucipir is related to cross-
sectional cortical thinning, as well as atrophy that has
occurred over the previous years. In models of AD patho-
physiology [47], as well as work with autosomal-dominant
AD [48], changes in tau pathology occur before structural
changes seen with MRI. Such frameworks would suggest
that tau pathology would be a stronger predictor of future
rather than retrospective atrophy. Such a temporal relation-
ship, for example, tau leading MRI with a time lag, could
still account for the current results. For example, we also
found that rates of MRI change were also related to current
levels of Ab, although there is strong evidence that eleva-
tions in Ab plaque deposition precedes all other pathologies
[48]. Rates of structural atrophy may simply serve as a rough
marker of the disease stage. As a result, greater antecedent
atrophy could predict current Ab or tau PET, even if that is
not the correct causative temporal direction.

Alternatively, the temporal ordering of tau relative to struc-
turalMRI has been based onCSF total tau and phosphorylated
tau. Although CSF and PET measures of tau are modestly
correlated [23,29,37], these two markers likely measure
distinct but related aspects of tau. Just as there appears to be



Table 2

Regional effects relating tau and Ab to longitudinal rates of atrophy

Region

Ab ! time interaction Tau ! time interaction Tau! timecontrolling forAb! time

B t-value

Adjusted

P value B t-value

Adjusted

P value B t-value

Adjusted

P value

Banks of the superior temporal sulcus 20.0039 22.84 .00583 20.0109 25.15 .00000 20.0109 24.06 .00010

Caudal anterior cingulate cortex 0.0004 0.2709 .78705 20.0049 20.85 .39591 20.0052 20.89 .37662

Caudal middle frontal gyrus 20.0025 21.6629 .10095 20.0074 21.51 .13530 20.0044 20.78 .43531

Cuneus 0.0002 0.0719 .94276 20.0042 20.67 .50606 20.0042 20.67 .50548

Entorhinal cortex 0.0008 0.0928 .92640 20.0209 23.09 .00267 20.0269 23.61 .00054

Frontal pole 20.0006 20.2986 .76560 0.0063 1.18 .24033 0.0069 1.26 .20816

Fusiform gyrus 20.0038 21.8799 .06381 20.0147 23.55 .00060 20.0147 22.91 .00454

Inferior parietal cortex 20.0021 21.8018 .07619 20.013 24.18 .00005 20.0147 23.85 .00016

Inferior temporal cortex 20.001 20.6511 .51701 20.0103 23.43 .00085 20.0132 23.64 .00040

Insula 20.0039 21.7147 .09024 20.0035 20.57 .56754 20.0017 20.27 .79159

Isthmus cingulate 20.0062 22.9631 .00403 20.0191 24.02 .00009 20.0158 23.06 .00256

Lateral occipital cortex 20.0016 20.9272 .35694 20.0078 22.17 .03314 20.0084 21.97 .05146

Lateral orbitofrontal cortex 20.0014 20.9398 .35083 20.0009 20.16 .87056 0.0004 0.08 .93691

Lingual gyrus 20.0032 21.1853 .23911 20.0086 21.39 .16707 20.0079 21.26 .21096

Medial orbital frontal cortex 20.0027 21.7311 .08784 20.0123 21.90 .06128 20.0114 21.76 .08258

Middle temporal gyrus 20.0015 21.0751 .28622 20.0096 23.01 .00313 20.0111 22.90 .00434

Paracentral gyrus 20.0037 21.4636 .14808 20.0035 20.49 .62762 20.0019 20.27 .79104

Parahippocampal cortex 20.0047 21.1655 .24740 20.02 23.14 .00233 20.0203 22.86 .00519

Pars opercularis 20.0024 21.5936 .11246 20.0138 22.32 .02142 20.0128 22.13 .03453

Pars orbitalis 0.0001 0.0628 .95017 0.006 1.25 .21444 0.0063 1.27 .20763

Pars triangularis 20.0004 20.3179 .75076 20.0099 21.98 .04832 20.0096 21.92 .05556

Pericalcarine cortex 20.0003 20.1267 .89929 0.0026 0.31 .75614 0.0027 0.32 .74731

Postcentral gyrus 0.0006 0.2626 .79360 20.0014 20.21 .83138 20.0017 20.26 .79910

Posterior cingulate cortex 20.0024 21.9147 .05899 20.0141 22.67 .00874 20.012 22.05 .04273

Precentral gyrus 20.0029 20.9078 .36737 20.0087 20.84 .40198 20.0068 20.64 .52336

Precuneus cortex 20.0024 22.1989 .03179 20.0098 22.11 .03777 20.0067 21.30 .19534

Rostral anterior cingulate cortex 20.0001 20.0734 .94167 0.0017 0.25 .80612 0.0017 0.25 .80556

Rostral middle frontal 20.0008 20.6686 .50571 20.0026 20.51 .60828 20.0023 20.45 .65569

Superior frontal cortex 20.0024 22.0056 .04637 20.0059 21.13 .26050 20.0039 20.74 .45983

Superior parietal cortex 20.0002 20.1315 .89578 20.0022 20.47 .63724 20.0024 20.44 .66145

Superior temporal gyrus 20.0021 21.2591 .21213 20.0072 21.49 .13919 20.0058 21.08 .28262

Supramarginal gyrus 20.0014 20.9435 .34642 20.0119 22.30 .02254 20.0115 22.05 .04189

Temporal pole 0.0001 0.0149 .98810 20.0045 20.50 .61688 20.0055 20.55 .58304

Transverse temporal gyrus 20.0026 20.8029 .42423 0.0052 0.58 .56118 0.0071 0.77 .44330

Abbreviation: Ab, amyloid b.

NOTE. Bold values represent multiple comparison adjusted P values ,.05.
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a temporal lag between CSF and PETmeasures of Ab [49,50],
there is likely a temporal delay between changes in CSF and
PET measures of tau. As a result, tau PET may be later in
disease progression and more proximal or even later to
changes seen with structural MRI. Neuronal dysfunction and
reduced dendritic branching may initially occur and manifest
onMRI beforemature tangles [20] that are bound by flortauci-
pir form. Prospective acquisition of both longitudinalMRI and
tau PET along with work in autosomal-dominant AD popula-
tionswill help to clarify the temporal dynamicsof tauPETrela-
tive to other markers.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional sources (e.g. PubMed and
Google Scholar) for articles examining structural
decline in preclinical and clinical Alzheimer’s dis-
ease as well as for work using tau positron emission
tomography imaging. Although tau positron emis-
sion tomography imaging has been related to neuro-
degenerative biomarkers, it is still not understood
how tau pathology relates to cortical atrophy in
relation to amyloid b deposition.

2. Interpretation: Our work found that tau rather than
amyloid b predicts concurrent and antecedent gray
matter loss. This result is consistent with neuropa-
thology work indicating that tau pathology is a better
marker of cognitive impairment than amyloid b.

3. Future directions: The manuscript found relation-
ships between preceding changes in cortical integrity
and current levels of tau pathology. Future work us-
ing longitudinal measures of both tau and magnetic
resonance imaging and will help to further clarify
the temporal dynamic between these markers.
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