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Abstract: Metallic elemental powder mixture and pre-alloyed metallic powder are both frequently
used powder feedstock in the additive manufacturing process. However, little research has been
conducted to compare the corrosion behavior of selective laser melting (SLM) alloys, fabricated by
pre-alloyed metallic powder and mixed metallic powder. Hence, it is important to investigate the
corrosion behavior of SLMed alloys, as well as the corresponding cast ingot, with the aim to better
understand the feasibility of designing new materials. In this work, the SLM-produced Ti6Al4V3Cu
alloys were manufactured using a metallic elemental powder mixture and pre-alloyed metallic
powder, respectively. The corrosion behavior of the different Ti6Al4V3Cu alloys was investigated
in following electrochemical tests and ion release measurements. The results showed that the
Ti6Al4V3Cu alloy prepared by pre-alloyed metallic powder showed better corrosion resistance
than that produced from mixed metallic powder. Moreover, the SLM-produced Ti6Al4V3Cu alloys
performed significantly better in corrosion resistance than the cast Ti6Al4V3Cu. The results are
expected to achieve a better understanding of the feasibility of designing new materials using mixed
powders, contributing to reducing development costs and cycles.

Keywords: selective laser melting; Ti6Al4V3Cu; corrosion behavior; ion release; passive film

1. Introduction

Titanium and its alloys are commonly utilized to manufacture dental implants because
of its superior mechanical properties, corrosion resistance, and biocompatibility. However,
the inflammatory lesions around implants are collectively recognized as peri-implant
diseases and are widespread [1]. There were almost 500 species of bacteria in the human
oral microbiome, which were easily colonized on different implants [2]. Peri-implantitis was
more commonly associated with opportunistic infections, such as Pseudomonas aeruginosa
and Staphylococcus aureus (S. aureus) in observational studies [3]. According to clinical data,
peri-implantitis can start early, since the majority of implants showed symptoms of bone
loss (>0.5 mm), after the second (52 wt.%) and third (66 wt.%) years of use. These figures
were 70 wt.% and 81 wt.% at the issue level, respectively [4]. Although many measures
have been used to prevent bacterial infection, such as disinfection and sterilization during
surgery, a bacterial infection often occurs in the process of recovery after surgery. Therefore,
preventing and treating peri-implantitis caused by bacterial infection is a grave problem in
dental implants. Antibiotics are the main treatment for peri-implantitis after scaling/root
planning or mechanical debridement [5]. However, antibiotic treatment is reported to
promote the generation of resistant organisms, increase the treatment cost and pollute
the environment [6]. To overcome the above shortcomings, researchers have focused on
the development of antibacterial biomaterials. Alloying silver (Ag) and copper (Cu) in
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titanium-based alloys, for example, is a potential strategy for reducing or eliminating
peri-implantitis [7]. The Cu element, one of the essential cofactors of many enzymes, is
used as a potent and broad-spectrum antibacterial alloying element to design antibacterial
alloys [8]. Given this, various kinds of Cu-bearing alloys, such as Ti-Cu [9,10], CoCr-
Cu [11,12], and 316-Cu [13], have been developed by casting, powder metallurgy and
additive manufacturing, etc.

As one of the metal additive manufacturing procedures, selective laser melting (SLM)
can employ a specialized scanning strategy to melt the pre-deposited metallic powder,
layer by layer, in a sequential manner [14]. In this regard, SLM has been widely used to
fabricate the implant with a complex structure that patients need directly. Extensive studies
have been reported, showing that the titanium-based implants produced by SLM exhibit
excellent mechanical properties, compared with their traditionally manufactured counter-
parts [15], resulting from the rapid solidification-induced refined microstructure [16,17].
F.B et al. confirmed that, due to the high cooling rate, the presence of harder microstruc-
tural constituents in Ti6Al4V, produced by SLM, leads to a higher wear resistance than
hot pressing and casting specimen [18]. Thanks to the manufacturing flexibility, SLM
is a facile means to design and predict new materials using mixed powders, which can
reduce development costs and cycles compared with traditional methods [19]. As a result,
mixed metallic powder has been recognized as a possible alternative raw material for SLM,
as well as a commonly used powder feedstock in the SLM process. For example, Wang
et al. investigated the homogenization of microstructure and phases of an SLM-produced
Ti-35Nb composite (in wt.%), using elemental powder [20,21]. Qin et al. used high purity
elemental titanium and copper powder, after mechanically mixing, to produce the solid
Ti-5Cu samples and showed that heat-treated Ti-5Cu samples had similar corrosion be-
havior to pure CP-Ti [22]. Fan et al. demonstrated that the TC4-5Cu/TC4 alloy produced
by SLM exhibited significant antibiofilm property against S. mutans [23]. In our previous
study, a series of Cu-bearing Ti6Al4V alloys were fabricated by selective laser melting
(SLM) technology with mixed powders, consisting of Cu and Ti6Al4V, and the effects of Cu
content on the microstructure, corrosion resistance, antibacterial properties, and cytotoxic-
ity of SLM-produced Ti6Al4V-Cu alloys were systematically assessed [24,25]. Based on the
above results, Ti6Al4V3Cu pre-alloyed powders were produced using the gas atomization
method, from the corresponding cast ingot, and then used in the SLM technology [26].
Further, the corrosion resistance of the SLM-produced Ti6Al4V3Cu alloys, produced from
the pre-alloyed powder, was investigated at different heat treatments.

As a rule, corrosion resistance is greatly associated with mechanical properties and
biocompatibility. To date, there are few studies concerning the comparison between the
SLM parts produced by the use of mixed powders and corresponding pre-alloyed powder.
Qin et al. compared Ti35Nb alloys fabricated by the mixed powder and pre-alloyed powder,
and the corrosion behavior of the two specimens was identical, and double-layered oxide
films could be formed on both SLM-produced Ti35Nb samples, from different powder
feedstock [27]. Although we investigated the corrosion behavior of the SLM-produced
Ti6Al4V3Cu alloys made from pre-alloyed powders, the potentially different corrosion
behavior between the Ti6Al4V3Cu alloys, made from the two types of powders as powder
feedstock, was overlooked, limiting a better understanding of the feasibility of designing
new materials using mixed powders. This is because the mixed metallic powder after SLM
processing, resulting in a non-uniform microstructure with heterogeneous distribution
of the Cu element, may probably deteriorate the mechanical properties and corrosion
behavior [28].

In this study, the mixed metallic powder and pre-alloyed metallic powder were used
to prepare SLM-produced Ti6Al4V3Cu alloys. To investigate the corrosion behavior of
those samples thoroughly, the electrochemical experiment was determined, including
electrochemical impedance spectroscopy and potentiodynamic polarization. At the same
time, the traditional casting of the Ti6Al4V3Cu alloy was used as a control group. The
differing passivation behavior among those alloys was illuminated. This work is expected
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to lay the foundation for understanding the design and development of new materials,
using pre-alloyed powder and mixed powders in SLM processing.

2. Materials and Methods
2.1. Materials Preparation

The pre-alloyed Ti6Al4V3Cu powder (d90: 41.39 µm) was manufactured by a TC4
and Cu ingot using gas atomization. The mixed powder (d90: 44.60 µm) was produced
by mixing 97 wt.% Ti6Al4V powder and 3 wt.% Cu powders in tubular rotation. A laser
particle size analyzer was used to roughly measure the powders’ distribution. Mixed
elemental Ti6Al4V3Cu powder and pre-alloyed Ti6Al4V3Cu were utilized to feed an SLM
machine (Mlab Cusing R, Concept Laser GmbH, Lichtenfels, Germany), that utilized a 95 W
Nd: YAG laser. The images of Ti6Al4V3Cu powder using a scanning electron microscope
are shown in Figure 1. During the SLM process, the optimized processing parameters—
laser power of 75 W, scan line hatch spacing of 110 µm, powder bed layer thickness
of 25 µm, scanning speed of 0.75 m/s, liner scanning strategy of between 90—were all
carefully managed. Ingot casting was used to create Ti6Al4V3Cu ingot alloys. In a prior
investigation, we discovered that Ti6Al4V alloys made using the SLM technique and heated
to 750 ◦C perform well. Following that, the samples were heated to 750 ◦C in tube furnace.
After 2 h of heat preservation, those samples were followed by air quenching. The SLM-
produced samples referred to casting Ti6Al4V3Cu as Ti6Al4V3Cu-C, mixed Ti6Al4V3Cu
powder as Ti6Al4V3Cu-M, and pre-alloyed Ti6Al4V3Cu powder as Ti6Al4V3Cu-P.
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Figure 1. The scanning electron microscope (SEM) images of the Ti6Al4V3Cu powder: (a) pre-alloyed
powder; (c) mixed powder. The pre-alloyed powder and the mixed powder of corresponding selected
element distribution maps are shown in (b,d).

2.2. Materials Preparation

Before microstructural analysis, all samples were ground with SiC emery papers
up to 2000 grits. After that, samples were polished to a 1 µm finish diamond paste.
Then the samples were etched in Kroll reagent (6 mL HF + 10 mL HNO3 + 50 mL H2O).
A scanning electron microscope (Hitachi SU8010 SEM, Tokyo, Japan) with an energy
dispersive spectroscopy was used to examine the microstructure (EDS). Using a Cu K
irradiation, the powders’ phase constitution and Ti6Al4V3Cu alloys were evaluated by
X-ray diffraction (XRD, D/MAX-2500PC, Tokyo, Japan). Electron backscatter diffraction
(EBSD) measurements were carried out, the EBSD data was post-processed using the HKL
Channel 5 software.

2.3. Electrochemical Test

The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)
were performed on an electrochemical working station (Gamry REFERENCE 600+, Warmin-
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ster, PA, USA), a Gamry Instruments Company Global software. The corrosion resistance of
different alloy samples was evaluated by a normative three-electrode. The electrochemical
measurements were carried out at 37 ± 1 ◦C using a 0.9 wt.% NaCl solution as the working
electrode and the samples as the reference electrode (WE), A saturated calomel electrode
(SCE) as a reference electrode, and a platinum sheet counter electrode were the other elec-
trodes (CE). The open-circuit potential (OCP) vs. time curve was used for 1 h, so that the
stabilized potential value can be seen. After that, electrochemical impedance spectroscopy
(EIS) was performed with a frequency range of 10−2 to 105 Hz and an amplitude of 10 mV.
The potentiodynamic polarization curves were measured at a scan speed of 1 mv/s, and
range from −0.5 V to 2.0 V after the EIS test. For each group, three specimens were tested.
The electrochemical test results were also examined using Gamry Instruments Echem
Analyst software (Version 7.03). Tafel fitting of the experimental data yielded the corrosion
potential (Ecorr) and corrosion current density (Icorr).

2.4. Static Immersion Test

The samples with dimensions of 10 × 10 × 10 mm3 were fabricated by SLM and
casting. Static immersion experiments were carried out in polypropylene bottles for 12 days
at 37 ◦C using a 0.9 wt.% NaCl solution with a surface area/volume ratio of 1 cm2/mL. All
Ti6Al4V3Cu alloys were ground with waterproof paper to 2000 grits, followed by ultrasonic
cleaning in acetone for 10 min, then sonication in ethanol for 10 min, and finally rinsed
with ultrapure water. Immersion testing for each substance was repeated three times in
duplicate. On an inductively coupled plasma atomic emission spectrometry system, metal
ion concentrations discharged into NaCl solution were determined (ICP-AES, Ultima 2).
The outermost surface chemical composition of the alloys was investigated using X-ray
photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher, Waltham, MA, USA).
The XPS was fitted with a monochromatic Al Ka X-ray source with a 1486.6 eV energy level.

3. Results
3.1. Microstructure Analysis

Figure 1a shows the SEM images of the pre-alloyed and mixed Ti6Al4V3Cu pow-
ders. Generally, the pre-alloyed powders are spherical in shape and range in size from
10 to 60 µm (Figure 1a). The EDS results show that the Ti, Al, V, and Cu elements are rela-
tively evenly distributed (Figure 1b). Lots of satellite particles could be found in the mixed
powders (Figure 1c), and corresponding EDS mapping suggests the copper powders are
unevenly distributed in the mixed powders (Figure 1d). The XRD patterns of the powder,
the corresponding SLM-produced Ti6Al4V3Cu alloys and casting alloy are illustrated in
Figure 2. In all cases, the α-Ti phase was dominated in the matrix, independent of powder
and bulk alloys. Moreover, the diffraction peaks of the Ti2Cu phase were only identified
in the SLM-produced Ti6Al4V3Cu alloys and casting Ti6Al4V3Cu alloy, but not in the
powders. This indicated that the Ti2Cu was formed during the SLM and casting processing.

The SEM microstructure of the Ti6Al4V3Cu-P, Ti6Al4V3Cu-M, and casting Ti6Al4V3Cu
alloys are shown in Figure 3. The microstructure of the casting Ti6Al4V3Cu alloy primarily
consisted of a lamellar α-Ti phase structure, as shown in Figure 3a,d. In Figure 3e,f, the
typical acicular martensite in the SLM-produced Ti6Al4V3Cu alloys can be observed. The
resultant martensite structure was fine and accompanied by the second phase precipitation,
due to the rapid melting rate in the SLM process. The microstructure, at high magnification,
is shown in Figure 3g–i. In the Ti6Al4V3Cu-C alloys, the spherical and striped Ti2Cu
precipitates nucleated at grain borders and intra-grains (Figure 3g). In the SLM-produced
Ti6Al4V3Cu-P and Ti6Al4V3Cu-M (Figure 3h,i) specimens, the Ti2Cu phase, with a granular
shape, was scattered in the grain border or within the grain. The corresponding EDS
mapping of the SLM-produced and casting Ti6Al4V3Cu alloys are displayed in Figure 4,
which shows that the white precipitates were rich in Cu. This further confirmed that
the white precipitates in Figure 3g–i were assigned to the Ti2Cu phase. By calculation,
the content of the Ti2Cu in the Ti6Al4V3Cu-M was ~7.22 wt.%, which was more than
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that of in the Ti6Al4V3Cu-C (~5.04 wt.%) and Ti6Al4V3Cu-P (~6.61 wt.%). Moreover, the
percentage of Cu content in the matrix, determined by the EDS (Figure 5), indicated that
Ti6Al4V3Cu-M exhibited the highest Cu content.
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Figure 5. Contents of Cu element in matrix of the Ti6Al4V3Cu-C, Ti6Al4V3Cu-P, and Ti6Al4V3Cu-M
alloys by EDS.

The EBSD images in Figure 6 show the difference in microstructure between casting
Ti6Al4V3Cu and SLM-produced Ti6Al4V3Cu alloys, by the phase distribution maps, the
dispersion of grain sizes, and phase diagram. In the inverse pole figure in Figure 6a–c,
the SLM-produced Ti6Al4V3Cu alloys showed similar misorientation angle distributions,
revealing that both alloys exhibited similar textural features. The grain size in Figure 6d–f
suggested that the average grain size of the Ti6Al4V3Cu-P (~2.75 µm) and Ti6Al4V3Cu-M
(~2.69 µm) alloys, produced by SLM, were smaller than the casting alloys (~4.45 µm), which
should be attributed to the rapid rate of melting and solidification, which caused a good
grain refinement during the SLM processing [29]. Additionally, there was no significant
difference in the grain size between the Ti6Al4V3Cu-P and Ti6Al4V3Cu-M alloys. The
distribution of hexagonal α phase and β phase in the matrix is shown in the phase maps
in Figure 6g–i, indicating that all alloys were dominated by the α phase, with a minute
quantity percentage of β phase.
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3.2. Electrochemical Analysis

Figure 7a shows the variation tendency of open-circuit potential (OCP) curves of differ-
ent Ti6Al4V3Cu alloys, in 0.9 wt.% NaCl solution at 37 ◦C. In the case of the Ti6Al4V3Cu-C
and Ti6Al4V3Cu-P alloys, the OCP curve increased quickly at initial times, then reached a
steady state. Figure 7b shows the potentiodynamic polarization curves of SLM-produced
and casting Ti6Al4V3Cu alloys. All potentiodynamic polarization curves showed a similar
shape, consisting of the active region (pink segment), then reaching a significant passivation
area (blue segment), and finally a transgressive region (yellow segment). Table 1 lists the
fitted findings of the potentiodynamic polarization curves, including corrosion current
density (Icorr), corrosion potential (Ecorr), corrosion rate, and breakdown potential. As can
be seen from Table 1, the Ti6Al4V3Cu-C alloy displayed the greatest corrosion rate com-
pared with the SLM-produced ones. The corrosion current density for the Ti6Al4V3Cu-C,
Ti6Al4V3Cu-P, and Ti6Al4V3Cu-M was 66.6 ± 17.6 nA, 84.2 ± 15.5 nA and 215 ± 22.51 nA,
respectively. Generally speaking, the corrosion current density is a significant indica-
tor for determining a material’s corrosion resistance. Therefore, the SLM-produced alloys
showed a lower corrosion current density compared with the Ti6Al4V3Cu-C alloy, while the
Ti6Al4V3Cu-P, produced by pre-alloyed powder, exhibited the lowest corrosion current den-
sity. The corrosion potential of the Ti6Al4V3Cu-C, Ti6Al4V3Cu-P, and Ti6Al4V3Cu-M was
−321.7 ± 21.2 mV, −388.5 ± 10.2 mV, and −354.0 ± 42.1 mV, respectively, while the break-
down potential (Eb) decreased, with the following order: Ti6Al4V3Cu-P > Ti6Al4V3Cu-M >
Ti6Al4V3Cu-C. The breakdown potential (Eb) is frequently used to determine the stability
of passive films on metal surfaces, as an important reference for evaluating the rupture
sensitivity of passivation films, and higher Eb values commonly signify more stable passive
films [30]. Herein, the Ti6Al4V3Cu-P has the highest Eb value, compared to other sam-
ples. In a word, The SLM-produced Ti6Al4V3Cu alloys had superior corrosion resistance
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over the casting ones. Moreover, the corrosion resistance of the alloys produced from the
pre-alloyed powder was greater than that produced using mixed powders.
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Table 1. The Icorr, Ecorr, corrosion rate and Eb value obtained from polarization curves.

Samples Icorr (nA) Ecorr (mV) Corrosion Rate
(µg·cm−2·yr−1) Eb (mV)

Ti6Al4V3Cu-C 215 ± 22.51 −321.7 ± 21.2 174.2 ± 18.1 1270 ± 4
Ti6Al4V3Cu-P 66.6 ± 17.6 −388.5 ± 10.2 53.9 ± 14.3 1359 ± 6
Ti6Al4V3Cu-M 84.2 ± 15.5 −354.0 ± 42.1 68.3 ± 12.6 1336 ± 4

Figure 8a shows the EIS plots of Ti6Al4V3Cu-C, Ti6Al4V3Cu-M and Ti6Al4V3Cu-
P alloys after OCP. The Nyquist plot of all alloys exhibited one single capacitive loop,
independent of manufacturing methods, suggesting a similar corrosion mechanism in
alloys. Moreover, the Ti6Al4V3Cu-P alloy presented the largest diameter of the capacitive
arcs, whereas the least was observed in the Ti6Al4V3Cu-C alloy. The capacitive arcs of
Ti6Al4V3Cu-M were in between the Ti6Al4V3Cu-C and Ti6Al4V3Cu-P. Generally speaking,
a larger diameter in the corresponding semicircle represents a higher corrosion resis-
tance. Thus, the corrosion resistance was decreased in the following order: Ti6Al4V3Cu-P
< Ti6Al4V3Cu-M < Ti6Al4V3Cu-C. In the Bode plots in Figure 8b, the corresponding
phase angle and impedance values have a slight reduction, in the order of Ti6Al4V3Cu-C,
Ti6Al4V3Cu-P, and Ti6Al4V3Cu-M alloys, in the low-frequency range between 0.1 Hz
and 0.01 Hz, indicating less resistive passive oxide films in Ti6Al4V3Cu-C alloys. SLM-
produced Ti6Al4V3Cu alloys had a wider platform in the middle-frequency (100 Hz and
0.1 Hz) region compared with that produced by casting, and the slope of the line located in
the middle frequency was close to −1, meaning the passivation membrane has a capacitive
behavior. The maximum phase angles of Ti6Al4V3Cu-C, Ti6Al4V3Cu-P, and Ti6Al4V3Cu-
M were −81.8◦, −80.5◦, and −83.1◦, respectively, which further indicated the oxide film
formed after electrochemical testing was stable and had integrity in the structure. At high
frequencies, the log |Z| metric tends towards constant values, whereas phase angle values
decrease to zero, indicating that the impedance was dominated by the charitable electrolyte
resistance (Rel). Furthermore, the relationship between frequency and phase angle curves
in Figure 8b indicated that all Ti6Al4V3Cu alloys had only one capacitive loop in the entire
frequency range.
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The EIS experimental results were fitted using the equivalent circuit model to quan-
titatively determine the electrochemical performance of the passivation membrane, as
shown in Figure 8c. A constant phase element (CPE) was linked parallel to an oxide film
resistance (Rp) in the utilized EEC, and a solution resistance (Rs) was connected in series
to the preceding two components. Due to the frequency dependency of capacitance, the
CPE component was used in the EEC. Surface inhomogeneity, point defect distribution,
and space charge layer are possible variables. The following equation is used to compute
the impedance of CPE.

ZCPE =
1

Y0
(jw)−n (1)

In the above formula, j means the imaginary number or (−1)1/2, and ω means
angular frequency. Y0 in this formula represented the capacitance of the electrochemical
corrosion experiment system, and n, which usually lies between 0.5 and 1. The simple
resistor, transferring to a pure capacitor to the CPE, is indicated by the value of n shifting
from 0 to 1, and when n = 0.5, it represents a Warburg impedance. The parameters,
including the Rs, Rp, n, and Y0, are summarized in Table 2. It shows that the value of n
for all alloys was very close, indicating the surface of all the samples’ dissolution under
hybrid control. As for the Rp, the Ti6Al4V3Cu-P alloy presented the largest value of Rp,
whereas the smallest was observed in the Ti6Al4V3Cu-C alloy, and Ti6Al4V3Cu-M was in
between Ti6Al4V3Cu-C and Ti6Al4V3Cu-P. This result reflected that the SLM-produced
Ti6Al4V3Cu alloys exhibited excellent corrosion resistance, concerning the one made by
casting, while the Ti6Al4V3Cu-P alloy had more stability, in terms of oxide film, than that
of the Ti6Al4V3Cu-M alloy.

Table 2. Equivalent circuit parameters calculated by fitting EIS experimental findings.

Samples Rs (Ω·cm2) Rp (K·Ωcm2) Y0 (µΩ−1·sn·cm−2) n

Ti6Al4V3Cu-C 19.91 ± 1.76 231.52 ± 25.94 29.12 ± 4.9 0.89 ± 0.03
Ti6Al4V3Cu-P 21.81 ± 2.36 371.67 ± 103.60 35.87 ± 2.86 0.91 ± 0.01
Ti6Al4V3Cu-M 17.7 ± 2.95 354.17 ± 141.78 34.09 ± 2.81 0.89 ± 0.05
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3.3. ICP Analysis

The accumulated concentration of metal ions, including the Ti, Al, V, and Cu ions,
in the 0.9 wt.% NaCl, after 12 days immersion, is shown in Figure 9a. As can be seen
from Figure 9a, the total ions concentration of the Ti6Al4V3Cu-C alloys (0.152 mg/L) was
lowest, compared to that of Ti6Al4V3Cu-P (0.165 mg/L) and Ti6Al4V3Cu-M (0.172 mg/L).
Moreover, the accumulated concentration of metal ions for Ti6Al4V3Cu-M, produced by
mixed powders, was higher than that of the Ti6Al4V3Cu-P produced by pre-alloyed pow-
ders, but showed no statistical difference (p > 0.05). Figure 9b–e displays the Ti, Al, V,
and Cu ion in the 0.9 wt.% NaCl solution, after 3 days, 6 days, 9 days, and 12 days of
immersion with the samples, respectively. Generally, all ions showed a sustainable increase
in profiles with time, and the concentration of Ti, Al, and Cu ions was increased, in the
following order: Ti6Al4V3Cu-C < Ti6Al4V3Cu-P < Ti6Al4V3Cu-M. The concentrations
of the Cu ion for Ti6Al4V3Cu-C, Ti6Al4V3Cu-P and Ti6Al4V3Cu-M were 0.027 mg/L,
0.029 mg/L, 0.031 mg/L respectively. Compared with the recommended dietary recom-
mendations for Cu (1.3 mg), suggested by the WHO [31], the release of Cu ions from all
alloys is very low [31].
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3.4. XPS Study

X-ray photoelectron spectroscopy was used to determine the surface chemical com-
position of the passive film on Ti6Al4V3Cu-C, Ti6Al4V3Cu-P, and Ti6Al4V3Cu-M alloys,
as shown in Figures 10 and 11. In the case of the Ti2p spectra in Figure 10, the peaks at a
binding energy of 453.7 eV and 459.4 eV were assigned to metallic Ti; the peaks located
at 455.3 eV for Ti2p3/2 and 460.5 eV for Ti2p1/2 belonged to TiO; the peak at 457.2 eV for
Ti2p3/2 and 462.9 eV for Ti2p1/2 was attributed to the Ti3O2, while the peaks located at



Materials 2022, 15, 2487 11 of 16

458.3 eV for Ti2p3/2 and 464.3 eV for Ti2p1/2 were assigned to TiO2. Figure 11 presents the
Cu2p spectra for the Ti6Al4V3Cu-C, Ti6Al4V3Cu-P, and Ti6Al4V3Cu-M alloys. Generally,
the peaks that appeared at the binding energies of 932.2 eV, and 952.8 eV were assigned to
Cu2O. The composition of Ti and Cu in the passive film, calculated from the XPS spectra,
is shown in Figure 12, which indicated that TiO2 was dominated in the passive film in
all alloys, independent of manufacturing methods, and the content of TiO2 was found
to increase with time. Moreover, after 12 days of immersion, Ti6Al4V3Cu-P contained
the highest portion of TiO2 in the passive film. In addition, before and after immersion,
the amount of the Cu2O in the Ti6Al4V3Cu-C alloys was the lowest, compared with the
SLM-produced alloys, and there was no significant difference between the Ti6Al4V3Cu-P
and Ti6Al4V3Cu-M alloys in Cu2O content.
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to 0.9 wt.% NaCl solution at 37 ◦C. high-resolution XPS spectra of Ti2p region from metal (a) 0-day,
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Figure 11. XPS survey spectra of the different Ti6Al4V3Cu alloys surface in 0, 3, 6, 9, 12 days exposure
to 0.9 wt.% NaCl solution at 37 ◦C. high-resolution XPS spectra of Cu2p region (a) 0-day, (b) 3-day,
(c) 6-day, (d) 9-day, (e) 12-day.
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4. Discussion

In this study, the Ti6Al4V3Cu alloys were fabricated by selective laser melting, em-
ploying pre-alloyed metallic powder and mixture elemental powder as powder feedstock,
respectively, aiming to compare their corrosion behavior. The above results indicated that
the SLM-produced Ti6Al4V3Cu has a better corrosion resistance compared with the casting
alloy. When compared to Ti6Al4V3Cu-M alloys, Ti6Al4V3Cu-P had superior corrosion
resistance. Generally, the corrosion behavior is greatly associated with the microstructure,
including composition, grain size, precipitate, etc. On the one hand, the factor associated
with the grain size should explain the different corrosion behavior. The β phase contains a



Materials 2022, 15, 2487 13 of 16

high content of V and has been shown to improve the corrosion resistance of Ti6Al4V alloys
compared to α phase [32]. The phase distribution in Figure 6g–i shows that the β phase
in Ti6Al4V3Cu-P alloys, as a proportion, is the highest. Furthermore, the small grain size
that resulted (Figure 6a,b) from the selective laser melting processing favored the better
corrosion resistance, concerning the casting Ti6Al4V3Cu-C alloy. The nucleation rate during
solidification is one of the influencing variables in grain refining, as the rapid solidification
rate, up to 105–106 ◦C/s, provides a greater driving force for grain nucleation, resulting in
refined grains. In addition, much finer α needles and a gradually finer structure, apparently
consisting of degenerate lamella, were observed due to the higher cooling rates. This is the
formation mechanism of the SLM-produced Ti6Al4V3Cu alloys’ microstructure, shown in
Figure 3, while the Ti6Al4V3Cu alloys obtained by casting, were processed by a continuous
casting process, where liquid metal was solidified with a specific cooling rate, thus, leading
to different microstructures, such as primary α phase and α coarse lamellae (transferred
from β). According to previous reports, grain refinement can increase electron activity at
grain boundaries, which can help the rapid formation of stable passive films, improving
corrosion resistance [33]. Dai et al. [34] proved that the size of the grain has a significant
influence on the corrosion rate, and it is proposed that the corrosion rate and grain size
show a positive correlation. Herein, the EBSD result shows that the grain size distribution
in the Ti6Al4V3Cu-P and Ti6Al4V3Cu-M alloys was smaller than that of the Ti6Al4V3Cu-C
(Figure 6d–f). This could explain why the corrosion resistance of the SLM-produced alloys
showed better corrosion resistance compared with the casting alloys.

On the other hand, the distribution form of Cu should be responsible for the different
corrosion behavior between the Ti6Al4V3Cu-P and Ti6Al4V3Cu-M alloys. From Figure 1a,
the distribution of Cu in the pre-alloyed Ti6Al4V3Cu powders was very uniform, while it
was heterogeneous in the mixed Ti6Al4V3Cu powders. The heterogeneous distribution
of Cu in the mixed Ti6Al4V3Cu powders caused certain parts to be affluent in Cu, while
others were deficient in Cu during melting, resulting in an inhomogeneous distribution
of Ti2Cu [28]. Such a case could be avoided in the pre-alloyed condition. Many studies
have reported that the heterogeneous presence of the intermetallic Ti2Cu phases generates
galvanic cells, relative to the matrix in the electrolyte, as the Ti2Cu phases exhibit a greater
standard electrode potential compared with the titanium matrix [35]. The galvanic cells
would be impeded when the uniform distribution of the Ti2Cu phases was achieved
in the matrix. W.R. Osório proved that by imposing Ti2Cu as a corrosion protection
component, the heat treatment of the Ti–7.1 percent Cu alloy resulted in an utterly eutectoid
microstructure, which reduced the galvanic corrosion impact [36]. In this study, the casting
alloy shows a lath-like microstructure and a spherical Ti2Cu precipitate, whereas the SLM-
produced alloys have alternating layers of phase and Ti2Cu, as well as needles that resemble
a martensitic structure (Figure 3). As shown in Figure 3e,f, the content of the Cu element
in the matrix of the Ti6Al4V3Cu-M alloy was greater than that of the Ti6Al4V3Cu-P alloy,
indicating that the amount of Ti2Cu in Ti6Al4V3Cu-M was more than in Ti6Al4V3Cu-P
alloys. In addition, some reports demonstrated that the Ti2Cu phase would influence the
stability of the passive film. First, the galvanic couples, constituted by the primary α-Ti
and Ti2Cu phase, result in a more irregular oxide film and a deterioration in corrosion
resistance [37]. That is, the irregular presence of the Ti2Cu phase could be detrimental to
the formation of a compact passive film [38]. Second, Cu2O, with a p-type semiconductor
structure in the passive film, exhibits massive defects, including metal cation vacancy and
oxygen vacancy. This defect would promote the reaction of oxygen vacancy and outward
metal cation vacancy at the interface, between matrix and film, preventing further growth
of the passive film. The Ti2Cu phase can be covered by the TiO2 oxide layer when the α-Ti
dissolves and forms the passivation film, when the Ti2Cu phase is evenly distributed in
the α-Ti phase. The quality of the passive film, covering the Ti2Cu phase, on the other
hand, is determined by the Ti2Cu phase’s distribution. In this study, the inhomogeneous
distribution of Ti2Cu and the Cu-rich phase in Ti6Al4V3Cu-M alloy reduced the uniformity
of the passivation film, causing the corrosion resistance to be slightly worse than for the
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Ti6Al4V3Cu-P alloy, and the release of the Cu ion in the Ti6Al4V3Cu-M alloy is higher
than the Ti6Al4V3Cu-P alloy (Figure 9). Particularly, Ti6Al4V3Cu-P, with the finer and
homogeneous distribution of Ti2Cu phases, favored the formation of the highest content of
TiO2, in the outermost layer, as shown in Figure 12. Therefore, the non-uniform distribution
of copper is the main factor for contributing to the decreased corrosion resistance in the
SLM-produced Ti6Al4V3Cu alloys, created from mixture powder, compared to the pre-
alloyed metallic powder. However, it must be noted that the casting Ti6Al4V3Cu-C alloy
showed the lowest ion concentration compared with the SLM-produced alloys, although
the SLM-produced alloys showed the lower corrosion current density, which was reported
in the previous study [26]. Therefore, the in-depth study and underlying mechanism should
be explored in further study.

5. Conclusions

In this study, pre-alloyed metallic powder and mixed elemental powder were used
as powder feedstock, to fabricate the Ti6Al4V3Cu alloy by selective laser melting, and
the corresponding casting ingot was used as the control group. The potentially different
corrosion behaviors were investigated by the electrochemical test and the static immersion
test. The limited conclusions were obtained as follows:

1. The intermetallic compound Ti2Cu could be found in all microstructures of Ti6Al4V3Cu
alloys, regardless of the processing method. However, the processing method could
affect the distribution form of the Ti2Cu, and the more uniform distribution Ti2Cu
could be found in the Ti6Al4V3Cu-P alloys.

2. Compared to the microstructures of the casting alloy, the SLM-produced Ti6Al4V3Cu
alloys exhibited finer martensite and small grain size.

3. The corrosion experiment revealed that, due to the grain refinement of the SLM
process, SLM-produced Ti6Al4V3Cu performs better than the casting sample, in terms
of anti-corrosion capability.

4. The corrosion resistance of Ti6Al4V3Cu alloys, fabricated by pre-alloyed metallic
powder, is superior to that fabricated by the mixed elemental powder because of the
uniform Cu element in the matrix.
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